
ll
OPEN ACCESS
iScience

Article
Scalable Pairwise Whole-Genome Homology
Mapping of Long Genomes with BubbZ
... ...

BubbZ efficiently finds pairwise whole-genome homology mappings

• Takes as input genomic sequences with local homologies:

• Uses the compacted de Bruijn graph to represent the sequences

• Homologous blocks = pairwise chains in the graph

• BubbZ finds all such chains and outputs the blocks

• Best for the case of all-against-all mappings of a set of assembled sequences

Sequence 1

Sequence 2

Ilia Minkin, Paul

Medvedev

ivminkin@gmail.com (I.M.)

pashadag@cse.psu.edu (P.M.)

HIGHLIGHTS
BubbZ is a fast whole-

genome homology

mapper

Works by finding pairwise

chains in the compacted

de Bruijn graph

Optimized for all-against-

all mappings between

multiple assembled

sequences

Tested on 16 mice and

1,600 Salmonella, offers

up to an order of

magnitude speed-up

Minkin & Medvedev, iScience
23, 101224
June 26, 2020 ª 2020 The
Authors.

https://doi.org/10.1016/

j.isci.2020.101224

mailto:ivminkin@gmail.com
mailto:pashadag@cse.psu.edu
https://doi.org/10.1016/j.isci.2020.101224
https://doi.org/10.1016/j.isci.2020.101224
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2020.101224&domain=pdf

iScience

Article

Scalable Pairwise Whole-Genome Homology
Mapping of Long Genomes with BubbZ

Ilia Minkin1,4,* and Paul Medvedev1,2,3,*

SUMMARY

Pairwise whole-genome homology mapping is the problem of finding all pairs of
homologous intervals between a pair of genomes. As the number of available
whole genomes has been rising dramatically in the last few years, there has
been a need for more scalable homology mappers. In this paper, we develop an
algorithm (BubbZ) for computing whole-genome pairwise homology mappings,
especially in the context of all-to-all comparison for multiple genomes. BubbZ is
based on an algorithm for computing chains in compacted de Bruijn graphs. We
evaluate BubbZ on simulated datasets, a dataset composed of 16 long mouse ge-
nomes, and a large dataset of 1,600 Salmonella genomes. We show up to approx-
imately an order of magnitude speed improvement, compared with MashMap2
and Minimap2, while retaining similar accuracy.

INTRODUCTION

Pairwise whole-genome homology mapping is the problem of finding all pairs of homologous intervals be-

tween a pair of genomes (see Dewey and Pachter (2006) for a discussion about the precise meaning of ho-

mology). Unlike local pairwise alignment, which provides base-to-base homology resolution, mapping only

computes the boundaries of homologous blocks. This is, however, sufficient for many applications. For

example, whole-genome homology mapping is a starting point for the analysis of genome rearrange-

ments, which themselves are used in studies of breakpoint reuse (Pevzner and Tesler, 2003) and phyloge-

netics (Luo et al., 2012). It can be used as a precursor to whole-genome alignment (Dewey and Pachter,

2006; Armstrong et al., 2019) or for exploratory comparative analysis. It is also used as a tool for quality con-

trol of genome assembly (Vollger et al., 2019) and for identifying genomic duplications for the purposes of

improving RNA mapping (Srivastava et al., 2019).

A straightforward solution to compute such a homology map is to do pairwise local alignment; however,

alignment is a harder computational problem, requiring more resources than other more direct ap-

proaches. A related problem is locally collinear block reconstruction, where mapping blocks can have mul-

tiple instances and the overlap between them is fully resolved (Darling et al., 2004, 2010; Dewey, 2007;

Paten et al., 2008; Pham and Pevzner, 2010; Minkin et al., 2013). Although solutions to this problem can

be used to compute pairwise mappings, known methods perform poorly in regions with complex repeat

structures (Minkin andMedvedev, 2019). The first direct approach to address the whole-genome homology

map problem was chaining of smaller fragments using a line-sweeping approach inspired by computa-

tional geometry (Abouelhoda et al., 2008; Abouelhoda and Ohlebusch, 2005; Myers and Miller, 1995; Oh-

lebusch and Abouelhoda, 2006). Another approach treats sequences such as audio signals and uses cross-

correlations to find homology (Grabherr et al., 2010).

However, the number of available whole genomes has been rising dramatically in the last few years,

creating the need for more scalable homology mappers. Two recent tools are particularly notable in tack-

ling this challenge; although both are known for read alignment, they also compute homology maps. Mini-

map2 (Li, 2018) is based on a seed-and-extend approach but using minimizers (Roberts et al., 2004) to

quickly identify and reduce the number seeds. MashMap2 (Jain et al., 2018) uses a minimizer winnowing

scheme to quickly identify candidates. These methods are able to compute the mapping of two mamma-

lian-sized genomes in less than an hour. However, in a scenario where the input is a set of multiple genomes

and each genome has to be mapped to every other one, even these methods can be too slow. With efforts

such as the Vertebrate Genomes Project and Insect 5K promising to release thousands more genomes in

the future, more scalable approaches will be needed.

1Department of Computer
Science and Engineering,
The Pennsylvania State
University, University Park, PA
16802, USA

2Department of Biochemistry
and Molecular Biology, The
Pennsylvania State University,
University Park, PA 16802,
USA

3Center for Computational
Biology and Bioinformatics,
The Pennsylvania State
University, University Park, PA
16802, USA

4Lead Contact

*Correspondence:
ivminkin@gmail.com (I.M.),
pashadag@cse.psu.edu
(P.M.)

https://doi.org/10.1016/j.isci.
2020.101224

iScience 23, 101224, June 26, 2020 ª 2020 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1

ll
OPEN ACCESS

mailto:ivminkin@gmail.com
mailto:pashadag@cse.psu.edu
https://doi.org/10.1016/j.isci.2020.101224
https://doi.org/10.1016/j.isci.2020.101224
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2020.101224&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

The approach we take in this paper is based on the compacted de Bruijn graph. This graph provides an

efficient representation of the shared k-mers between closely related genomes, whereby potentially

long shared sequences are represented by small structures within the graph. Approaches based on such

graphs had already proven useful to construct synteny blocks (Pham and Pevzner, 2010; Minkin et al.,

2013), but recent breakthroughs in the efficiency of graph construction algorithms (Marcus et al., 2014; Chi-

khi et al., 2016; Baier et al., 2016; Minkin et al., 2017) make them a promising approach for homology map-

ping. The latest methods can construct the graph for tens of mammalian genomes in minutes rather than

weeks and could construct the graph for 100 human genomes in less than a day (Minkin et al., 2017).

In this paper, we propose BubbZ, an algorithm for computing whole-genome pairwise homology map-

pings, especially in the context of all-to-all comparison for multiple genomes. Our algorithm is based on

ideas similar to the line-sweep algorithms (Abouelhoda et al., 2008; Abouelhoda and Ohlebusch, 2005;

Ohlebusch and Abouelhoda, 2006) but allows for more efficient data structures that reduce the running

time. We evaluated our method on both simulated datasets and on a large dataset composed of 16

mouse genomes, as well as on a dataset consisting of 1,600 Salmonella genomes. BubbZ shows up to

approximately an order of magnitude speed improvement on the datasets of hundreds of bacteria

and up to three times on the mice dataset, compared with MashMap2 and Minimap2, while retaining

similar accuracy.

