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SUMMARY

A fundamental problem in studies on human microbiome-associated diseases
(MADs) is to understand the relationships between microbiome structures and
health status of hosts. For example, species diversity metrics have been routinely
evaluated in virtually all studies on MADs, yet a recent meta-analysis revealed
that, in only approximately one-third of the cases, diversity and diseases were
related. In this study, we ask whether Hubbell’s neutral theory (supplemented
with the normalized stochasticity ratio [NSR]) or critical microbiome network
structures may offer better alternatives. Whereas neutral theory and NSR focus
on stochastic processes, we use core/periphery and high-salience skeleton net-
works to evaluate deterministic, asymmetrical niche effects, assuming that all
species or their interactions were not ‘‘born’’ equal and focusing on non-neutral,
critical network structures. We found that properties of critical network struc-
tures are more indicative of disease effects. Finally, seven findings (mechanisms,
interpretations, and postulations) regarding medical ecology mechanisms under-
lying MADs were summarized.

INTRODUCTION

Despite extensive studies on the human microbiome-associated diseases (MADs) during the last decade

(HMP Consortium, 2012; Integrative HMP (iHMP) Research Network Consortium, 2019), there is still little

consensus on the ecological mechanism underlying the etiology of MADs. For example, the routinely

computedmicrobiome diversity indexes (Shannon entropy, Simpson index, and species richness) and asso-

ciated diversity-disease relationships (DDRs) have revealed little insights on the ecological mechanisms,

not to mention insights on the disease etiology. In a recent meta-analysis of the human MADs, it was

discovered that, somewhat contrary to commonly perceived intuition, there was not a consistent DDR in

the majority of studied cases (approximately two-third cases)—that the species or Operational Taxonomic

Unit (OTU) diversity was not related with MAD (Ma et al., 2019). This DDR in the human MADs is in strong

contrast with the DDR in zoonoses, where the dilution/amplification hypotheses have achieved wide recog-

nition (Johnson et al., 2013, 2015). Indeed, the disease systems and targets of diversity analysis in zoonoses

and human MADs are rather different (e.g., diversity of alternative hosts or vectors in zoonoses versus di-

versity of microbiome). Sometimes, even more confusing is the lack of obvious pathogens and vectors in

the case of human MADs, e.g., the ‘‘pathogen’’ of mastitis, which is related to the shift of species interac-

tions in suppressing opportunistic pathogens (Ma et al., 2015, 2016a; Ma and Ye, 2017; Ma, 2018).

Multiple causes have contributed to the enormous challenges for the mechanistic studies on the human

MADs. First, the problem itself is exceedingly complex because, the MAD, as a category of human dis-

eases, whether the diversity change is the disease cause or consequence, may be different from case to

case, and even more frustrating is that we do not yet have an answer for the cause-consequence question

for many of the MADs (e.g., Castaño-Rodrı́guez et al., 2018; Duvallet et al., 2017; Zaneveld et al., 2017). Sec-

ond, many existing studies have ignored perhaps the most important sub-system, the human immune sys-

tem except for small number of studies (e.g., Zaneveld et al., 2017; Vogelzang et al., 2018; Lotter and Alt-

feld, 2019; Vemuri et al., 2019). Third, the etiologies of many MADs are not clear and most existing

mechanistic studies were conducted with animal models (e.g., Turner, 2018). Particularly, how deeply mi-

crobiome is involved in a particular MAD can be rather different. In some cases, microbiome is likely deeply

involved such as in the case of BV (bacterial vaginosis), where classic diversity-stability relationship (DSR) in
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ecology has been invoked to explain its etiology (Sobel, 1999; Ma et al., 2012; Li and Ma, 2019; Ma and El-

lison, 2019). In other cases, microbiome may simply act as part of the host environment that influences the

metabolism of hosts. Obesity may belong to such a case, where the role of gut microbiome, although

extensively investigated in the last decade, is still hotly debated (Rastelli et al., 2018). In yet other cases,

such as cancers and HIV, the involvement of microbiome may be indirect but can still be significant (Wil-

liams et al., 2016; Bandera et al., 2018). It is for these diverse scenarios we use the term ‘‘microbiome-asso-

ciate disease’’ (MAD) in this study.