RESULTS

Algorithm Overview

Given a set of collection of sequences, BubbZ outputs homology information between all possible pairs of

sequences in the collection. This includes homology information between a sequence and itself. Given two

sequences s and t, BubbZ considers a homology, informally, to be a region of s and a region of t whose k-

mer sequences are identical except for gaps of at most b k-mers (b is a parameter). BubbZ outputs the co-

ordinates of all maximal homologies between s and t, except that if the regions of two homologies have the

same right endpoints, only one with the most shared k-mers is output. In case of ties, BubbZ favors output-

ting the one with smaller gaps in t, roughly speaking. For a more precise and formal description of BubbZ,

please see the Methods section.

Datasets

We evaluated BubbZ speed and accuracy on three datasets, the first based on long real mouse genomes,

the second based on a large amount of short bacterial genomes, and the third containing short simulated

genomes. For the long real genomes, we downloaded 16 mouse genomes from GenBank (Benson et al.,

2017). These consisted of 15 different strains, assembled as part of a recent study (Lilue et al., 2018), and

the mouse reference genome. The mouse reference has 377 scaffolds, whereas the other mouse strains

have 2,977–7,154 scaffolds; the genomes’ size fluctuates between 2.6 and 2.8 Gbp. To test the scalability

of our pipeline in the number of genomes, we created four datasets from these 16 genomes. The four data-

sets contain genomes 1-2, 1-4, 1-8, and 1-16, respectively, with genome one being the reference genome.

More details about the datasets, including accession numbers, are available as Table S1 in (Minkin and

Medvedev, 2019).

The real bacterial dataset consisted of 1,600 Salmonella genomes that are a part of GenomeTrakr project

(NCBI BioProject ID, 183844), a public effort to identify and track pathogens causing food-borne illness.

Each genome consisted of approximately 4.6 million basepairs. As in the mouse experiment, we created

four datasets containing genomes 1-200, 1-400, 1-800, and 1-1,600 genomes, respectively. Link to the or-

dered list of the genomes containing their RefSeq accession numbers is contained in the ‘‘Data and Code

Availability’’ section. The goal of this dataset was to test scalability with respect to the number, rather than

the length, of the genomes.

The other type of data we used were nine simulated datasets, generated as part of our earlier study (Minkin

and Medvedev, 2019), and are available for download at https://github.com/medvedevgroup/SibeliaZ/

blob/master/DATA.txt. Each dataset is an evolution simulation from a single ancestor genome, composed

of 1,500 genes and of size approximately 1.5 Mbp; the result is ten genomes in each dataset. The datasets

are distinguished by their divergence, with the evolutionary distance from the root genome to the leaves

varying between 0.03 and 0.25 substitutions per site.

ll
OPEN ACCESS

2 iScience 23, 101224, June 26, 2020

iScience
Article

https://github.com/medvedevgroup/SibeliaZ/blob/master/DATA.txt
https://github.com/medvedevgroup/SibeliaZ/blob/master/DATA.txt

Evaluated Tools

We compared BubbZ against the two recent tools that are able to scale to the size of modern datasets,

Minimap2 (Li, 2018) and MashMap2 (Jain et al., 2018). We ran all tools in order to produce an all-

against-all mapping, including any duplications (i.e. mappings within a single genome or chromosome).

A common parameter for homology-finding tools is theminimum size of the block in the output. We tried to

make the evaluated tools to generate blocks of comparable sizes but it was not possible due to the differ-

ence in the algorithmic approaches and implementations.Wemade BubbZ output blocks of at least 200bp.

For MashMap2 we produced blocks of length at least 500bp (lowest possible setting) for bacteria and

5000bp (the default value) for mice. We used different values for MashMap2 because on the simulated bac-

teria dataset the default parameters produced insufficient recall. This setting is not applicable to Minimap2

because it uses alignment scores for cutoffs rather than block lengths, so we used parameters suggested by

the author for all datasets.

All parameters and command lines are available at https://github.com/medvedevgroup/BubbZ/blob/

master/supplementary.txt, but we highlight the important ones here. To run BubbZ, we first ran TwoPaco

(Minkin et al., 2017) to construct the graph, using k = 21for real datasets and k = 15 for the smaller simulated

ones. We then ran BubbZ using b = 300, m = 200, and for all datasets. The role of these parameters was

explored in the context of multiple whole-genome alignment of the same datasets (Minkin and Medvedev,

2019), and we used values that were found to work best in that paper. Please refer to Minkin and Medvedev

(2019) for guidance on how these parameters can be chosen and what the tradeoffs involved are.

Neither Minimap2 nor MashMap2 provide a ready-made option to compute all-against-all pairwise map-

pings for a collection of genomes: a user has to run the tools for each pair of genomes separately. For Mini-

map2 andMashMap2, we wrote a wrapper that created a separate run for each of the genome pairs; to find

duplications, we also ran it on each genome separately. This wrapper can be parallelized in two ways: (1) the

runs can be executed in parallel, and (2) each run can be internally parallelized by the respective tool. As-

signing different amount of threads to ‘‘external’’ and ‘‘internal’’ parallelization leads to different trade-offs

between running time and memory. We tried to minimize the overall running time of the mappings while

keeping the peakmemory usage reasonable. As we had 24 threads available, for Minimap2 andMashMap2

we decided to run six pairs of mappings simultaneously and allowed each tool to use four threads internally

on the mice dataset. On the bacterial datasets, we used all 24 threads for external parallelization. For

BubbZ we used all 24 threads internally because it natively supports all-against-all mappings and for Two-

PaCo we used 16 threads as suggested by the documentation.

For mapping different genomes with Minimap2, we used default presets for sequences of 5% divergence.

For mapping genomes against themselves, we used the parameters suggested by the author. For Mash-

Map2 we used the default parameters, except (1) the minimum block size for bacterial genomes as

described earlier, (2) that for mapping different genomes we used the orthologous filtering, whereas for

computing duplications we disabled the filtering, as suggested by the authors.

Evaluation Metrics

For the smaller simulated dataset we computed both recall and precision using the mafTools package (Earl

et al., 2014). This package requires an alignment for comparison, rather than just a map; we therefore took

each one of the homology blocks in our output and computed an alignment of it using LAGAN (Brudno

et al., 2003). To define precision and recall, mafTools views an alignment as an equivalence relation, which

is the set of all equivalent position pairs participating in the true alignment. Let A denote the relation pro-

duced by an alignment algorithm, and let H denote the ground truth alignment relation (in our case, H is

given by the simulator). The accuracy of A is then given as recallðAÞ= 1� jHyAj=jHj and precisionðAÞ = 1�
jAyHj=jAj.

For the larger mouse dataset, there are unfortunately no ground-truth whole-genome homology maps or

alignments available, making it difficult to evaluate precision. To evaluate the recall, we used an alignment

of homologous protein-coding genes annotated in Ensembl. These ground-truth alignments, generated as

part of our earlier study (Minkin and Medvedev, 2019) using LAGAN, are available for download at https://

github.com/medvedevgroup/SibeliaZ/blob/master/DATA.txt. The alignment contains both orthologous

and paralogous gene pairs, although most of the paralogous pairs come from the well-annotated mouse

ll
OPEN ACCESS

iScience 23, 101224, June 26, 2020 3

iScience
Article

https://github.com/medvedevgroup/BubbZ/blob/master/supplementary.txt
https://github.com/medvedevgroup/BubbZ/blob/master/supplementary.txt
https://github.com/medvedevgroup/SibeliaZ/blob/master/DATA.txt
https://github.com/medvedevgroup/SibeliaZ/blob/master/DATA.txt

reference genome. For the purposes of analysis, we binned the pairs of homologous genes according to

the nucleotide identity in their alignment. These alignments cover around 33% of the input genomes, i.e.

33% of base pairs in the input genome are included in the alignment. We could not compute recall using

mafTools due to the computational cost of having to compute all alignments for all the homologous inter-

vals in the output. Instead, consider all the aligned position pairs in a ground truth alignment and a homol-

ogy mapping C. We define recall as the fraction of aligned position pairs for which there exists a block in C
covering both positions. We did not evaluate accuracy on the large bacterial dataset.

Results on the Mouse Data

The running time and memory consumption of all the tools are shown in Table 1. The pipeline consisting of

TwoPaCo and BubbZ was 1.5–3 times faster than Minimap2 and 6–12 times faster than MashMap2. Starting

at four genomes, we observe roughly linear scaling for BubbZ. For Minimap2 and MashMap the scaling

seems superlinear, although it is difficult to make any firm conclusions given the limited number of data-

points. The linear scaling of BubbZ is consistent with the fact that only a linear number of runs is required

(see Transparent Methods); however, the time of each run also grows with the size of the input. Neverthe-

less, we empirically found the scaling to be roughly linear.

For datasets consisting of 2, 4, and 8miceMinimap2 uses 1.3–1.6 times morememory than BubbZ, whereas

for 16 mice BubbZ uses roughly 1.4 times more memory. At the same time, MashMap2 has the lowest mem-

ory usage on all datasets: it uses 1.5–3.6 times less memory than BubbZ and 2.1–2.7 times less than Mini-

map2. We note that for MashMap2 and Minimap2 the peak memory usage is the cumulative peak memory

usage of all instances of the tool being run simultaneously by our wrapper.

To compute the recall, we only used the dataset consisting of two genomes, because computing recall is

otherwise computationally prohibitive. Figure 1 shows the recall, broken down by nucleotide identity of the

gene pairs and by orthology/paralogy. Both versions of BubbZ demonstrate nearly the identical recall

scores, with the exact version being marginally better. For the orthologous genes, all mappers have similar

recall, although BubbZ has higher recall in genes of lower nucleotide identity. For the paralogous pairs,

Minimap2 had slightly higher recall then BubbZ.

Results on the Bacterial Data

The running time and memory consumption of the mapping tools on the Salmonella dataset is shown in

Table 3. The total running time of TwoPaCo and BubbZ is 6–12 times smaller than of Minimap2 and 6–9

times than MashMap2. In contrast with the experiment involving the mice dataset, MashMap2 is approxi-

mately 1.3 times faster than Minimap2. Both Minimap2 and MashMap2 have comparable memory con-

sumption (%7:0 GB); in contrast, BubbZ consumes a lot more memory due to keeping the graph for the

whole dataset in memory.

Results on the Simulated Data

Using simulated data, we can measure the accuracy more thoroughly than we could on real data. Figure 2

shows precision and recall of the three methods, as a function of divergence between genomes. For all

tools, both recall and precision decline with increase of the divergence. Both versions of BubbZ demon-

strate nearly the identical recall and precision. Recall is similar for all methods, with BubbZ having slightly

better values for more divergent datasets. BubbZ andMinimap2 have nearly identical precision curves, and

they are substantially higher than MashMap2.

TwoPaCo + BubbZ Minimap2 MashMap2

Dataset TwoPaCo BubbZ Total

1–2 15 (9.3) 6 (35.2) 21 (35.2) 73 (46.5) 233 (22.3)

1–4 22 (9.4) 14 (66.5) 36 (66.5) 75 (105.4) 240 (39.7)

1–8 40 (9.3) 26 (94.9) 66 (94.9) 104 (119.2) 464 (44.7)

1–16 83 (17.8) 42 (164.2) 125 (164.2) 411 (119.6) 1,530 (45.6)

Table 1. Running Time (Minutes) and Memory Usage (Gigabytes, in Parenthesis) on the Mouse Data

ll
OPEN ACCESS

4 iScience 23, 101224, June 26, 2020

iScience
Article

Table 2 shows the running time and memory usage, although because of the small size of the datasets, it is

hard to draw any conclusions about scalability in the size or number of genomes. However, this did allow us

to measure how the divergence affected each of the methods. For BubbZ and MashMap2 genomic diver-

gence did not have a significant effect on the running time, whereas Minimap2 ran slower on more diver-

gent genomes.

DISCUSSION

In this paper, we present BubbZ, a novel method for computing pairwise mapping between complete ge-

nomes. Empirical results indicate that for a large collection of bacterial genomes, our method can be up to

10 times faster than competing approaches. On closely related mammalian genomes, our method is also

several times faster than competitors, while maintaining similar accuracy. Our approach for finding chains is

based on the problem formulation of the sweep-line algorithms from (Ohlebusch and Abouelhoda, 2006).

Those algorithms similarly defined chains and a dynamic programming formulation to find the longest

chains. The main difference is that the previous work was focused on finding a single optimal chain, while

we formally define the problem of finding all such non-redundant chains. In practice users are often inter-

ested in computing a set of chains that comprehensively represent homology between input genomes and

are not redundant. Most practical solutions address this need by implementing heuristics that choose

which chains to output. In contrast, we formally defined and solved a problem of finding all non-redundant

optimal chains.

MiniMap2 also uses a chaining strategy but in a slightly different way than BubbZ. One can think of BubbZ

as limiting the space of possible predecessors by restricting the gap size by a parameter b. MiniMap2, on

the other hand, does not limit the gap size in its chaining algorithm. Instead, it explores at most h prede-

cessors, where h is parameter. In some cases, it might mean that BubbZ explores more predecessors than

MiniMap2, whereas in others it could be the other way around.

A B

Figure 1. Results on the Mouse Data

Recall of the position pairs belonging to pairs of protein-coding genes by BubbZ(blue), Minimap2(green), and

MashMap2(red). (A) corresponds to orthologs and(B) to paralogs. MashMap2 recall on paralogs could not be computed.

Dataset TwoPaCo + BubbZ Minimap2 MashMap2

TwoPaCo BubbZ Total

1–200 4 (17.5) 2 (7.8) 6 (17.5) 35 (3.5) 26 (1.6)

1–400 6 (17.5) 6 (16.7) 12 (17.5) 132 (3.5) 101 (1.8)

1–800 10 (17.6) 33 (44.3) 43 (44.3) 510 (4.3) 390 (2.3)

1–1,600 19 (17.8) 257 (149.2) 276 (149.2) 2,250 (7.0) 1876 (2.3)

Table 3. Running Time (Minutes) and Memory Usage (Gigabytes, in Parenthesis) on the Bacterial Data

ll
OPEN ACCESS

iScience 23, 101224, June 26, 2020 5

iScience
Article

In addition, the approaches mentioned earlier require an efficient dynamic range-maximum-query struc-

ture (Abouelhoda et al., 2008; Abouelhoda and Ohlebusch, 2005; Ohlebusch and Abouelhoda, 2006).