If the extensively investigated DDR in human MADs is inconsistent in the majority of cases (approximately two-

thirds) (Ma et al., 2019; Ma, 2020a, 2020b), using diversity indexes as diagnostic indicators for MADs becomes

minimally useful, not tomention its role inmechanistic/etiological studies of MADs. The present study therefore

aims to search for possible alternatives, and here we focus on detecting the ecological/network ‘‘imprints’’ of

MADs on the human microbiomes, which may help to reveal underlying ecological mechanisms of MADs and

possibly act as diagnosis and risk prediction indicators for MADs (Figure 1). For example, the network assorta-

tivity is related to network resilience, and it was found that slightly disassocitative networks (negative assortativity

but with small absolute value) are less resilient because network percolates less easily in such networks (Newman

and Clauset, 2016). In this study, we test whether critical network structure and properties such as assortativity

can be more indicative than standard diversity metrics such as Shannon entropy in detecting the effects of

MADs. Besides identifying potentially more powerful network indicators for MAD effects, a second objective

of the present study is to establish possible mechanistic links between the critical network structures (of micro-

biomes) and the processes that drive themicrobiome dynamics, which is of obvious significance for deep under-

standing of the mechanisms and etiologies of MADs.

We resort to Hubbell (2001) unified neutral theory of biodiversity (UNTB) and network analyses (Figure 1). We

dissect the influences of MADs on the community assembly and diversity maintenance by harnessing the power

ofUNTB,which covers the threeprocesses (mechanisms) of Vellend-Hanson four-processes synthesis of commu-

nity ecology and biogeography (Vellend, 2010, 2016; Hanson et al., 2012), including drift, speciation (mutation),

and dispersal (Rosindell et al., 2011) (the other is selection), and by integrative analyses with core/periphery

network (CPN) (Csermely et al., 2013; Ma and Ellison, 2019) and high-salience skeleton network (HSN) (Grady

et al., 2012; Shekhtman et al., 2014; Ma and Ellison, 2019) modeling. The four-processes (mechanism) synthesis

stated that, similar to the modern synthesis of population genetics, drift, speciation, dispersal, and selection

constitute the underlying processes (mechanisms) that drive community dynamics and shape the microbial

biogeography (the spatial and temporal distribution patterns of community diversity) (Vellend, 2010, 2016; Han-

son et al., 2012).We argue that theCPN/HSNanalysespossess the potential to assess and interpret the effects of

selection in the four-processes synthesis as further elaborated below.

We realized that, since the UNTB optimizes the fit of the relative abundance to the predictions of the

neutral model, it might over-estimate the true strength of neutral processes. Therefore, rather than exam-

ining the fit of the relative abundance data to the predictions (i.e., the passing rate of neutrality tests), we

should focus on the estimated parameters of the neutral model (fundamental numbers of diversity and

fundamental number of dispersal) and ask if they differ between healthy and diseased individuals. We

also recognized that the four-processes synthesis is still largely conceptual in its current stage and refrained

from inferring conclusions from it, particularly quantitative inferences. That said, in this article, we primarily

depend on the analyses of critical network structures with the CPN and HSN (Csermely et al., 2013; Grady

et al., 2012; Shekhtman et al., 2014; Ma and Ellison, 2019) and use neutral-theoretic approach and four-pro-

cesses synthesis to cross-verify and supplement our findings (Figure 1).

According to Vellend (2010, 2016), selection refers to the deterministic fitness difference between individ-

uals from different species, and it can also be treated as the deterministic interactions among species and

between species and their environments. Selection represents asymmetric or unequal interactions; in other

words, not all species or their interactions were ‘‘born’’ equal. From a conceptual perspective, we argue

that critical network structures (core/periphery/skeleton/backbone) in the CPN/HSN can be considered

as outcome of selection given their asymmetrical and heterogeneous nature. We argue that, conceptually,

our integrated analyses (Figure 1) of the human MADs datasets with the UNTB (Hubbell, 2001), Ning et al.

Figure 1. Diagram for the Study Design and Conclusions

Illustration of the goal, objectives, approaches, and results (main findings) from investigating the critical network structures and ecological processes

(mechanisms) underlying the human microbiome-associated diseases.
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(2019) ecological stochasticity framework, and CPN/HSN networks (Csermely et al., 2013; Grady et al., 2012;

Shekhtman et al., 2014; Ma and Ellison, 2019) cover the full spectrum of all four processes (drift, dispersal,

speciation, and selection) of Vellend-Hanson synthesis of community ecology and biogeography (Vellend,

2016; 2010; Hanson et al., 2012). Figure 1 summarizes the overall goal, objectives, datasets, approaches, as

well as findings and conclusions of the present study.

RESULTS

A brief description on the metagenomic datasets of the 27 MAD studies, which are used to generate the results

here, is provided in Table S1 of the Supplemental Information, which are the same datasets used in Ma et al.

(2019). Among the 27 datasets, there were 3 and 2 datasets that are not suitable for the neutral-theoretic analysis

and CPN/HSN analyses, respectively, and therefore were excluded from the analyses of this study. The 27 case

studies cover most of the high-profile MADs, including obesity, IBD, diabetes, BV, periodontitis, and neurode-

generative diseases. The datasets were in the abundance of 16s-rRNA reads clustered at the species level (97%

similarity level), equivalent with the species abundance tables in macrobial ecology.