Although such data structures have theoretically asymptotic logarithmic query times, in practice they

have a high constant due to their implementations relying on search trees with extra information. Instead

of using a tree-based dynamic index, we rely on the sparseness of the compacted de Bruijn graph and use a

simple BitVector-based algorithm and data structure to quickly compute optimal predecessors in the dy-

namic programming matrix.

Limitations of the Study

One particular limitation of our tool is its high memory usage, due to keeping in memory the graph con-

structed from all input genomes simultaneously. We believe that it should be possible to reduce the

memory usage by developing a more efficient memory representation. One possible approach is a suc-

cinct data structure for the compacted de Bruijn graph, similar to recently published work (Almodaresi et

al., 2017, 2018; Bowe et al., 2012; Muggli et al., 2017). However, such a representation should contain

extra information to permit quick mapping operations required by our algorithm. We also note that

we compared BubbZ against tools that are a based on different algorithmic approaches that have

different parameters. As a result, it is hard to come up with a set of parameters that result in fair com-

parison for all the tools. It is particular evident in our attempts to externally parallelize runs of MashMap2

and Minimap2.

A B

Figure 2. Results on the Simulated Data: Accuracy as a Function of the Genomic Distance

(A) shows recall, and (B) displays precision.

Dataset TwoPaCo + BubbZ Minimap2 MashMap2

TwoPaCo BubbZ Total

0.03 7 (1,240) 1 (36) 8 (1,240) 6 (904) 3 (147)

0.06 6 (1,291) 1 (51) 7 (1,291) 8 (820) 3 (154)

0.09 6 (1,246) 1 (74) 7 (1,246) 10 (824) 3 (168)

0.11 6 (1,292) 1 (77) 7 (1,292) 10 (634) 3 (172)

0.14 6 (1,250) 2 (80) 8 (1,250) 15 (1,341) 3 (171)

0.17 6 (1,277) 2 (80) 8 (1,277) 15 (1,340) 3 (157)

0.20 6 (1,238) 2 (82) 8 (1,238) 16 (1,113) 3 (165)

0.22 5 (1,237) 2 (71) 7 (1,237) 16 (614) 4 (164)

0.25 5 (1,207) 2 (82) 7 (1,207) 16 (1,204) 3 (168)

Table 2. Running Time (Seconds) and Memory Usage (Megabytes, in Parenthesis) on the Simulated Data

Each dataset is labeled by its corresponding divergence.

ll
OPEN ACCESS

6 iScience 23, 101224, June 26, 2020

iScience
Article

Resource Availability

Lead Contact

Further information and requests for resources should be directed to and will be fulfilled by the Lead Con-

tact, Ilia Minkin (ivminkin@gmail.com).

Materials Availability

This study did not generate new unique reagents.

Data and Code Availability

Our tool is open source and freely available at https://github.com/medvedevgroup/bubbz. All parameters

and command lines are available at https://github.com/medvedevgroup/BubbZ/blob/master/

supplementary.txt. The nine simulated datasets we used for evaluation as well as the ground-truth align-

ments for the mouse data are available for download at https://github.com/medvedevgroup/SibeliaZ/

blob/master/DATA.txt. The ordered list of accession numbers of 1,600 Salmonella genomes is available

at https://github.com/medvedevgroup/BubbZ/blob/master/salmonella_refseq.txt.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101224.

ACKNOWLEDGMENTS

This work has been supported in part by NSF awards DBI-1356529, CCF-1439057, IIS-1453527 to PM.

AUTHOR CONTRIBUTIONS

Conceptualization, IM; Methodology, IM; Software, IM; Validation, IM and PM, Writing—Original Draft, IM;

Writing—Review & Editing, IM and PM, Funding Acquisition, PM.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: January 20, 2020

Revised: May 25, 2020

Accepted: May 28, 2020

Published: June 26, 2020

REFERENCES
Abouelhoda, M.I., Kurtz, S., and Ohlebusch, E.
(2008). Coconut: an efficient system for the
comparison and analysis of genomes. BMC
Bioinformatics 9, 476.

Abouelhoda, M.I., and Ohlebusch, E. (2005).
Chaining algorithms for multiple genome
comparison. J. Discrete Algorithms 3, 321–341.

Almodaresi, F., Pandey, P., and Patro, R. (2017).
Rainbowfish: a succinct colored de bruijn graph
representation. In 17th International Workshop
on Algorithms in Bioinformatics (WABI 2017),
Schwartz., Russell., Reinert., and Knut., eds.
(Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik), pp. 18:1–18:15.

Almodaresi, F., Sarkar, H., Srivastava, A., and
Patro, R. (2018). A space and time-efficient index
for the compacted colored de bruijn graph.
Bioinformatics 34, i169–i177.

Armstrong, J., Fiddes, I.T., Diekhans, M., and
Paten, B. (2019). Whole-genome alignment and
comparative annotation. Annu. Rev. Anim. Biosci.
7, 41–64.

Baier, U., Beller, T., and Ohlebusch, E. (2016).
Graphical pan-genome analysis with compressed
suffix trees and the burrows-wheeler transform.
Bioinformatics 32, 497–504.

Benson, D.A., Cavanaugh, M., Clark, K., Karsch-
Mizrachi, I., Ostell, J., Pruitt, K.D., and Sayers,
E.W. (2017). Genbank. Nucleic Acids Res.
D41–D47.

Bowe, A., Onodera, T., Sadakane, K., and
Shibuya, T. (2012). Succinct de bruijn graphs. In
International Workshop on Algorithms in
Bioinformatics, Raphael., Ben., Tang., and Jijun.,
eds. (Springer), pp. 225–235.

Brudno, M., Do, C.B., Cooper, G.M., Kim, M.F.,
Davydov, E., Green, E.D., Sidow, A., and
Batzoglou, S.; NISC Comparative Sequencing
Program (2003). Lagan and multi-lagan: efficient
tools for large-scale multiple alignment of
genomic DNA. Genome Res. 13, 721–731.

Chikhi, R., Limasset, A., and Medvedev, P. (2016).
Compacting de bruijn graphs from sequencing
data quickly and in low memory. Bioinformatics
32, i201–i208.

Darling, A.C., Mau, B., Blattner, F.R., and Perna,
N.T. (2004). Mauve: multiple alignment of
conserved genomic sequence with
rearrangements. Genome Res. 14, 1394–1403.

Darling, A.E., Mau, B., and Perna, N.T. (2010).
progressivemauve: multiple genome alignment
with gene gain, loss and rearrangement. PLoS
One 5, e11147.

ll
OPEN ACCESS

iScience 23, 101224, June 26, 2020 7

iScience
Article

mailto:ivminkin@gmail.com
https://github.com/medvedevgroup/bubbz
https://github.com/medvedevgroup/BubbZ/blob/master/supplementary.txt
https://github.com/medvedevgroup/BubbZ/blob/master/supplementary.txt
https://github.com/medvedevgroup/SibeliaZ/blob/master/DATA.txt
https://github.com/medvedevgroup/SibeliaZ/blob/master/DATA.txt
https://github.com/medvedevgroup/BubbZ/blob/master/salmonella_refseq.txt
https://doi.org/10.1016/j.isci.2020.101224
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref1
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref1
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref1
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref1
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref2
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref2
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref2
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref3
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref3
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref3
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref3
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref3
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref3
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref3
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref4
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref4
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref4
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref4
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref5
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref5
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref5
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref5
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref6
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref6
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref6
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref6
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref7
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref7
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref7
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref7
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref8
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref8
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref8
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref8
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref8
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref9
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref9
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref9
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref9
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref9
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref9
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref10
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref10
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref10
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref10
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref11
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref11
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref11
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref11
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref12
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref12
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref12
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref12

Dewey, C.N. (2007). Aligning multiple whole
genomes with mercator and mavid. In
Comparative Genomics (Springer), pp. 221–235.

Dewey, C.N., and Pachter, L. (2006). Evolution at
the nucleotide level: the problem of multiple
whole-genome alignment. Hum. Mol. Genet. 15
(suppl_1), R51–R56.

Earl, D., Nguyen, N., Hickey, G., Harris, R.S.,
Fitzgerald, S., Beal, K., Seledtsov, I., Molodtsov,
V., Raney, B.J., Clawson, H., et al. (2014).
Alignathon: a competitive assessment of whole-
genome alignment methods. Genome Res. 24,
2077–2089.

Grabherr, M.G., Russell, P., Meyer, M., Mauceli,
E., Alföldi, J., Di Palma, F., and Lindblad-Toh, K.
(2010). Genome-wide synteny through highly
sensitive sequence alignment: Satsuma.
Bioinformatics 26, 1145–1151.

Jain, C., Koren, S., Dilthey, A., Phillippy, A.M., and
Aluru, S. (2018). A fast adaptive algorithm for
computing whole-genome homology maps.
Bioinformatics 34, i748–i756.

Li, H. (2018). Minimap2: pairwise alignment for
nucleotide sequences. Bioinformatics 34, 3094–
3100.

Lilue, J., Doran, A.G., Fiddes, I.T., Abrudan, M.,
Armstrong, J., Bennett, R., Chow, W., Collins, J.,
Czechanski, A., Danecek, P., et al. (2018). Multiple
laboratory mouse reference genomes define
strain specific haplotypes and novel functional
loci. bioRxiv. https://doi.org/10.1101/235838.

Luo, H., Arndt, W., Zhang, Y., Shi, G., Alekseyev,
M.A., Tang, J., Hughes, A.L., and Friedman, R.
(2012). Phylogenetic analysis of genome
rearrangements among five mammalian orders.
Mol. Phylogenet. Evol. 65, 871–882.

Marcus, S., Lee, H., and Schatz, M.C. (2014).
Splitmem: a graphical algorithm for pan-genome
analysis with suffix skips. Bioinformatics 30, 3476–
3483.

Minkin, I., and Medvedev, P. (2019). Scalable
multiple whole-genome alignment and locally
collinear block construction with sibeliaz. BioRxiv.
https://doi.org/10.1101/548123.

Minkin, I., Patel, A., Kolmogorov, M., Vyahhi, N.,
and Pham, S. (2013). Sibelia: A Scalable and
Comprehensive Synteny Block Generation Tool
for Closely Related Microbial Genomes (Springer
Berlin Heidelberg), pp. 215–229.

Minkin, I., Pham, S., and Medvedev, P. (2017).
Twopaco: an efficient algorithm to build the
compacted de bruijn graph from many complete
genomes. Bioinformatics 33, 4024–4032.

Muggli, M.D., Bowe, A., Noyes, N.R., Morley, P.S.,
Belk, K.E., Raymond, R., Gagie, T., Puglisi, S.J.,
and Boucher, C. (2017). Succinct colored de bruijn
graphs. Bioinformatics 33, 3181–3187.

Myers, G., and Miller, W. (1995). Chaining
Multiple-Alignment Fragments in Sub-quadratic
Time. SODA ’95: Proceedings of the sixth annual
ACM-SIAM symposium on Discrete algorithms
(Society for Industrial and Applied Mathematics),
pp. 38–47.

Ohlebusch, E., and Abouelhoda, M.I. (2006).
Chaining algorithms and applications in
comparative genomics. Handbook of
Computational Molecular Biology, 15–1-12–26.

Paten, B., Herrero, J., Beal, K., Fitzgerald, S., and
Birney, E. (2008). Enredo and pecan: genome-
wide mammalian consistency-based multiple
alignment with paralogs. Genome Res. 18, 1814–
1828.

Pevzner, P., and Tesler, G. (2003). Human and
mouse genomic sequences reveal extensive
breakpoint reuse in mammalian evolution. Proc.
Natl. Acad. Sci. U S A 100, 7672–7677.

Pham, S., and Pevzner, P. (2010). Drimm-synteny:
decomposing genomes into evolutionary
conserved segments. Bioinformatics 26, 2509–
2516.

Roberts, M., Hayes, W., Hunt, B.R., Mount, S.M.,
and Yorke, J.A. (2004). Reducing storage
requirements for biological sequence
comparison. Bioinformatics 20, 3363–3369.

Srivastava, A., Malik, L., Zakeri, M., Sarkar, H.,
Soneson, C., Love, M.I., Kingsford, C., and Patro,
R. (2019). Alignment and mapping methodology
influence transcript abundance estimation.
BioRxiv. https://doi.org/10.1101/657874v2.

Vollger, M.R., Dishuck, P.C., Sorensen, M., Welch,
A.E., Dang, V., Dougherty, M.L., Graves-Lindsay,
T.A., Wilson, R.K., Chaisson, M.J., and Eichler,
E.E. (2019). Long-read sequence and assembly of
segmental duplications. Nat. Methods 16, 88.

ll
OPEN ACCESS

8 iScience 23, 101224, June 26, 2020

iScience
Article

http://refhub.elsevier.com/S2589-0042(20)30409-0/sref13
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref13
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref13
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref14
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref14
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref14
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref14
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref15
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref15
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref15
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref15
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref15
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref15
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref16
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref16
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref16
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref16
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref16
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref17
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref17
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref17
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref17
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref18
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref18
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref18
https://doi.org/10.1101/235838
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref20
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref20
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref20
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref20
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref20
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref21
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref21
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref21
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref21
https://doi.org/10.1101/548123
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref23
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref23
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref23
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref23
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref23
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref24
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref24
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref24
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref24
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref25
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref25
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref25
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref25
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref26
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref26
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref26
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref26
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref26
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref26
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref27
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref27
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref27
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref27
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref28
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref28
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref28
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref28
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref28
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref29
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref29
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref29
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref29
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref30
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref30
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref30
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref30
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref31
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref31
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref31
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref31
https://doi.org/10.1101/657874v2
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref33
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref33
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref33
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref33
http://refhub.elsevier.com/S2589-0042(20)30409-0/sref33

iScience, Volume 23

Supplemental Information

Scalable Pairwise Whole-Genome Homology

Mapping of Long Genomes with BubbZ

Ilia Minkin and Paul Medvedev

Scalable pairwise whole-genome homology mapping of long

genomes with BubbZ

Supplemental Information

Ilia Minkin∗†1 and Paul Medvedev‡1, 2, 3

1Department of Computer Science and Engineering, The Pennsylvania State University,
University Park, PA, 16802, USA