This section is organized as eight subsections covering (see the bottom section of Figure 1): (1) the first three

subsections on neutral theoretic analysis—testing the MAD effects on the microbiome neutrality and on the

neutral model parameters (fundamental biodiversity/dispersal numbers) as well as estimating the normalized

stochasticity ratio (NSR) to cross-verify the neutral-theoretic analyses; (2) two consequent subsections on the

CPN—shared core/periphery network analysis between the healthy (H) and diseased (D) treatments and further

testing the MAD effects on the key CPN properties; (3) followed by two subsections on the HSN (high-salience

skeleton network)—shared skeleton network analysis and further testing the MAD effects on the keyHSN prop-

erties; (4) finally, the actual (observed) key CPN/HSNnetwork properties for the 25MADcase studies. The conse-

quent discussion section further summarizes our findings from the results presented in this section.

Neutral-Theoretic Analysis: Testing MAD Effects on the Microbiome Neutrality

Tables S2A–S2E exhibited the detailed results of the neutrality tests for the 24 case studies of MADs. For each

case study, the neutrality test was performed for each community sample (from each individual subject) of the H

(healthy) and D (diseased) treatments, separately. For each community sample, five data pre-processing

schemes (raw—no preprocessing, singleton—removal of singleton, minus–1, minus–2, minus–3, i.e., removal

of 1, 2, or 3 individuals across all OTUs, respectively) were implemented to obtain robust test results. What

were displayed in Tables S2A–S2E included the key parameters of the classic neutral model, such as the funda-

mental biodiversity number (q), migration probability (m), and p value for the neutrality test.

Table S3, summarized from Table S2, exhibited the neutrality passing rates for each of the 24 case studies.

Table S4 exhibited the results of Fisher’s exact probability test for determining the effects of MAD diseases

on the passing rates of neutrality.

Figure 2, drawn based on Tables S2, S3, and S4, illustrated the passing rates for each case study. Note that

Figure 2 was plotted with the average passing rates across the results obtained from five data pre-process-

ing schemes. In Figure S1 (see Supplemental Information), the passing rate corresponding to each of the

five data pre-processing schemes was plotted. Hence, Figure 2 here is a summary version of Figure S1.

From Figures 2 and S1, and Tables S2, S3, and S4, we summarize the following findings:

(1) Across the five data pre-processing schemes, the neutrality passing rates ranged from 26.2% to

78.3% with an average of 57% for the H treatments and ranged from 27.1 to 80.1 with an average

of 60% for the D treatments. Given that the three schemes with minus 1, 2, or 3 across all OTUs

achieved neutrality rates higher than the raw and singleton-removed schemes, obviously, the results

from using raw datasets should be more robust if the objective is to obtain more conservative (reli-

able) estimation of the neutrality level. These results indicate that the human microbiome, regard-

less of the health/disease status, exhibited significant level of neutrality that cannot be ignored. In

other words, at least, in close to one-third (H = 26.2%D= 27.1%) of the tested samples, the neutrality

plays a predominant role in community assembly and diversity maintenance, and furthermore, the

neutrality passing rates can be as high as 80% (78.3%–80.1%).
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(2) Fisher’s exact probability test showed that, in absolute majority cases, diseases did not exert a sig-

nificant effect on the neutrality passing rates (Table S4 and Figure 3). Specifically, in only 5 of 165

comparisons (3%), there were significant differences in the neutrality passing rates between the H

and D microbiome samples.

Neutral-theoretic analysis: testing disease effects on the fundamental biodiversity number (q)

and fundamental dispersal numbers (m)

Table S5 listed the results of the significance tests for q (the fundamental biodiversity numbers), which is a

measure of speciation, and form (the migration probability or fundamental dispersal numbers), a measure

for dispersal limitation, between the H and D samples. The Wilcoxon test was performed to determine

whether or not MAD could have significant influence on the parameters (q and m). Figure 3 displayed

the average values of m and q (across five data pre-processing schemes) for each case study, and it also

marked the cases with significant differences between the H &D treatments. Note that Figure 3 (a summary

*

Mastitis
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CF3

CF2

CF1

Psoriasis

Smoking3

Smoking2

Smoking1

Periodontitis2

Periodontitis1

Atherosclerosis2
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HIV1
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Neutrality passing rates in the percentage
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Figure 2. The Neutrality Passing Rates for Each of the 24 Case Studies

The neutrality passing rates for each of the 24 case studies: the cases with significant differences in the passing rates

between the healthy and diseased treatments are marked with ‘‘*’’; for each case study, the average percentage across

five data-preprocessing schemes was computed and utilized to represent the neutrality of a case study.
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version of Figures S2 and S3) was plotted with the average parameters across five data pre-processing

schemes. In Figures S2 and S3, the parameters for each of the five data pre-processing scheme were

plotted.