2Department of Biochemistry and Molecular Biology, The Pennsylvania State University,
University Park, PA, 16802, USA

3Center for Computational Biology and Bioinformatics, The Pennsylvania State University,
University Park, PA, 16802, USA

1 Transparent Methods

1.1 Preliminaries

Strings and de Bruijn graphs

Let s be a string, indexed starting from 1. By si we denote the k-mer starting at position i of s.
Given s and a positive integer k, we define a multigraph G(s, k) as the de Bruijn graph of s. The
vertex set consists of all substrings of s of length k, called k-mers. For each (k + 1)-mer substring
x in s, we add a directed edge from u to v, where u is the prefix of x of length k and v the suffix
of x of length k. Each occurrence of a (k + 1)-mer yields a unique multiedge, and every multiedge
corresponds to a unique location in s. See Figure S1a for an example. Note that unlike some other
definitions of a de Bruijn graph, a (k + 1)-mer that occurs multiple times in s will have multiple
corresponding edges. The de Bruijn graph for a set of sequences S is G(S, k) =

⋃
s∈S G(s, k). That

is, the vertex set of G(S, k) is the union of all the vertex sets (where vertices with the same label
are considered identical) and the multiedge set of G(S, k) is the union of all the edge sets (but
where each multiedge is preserved, even if it shares a label with another multiedge).

The set of a multiedges in a graph G is denoted by E(G). We write (u, v) to denote a multiedge
from vertex u to v. A walk w is a sequence of multiedges ((v1, v2), (v2, v3), . . . , (v|w|, v|w|+1)) where
each multiedge (vi, vi+1) belongs to E(G). The length of the walk w, denoted by |w|, is the number
of multiedges it contains. A walk is genomic if it was generated by a substring in the input, that
is, if the multiedges correspond to consecutive (k + 1)-mers in the input.

∗ivminkin@gmail.com
†To whom correspondence should be addressed.
‡pashadag@cse.psu.edu

1

Chains

Consider two chromosome sequences s and t and their de Bruijn graph G = G({s}∪ {t}, k). There
are several ways to mathematically define a homologous pair of substrings from s and t. The
definition that lends itself to de Bruijn graph-based algorithms is that of a chain (Zhang et al.,
1994; Myers, 1995). In our context, a chain is, informally, a sequence of common k-mers that forms a
sub-sequence (i.e. substrings allowing gaps) in both strings interleaved by potential point mutations
or indels of bounded length. Formally, a chain c of weight n is two non-decreasing sequences of
indices (i1, . . . , in) and (j1, . . . , jn) such that six = tjx and ix − ix−1 ≤ b and jx − jx−1 ≤ b and
if ix = ix−1 then jx 6= jx−1, for all x. Each chain is associated with two genomic walks in G;
specifically, the genomic walk corresponding to the substring of s starting from position i1 and
ending in position in, and, similarly, the genomic walk corresponding to the substring of t from
position t1 to tn. See Figure S1a for an example of a chain.

Let c = ((i1, . . . , in), (j1, . . . , jn)) and c′ = ((i′1, . . . , i
′
m), (j′1, . . . , j

′
m)) be two chains. The con-

catenation of c and c′ is the pair of sequences

c · c′ = ((i1, . . . , in, i
′
1, . . . i

′
m), (j1, . . . , jn, j

′
1, . . . , j

′
m))

Note that c · c′ is a chain iff i′1 ≥ in, j′1 ≥ jn and i′1− in, j′1− jn ≤ b and either i′1 6= in or j′1 6= jn. In
practice, we will be interested in the concatenation operation only if the result is a chain. We say
that a chain c is right-maximal if there is no other chain c′ such that c · c′ is a chain, left-maximal if
there is no other chain c′ such that c′ ·c is a chain, and maximal if it is both left- and right-maximal.

1.2 Problem formulation and recurrence solution

To formulate the pairwise whole-genome homology mapping problem, let us take as input two
chromosome sequences s and t, and a positive integer parameter b. As we discussed, we define
a pairwise homology as a chain. One could then formulate the problem as that of outputting all
maximal chains. However, such an output would contain a lot of redundancy, because two chains
can span similar regions in s and t but contain different shared k-mers. To remove some of the
redundancy, and with an eye towards an efficient algorithm, we use the notion of (i,j)-maximum
chains. A chain is (i,j)-maximum if it ends in positions i and j in s and t, respectively, and has the
highest weight among all such chains. Our problem formulation is then:

Problem Definition. Given two sequences s and t and a positive integer b, output, for every
1 ≤ i ≤ |s| and 1 ≤ j ≤ |t|, a maximal (i, j)-maximum chain, if it exists.

This problem formulation lends itself naturally to dynamic programming, because (i, j)-maximum
chains have an optimal substructure property. Formally,

Property 1. Let c be an (i, j)-maximum chain of length greater than one. Let us decompose it as
c = d · ((i′), (j′)) · ((i), (j)), where d may be empty. Let c′ be any (i′, j′)-maximum chain. Then
c′ · ((i), (j)) is an (i, j)-maximum chain.

Proof. Let w be the weight of d · ((i′), (j′)). The weight of c is w + 1. Since d · ((i′), (j′)) ends in
((i′), (j′)), any ((i′), (j′))-maximum chain must have weight at least w. Hence the weight of c′ is
at least w, and the weight of c′ · ((i), (j)) is at least w + 1. Since this is the weight of c and c was
(i, j)-maximum, c′ · ((i), (j)) is (i, j)-maximum as well.

To determine the i′ and j′ of this Property, we will define the predecessor function. Consider a
pair of positions i and j such that si = tj . We define its possible left-extensions as the set of pairs

2

(a)

(b)

3

6

(c)

Figure S1: (a) De Bruijn graph built from strings s =“GCACGTC” and t =“GCACTTC”, with
k = 2. The two strings are reflected by the blue and red walks, respectively. The whole graph is
chain ((1, 2, 3, 6), (1, 2, 3, 6)). (b) The compacted version of the graph from panel (a); substrings
generating the corresponding edges are shown adjacent to them. Note that the pair of edges between
vertices “GC” and “AC” correspond to a case of parallel edges generated by identical substrings,
while the edges between “AC” and “TC” form a bubble caused by a point mutation. (c) State of
the list Q as well as vectors e and p, after considering each position i of the string s at which the
algorithm adds a chain. The pointer in p[j] leads to an element C(i, j) of Q; e[j] = 1 if p[j] is not
a null pointer; e[j] = 0 otherwise. Q1 shows the contents of Q after processing vertex “GC” (there
is only one chain consisting of the initial k-mer); Q2 contains the extended chain; and Q6 has the
whole graph minus the first chain that was removed due to being too far from the current position.
Related to Table 1.

3

(i′, j′) such that ((i′), (j′)) · ((i), (j)) is a valid chain. We define the predecessor function π(i, j)
to be the left-extension (i′, j′) such that the concatenation of an ((i′), (j′))-maximum chain with
((i), (j)) results in the chain of the highest weight. Formally,

π(i, j) = arg max{weight of (i′, j′)-maximum chain | (i′, j′) is a left-extension of (i, j)}

Ties are broken by choosing the chain with a smaller value of j′, and then with a smaller i′ if the
tie still exists. If there are no left extensions, we set π(i, j) = ∅. The predecessor function gives
rises to our dynamic programming matrix C, where each entry C(i, j) stores an (i, j)-maximum
chain, as follows:

C(i, j) :=

∅ if si 6= tj ,

((i), (j)) else if π(i, j) = ∅,
C(π(i, j)) · ((i), (j)) else

(1)

The predecessor function can be computed by checking the value of C for all possible left-
extensions. A solution to our problem is then to compute C and output every C(i, j) that is also
maximal.

Observe that an (i, j)-maximum chain is by definition left-maximal, so it suffices to check if
C(i, j) is right-maximal. This can be done easily, as follows. Observe that C(i, j) is not right-
maximal if and only if there are some offsets 1 ≤ α ≤ b and 1 ≤ β ≤ b such that si+α = tj+β.
In practice, b is quite small, when appropriate data structures are maintained (details omitted),
we can check if a chain is right-maximal quickly. In what follow, we will therefore focus on just
computing C.

1.3 High-level algorithm

Equation (1) immediately lends itself to a naive dynamic programming algorithm that uses a table
where each cell corresponds to a row i and a column j. Such an algorithm can compute all C(i, j)
but will use Ω(|s||t|) memory, which is prohibitive. Instead, we present an algorithm that exploits
the sparseness and structure of C as well as the fact that the maximum gap is limited by parameter
b.

Let C(i′, j′) = C(π(i, j)) denote the predecessor chain of C(i, j). First, we observe that if we
compute the values of C(i, j) in increasing order of i, we are guaranteed that the predecessor chain
has already been computed, i.e. i′ < i. Second, by definition of a valid chain, the predecessor chain
must lie within the b previous columns, i.e. i′ ≥ i− b. Hence, it is not necessary to retain the whole
table in memory, but rather, just the previous b columns. Third, the matrix is mostly sparse, since
it only contains values when si = tj . Therefore, storing it as a matrix is impractical. Instead, we
will store the elements of the previous b columns in a queue Q that supports the lookup operation,
Lookup(Q, (i, j)) = C(i, j), if C(i, j) is in Q. We will describe the implementation of the lookup
function in Section 1.4.

The pseudocode of our method is in Algorithm 1. The outer for loop iterates over all the values
of i. The inner for loop iterates over all values of j where C(i, j) 6= ∅. Lines 4 through 8 implement
the logic of Equation (1). When column i is finished, lines 10 through 14 update Q by removing
all chains from the now outdated column i − b and, for those that are right-maximal, outputting
them. Figure S1c shows an example of the contents of Q after several iterations.

Let us use C(i, ∗) as shorthand for C(i, j) for all j. The correctness of the algorithm follows from
the previous discussion and the following theorem. For clarity, the pseudocode and the theorem
omit some corner cases (e.g. when i′ = i or when we hit the end of the strings).

4

Algorithm 1 Find-chains

Input: strings s and t, graph G({s} ∪ {t}, k), integers b and m
Output: the set of all chains in C that are right-maximal.

1: Q← an empty doubly-linked list . The set of current chains C(i, j)
2: for i← 1 to |s| do
3: for all j such that tj = si do . Consider all position of k-mer si in t
4: if π(i, j) 6= ∅ then
5: r ← Lookup(Q, π(i, j)) . Equation (1)
6: PushBack(Q, r · ((i), (j)))
7: else
8: PushBack(Q, ((i), (j)))

9: let c← Front(Q) and denote the end of c as (i′, j′)
10: while i′ < i− b do . Cleaning-up and outputting Q
11: if c is right-maximal then
12: output c

13: PopFront(Q)
14: let c← Front(Q) and denote the end of c as (i′, j′)

Theorem 1 (Correctness of Algorithm 1). At the end of the i-th iteration,

1. Q is the set of C(i′, ∗) for all i− b ≤ i′ ≤ i, in front-to-back order of non-decreasing i′.

2. The algorithm’s output has been the chains C(i′, ∗) which are right-maximal and for which
i′ < i− b.

Proof. For the base case (i = 0), the statement holds since Q is empty. For the general case,
the induction hypothesis tells us that at the start of the i-th iteration, Q contains C(i′, ∗) for all
i− b− 1 ≤ i′ ≤ i− 1, in order. To show (1), we will show that during the iteration, C(i− b− 1, ∗)
are popped from the front and C(i, ∗) are pushed to the back. C(i− b− 1, ∗) are popped from the
front of Q during the while loop, using the fact that Q is in order. C(i, ∗) are computed in the
inner while loop using the logic of Equation (1), so all we need to show is that if π(i, j) 6= ∅, then
C(π(i, j)) ∈ Q. Let (i′, j′) = π(i, j). Because the gap between indices in a chain cannot exceed b,
we have i′ ≥ i − b. By part (1) of the induction hypothesis, C(i′, ∗) is in Q, and hence C(i, j) is
pushed to the back of Q during the inner for loop.

Next we show (2). By induction, before the i-th iteration the output was C(i′, ∗) for all i′ <
i − b − 1. We need to then show that during the i-th iteration, the output is C(i − b − 1, ∗). By
part (1) of the induction hypothesis, the front of Q contains C(i− b− 1, ∗). These elements will be
popped during the while loop and output if they are right-maximal.

1.4 Important details

There are additional aspects that the pseudocode does not address. We described the algorithm
considering only the single strand of DNA. To handle both strands, we run a slightly modified
version of our algorithm on the graph Gcomp(s, k) = G(s, k)∪G(s̄, k), where s̄ is reverse complement
of s (Minkin et al., 2017). We also preprocess the graph by removing all k-mers occurring more
than a times, where a is a parameter. High-frequency k-mers can clog up our data structures and
slow down the algorithm. We allow the user to set a, thereby controlling the trade-off between
speed and potential decrease in accuracy. Finally, to save space, we do not store the actual chains

5

in Q, but only their starting and ending coordinates, since this is what the final mapping will return
anyway.

To support the computation of π and the lookup operation for Q (in Line 5), we need a
specialized index. To quickly iterate over all left extensions of ((i), (j)) we keep a bit vector e such
that e[j′] = 1 if and only if Q contains a chain C(i′, j′), for some i′. We also keep a vector p where
p[j′] contains a pointer to an element C(i′, j′) if one exists. If there are several such elements, we
choose the one with the biggest i′.

Using a special machine instruction returning the number of trailing 0-bits, we can find all j′ in
the range of j− b ≤ j′ ≤ j such that e[j′] = 1 using using max(m, b/64) operations, where m is the
number of ones in the range. In the GCC compiler the instruction is designated as builtin ctzll.
Once we identify such values of j′, we the use pointers in p[j′] to access the actual chains and select
the one that yields the best predecessor for C(i, j).1. Due to the nature of the de Bruijn graph, we
expect the vector e to be sparse which results in efficient lookups. Figure S1c contains an example
of state of vectors e and p during several iterations of running Algorithm 1

1.5 Adaptation of the algorithms to the compacted graph

For simplicity of exposition, we described our algorithm in terms of the regular de Bruijn graph.
Our implementation, however, operates on the compacted de Bruijn graph which we build using
TwoPaCo (Minkin et al., 2017). The vertex set of the compacted graph is a subset of vertices of
the regular graph, called junctions. Intuitively, a vertex is a junction if it is either a branching
vertex or is the start or end of an input string (for an exact definition, please see Minkin et al.
(2017)). The reason we can consider only junctions is that one can show that there is a one-to-one
correspondence between the maximal chains in the ordinary graph and the ones in the compacted
one. Particularly, any maximal chain starts and ends with a junction. Since the number of junctions
is usually much smaller than the total number of k-mers, using only junctions greatly speeds up
the algorithm and saves space, while not affecting the output of the algorithm.

A pair of vertices can be connected in the compacted graph by a pair of edge-disjoint genomic
walks in two ways. These walks are either a pair of parallel edges representing a stretch of identical
k-mers, or two walks forming a so called “bubble” which correspond to a sequence of point mutation
or a short indels. Figure S1b shows an example of the compacted graph containing a pair of parallel
edges and a bubble. To adapt our algorithm to the compacted graph, we modify the definition of
chain such that it now consists of junction k-mers that are connected either by a pair of parallel
edges or a bubble of size at most b.

Formally, two pairs of indices (i1, j1) and (i2, j2) are compatible if si1 = tj1 , si2 = tj2 and either
or both of the following holds: (1) i2−i1 ≤ b and j2−j1 ≤ b; (2) i2−i1 = j2−j1 and si+p = tj+p for
i1 ≤ p ≤ i2. The first condition models a bubble of size at most b, while the second one represents
a stretch of identical k-mers corresponding to a pair of parallel edges in the compacted graph. Note
that we have to handle the case of parallel edges separately because they might correspond to more
than b k-mers and we should allow to “skip” over such pair of edges regardless of its length. A
chain then is a pair of non-decreasing sequences of indices (i1, . . . , in) and (j1, . . . , jn) such that
six = tjx , each six (tjx) is a junction, (ix, jx) and (ix+1, jx+1) are compatible for 1 ≤ x < n and if
ix = ix−1 then jx 6= jx−1, for all x.

We adjust the code of as follows. In the loop in Lines 2 to 14 of Algorithm 1 we iterate over
junctions of `(s) instead of ordinary k-mers. We also modify our lookup procedure to take the new

1Our actual implementation does not store the vector p explicitly; instead we use a mapping from the k-mer set
to the data structure Q.

6

definition of chain into account, as well the clean-up procedure in Lines 10 to 14. Particularly we
handle two separate cases for extension of a chain: by a pair of parallel edges, or by a “bubble.”

1.6 Computational complexity

Here we will analyze the complexity of Algorithm 1. Let the maximum degree of a vertex considered
by our algorithm be a. This could just be the maximum degree in the graph or it could be the
parameter a set by the user. The number of iterations of the inner loop in Lines 4 to 8 is bounded
by a|s|. Computing π and doing the lookup operation in Line 5 takes O(b) operations in the worst
case, as described in Section 1.4. The processing of Q in Lines 10 to 14 takes a total of O(a|s|) time
over the course of the algorithm, since this is the number of elements pushed into Q. As the result,
the total time complexity is O(ab|s|). The space complexity is dominated by the data structures
to store the mappings for the shared k-mers. The amount of memory is strongly dependent on the
structure of the input, and we therefore did not perform a worst case analysis.

1.7 Modes of operation

Algorithm 1 can also be used to find chains within a single genome, corresponding to duplications.
To do this, the user should give as input a pair of identical sequences. To handle this case, we
modify our algorithm to forbid chains that overlap with themselves. To implement this, we perform
additional checks before concatenating chains in Line 5 (details omitted).

Algorithm 1 can also be used to compute an all-against-all mapping for a set of chromosomes
S = {s1, . . . , s|S|}. Rather than performing Θ(|S|2) runs of the algorithm, we can modify the
algorithm to run only Θ(|S|) times, at a potential cost of more memory, as follows. We first
compute the de Bruijn graph from all of S, i.e. G(S, k). Then we run Algorithm 1 |S| times; in
the ith run, si plays the role of s and the chromosomes {si, . . . , s|S|} play the role of t. In our
pseudocode, t is a single string; but, we can easily modify it to allow t to be a set of strings by
considering positions in all sequences of {si, . . . , s|S|} in Line 2. It may also be that the underlying
graph G(S, k) could have vertices from some chromosome sj that is not part of the comparison
(i.e. j < i); however, since the algorithm only looks at k-mers that appear in s or t, those extra
k-mers would not effect the execution of the algorithm. This approach to all-against-all mapping
will give the same results as the naive O(|S|2) runs approach. However, it does have an associated
memory cost, since we must maintain in memory a de Bruijn graph of |S| sequences, rather than
just the graph of 2 sequences. This strategy also lends itself to parallelization, by executing these |S|
runs in parallel using multithreading. Finally, note that the same strategy applies to all-against-all
mapping of multiple multi-chromosomal genomes, since our algorithm does not distinguish between
chromosomes on the same vs. different genomes.

References

Minkin, I., Pham, S., and Medvedev, P. (2017). Twopaco: an efficient algorithm to build the compacted de bruijn graph from many

complete genomes. Bioinformatics, 33(24), 4024–4032.

Myers, G. (1995). Chaining multiple-alignment fragments in sub-quadratic time.

Zhang, Z., Raghavachari, B., Hardison, R. C., and Miller, W. (1994). Chaining multiple-alignment blocks. Journal of Computational

Biology, 1(3), 217–226.

7

	ISCI101224_proof_v23i6.pdf
	Scalable Pairwise Whole-Genome Homology Mapping of Long Genomes with BubbZ
	Introduction
	Results
	Algorithm Overview
	Datasets
	Evaluated Tools
	Evaluation Metrics
	Results on the Mouse Data
	Results on the Bacterial Data
	Results on the Simulated Data

	Discussion
	Limitations of the Study
	Resource Availability
	Lead Contact
	Materials Availability
	Data and Code Availability

	Methods
	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References

	isci_101224_mmc1.pdf
	Transparent Methods
	Preliminaries
	Problem formulation and recurrence solution
	High-level algorithm
	Important details
	Adaptation of the algorithms to the compacted graph
	Computational complexity
	Modes of operation