The findings from the significance tests (Table S5 and Figures 3, S2, and S3) seem rather consistent across

five different data-preprocessing schemes. In approximately one-third (30%–33%) of the comparisons, the

fundamental biodiversity numbers (q) were significantly different between the H and D treatments. In only

approximately 15% of the comparisons (9.1%–21.2%), the migration probabilities (m) were significantly

different between the H and D treatments. These findings suggest that diseases have significant influences

on the speciation in approximately one-third of the comparisons, whereas significant influences exist in

only 15% of the comparisons in term of the dispersal limitation.

Cross-Verification of Neutral Theoretic-Analyses with Normalized Stochasticity Ratio

As explained previously, the optimized fitting of UNTB is likely to lead to overestimation of the stochastic

neutral levels. We apply Ning et al. (2019) framework for estimating community stochasticity level, specif-

ically NSR (Table S6 and Figure 4), for cross-verifying the previous UNTB results. Table S6 included the

mean NSRs for the intra-H (intra-healthy), intra-D (intra-diseased), and inter-HD (healthy versus diseased)

treatments, respectively, as well as the p values from the Wilcoxon tests of the differences in the NSR

among the three treatments. Figure 4 illustrated the contents listed in Table S6, i.e., the NSRs for each

treatment in the 27 MAD cases, and the treatments with statistically significant differences were marked

with star (*). From Table S6 and Figure 4, we summarize the following four findings, which can be used

to verify/calibrate the previous UNTB results.
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Figure 3. The Key Parameters from Neutral-theoretic Modeling

The fundamental diversity number (q) and immigration probability (m) for each of the 24 case studies, and the cases with

significant differences in the parameters between the healthy and diseased treatments are marked with ‘‘*’’; for each case

study, the average parameters across five data-preprocessing schemes are used to plot the figure.
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(1) The average NSR for intra-H, intra-D, and inter-HD is 0.342, 0.334, and 0.287, respectively. The

slightly decreased NSR in this order suggests that diseases might cause the decline of stochasticity.

Among the three NSRs, the difference between intra-H (0.342) and inter-HD (0.287) should be a

more objective indicator for disease effects, which is about 16% roughly in terms of the ‘‘face’’ values

of NSRs. Further rigorous statistical tests with Wilcoxon tests indicate that, in 30% of the MAD cases

(12 of 40 possible comparisons between H and D) comparing the intra-H and intra-D treatments

exhibited significant differences in their NSRs. The percentage is slightly lower (27.5% or 11 of 40)

after FDR (false discovery rate) control is applied.
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*
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Figure 4. The NSR (Normalized Stochasticity Ratio)

The NSR (normalized stochasticity ratio) for each of the 27 case studies: the treatments with significant differences in NSR

were marked with star (*).
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A

B

Figure 5. Network Graphs Illustrated with BV (Bacterial Vaginosis) Study

The core/periphery/skeleton network for the healthy (A) and BV (B) treatment, respectively, and the legends used include:

the core nodes, circle in cyan; the periphery nodes, circle in dodger blue; regular positive links, regular lines in green;
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(2) Since the NSR was normalized to the range between 0 and 1 and is a ratio (hence dimensionless), the

range of 0.297–0.334 also indicates the general stochasticity level in the human microbiome, regard-

less of diseases status, is rather tight, i.e., around one-third. Compared with the findings from pre-

vious UNTB modeling, i.e., the range between 26.2% and 78.3% for the H treatments, and the range

between 27.1 and 80.1 for the D treatments, the NSR range is rather close to the floor limits of the

neutral modeling. If we accept the conjecture that UNTB tends to overestimate the stochastic neutral

forces, it should be safe to conclude that the neutrality-passing rate or stochasticity level in the hu-

man microbiome should be about one-third, and the upper range (up to 80%) may indeed be unduly

overestimated.

(3) As to the MAD effects, the previous tests with fundamental dispersal numbers (migration proba-

bility) and fundamental biodiversity numbers (speciation rate) indicated 15% (dispersal) to 33%

(biodiversity) of the comparisons, and the NSR here revealed a similar effect size (30%–32.5%)

based on Wilcoxon tests. Therefore, we conclude that the MAD effects on the neutral

processes are in the range between 15% and 33% (=1/3) approximately, depending on whether

dispersal (migration) or biodiversity is considered, with the former receiving a lower impact than

the latter.

Core/Periphery Network Analysis: Shared Core/periphery Analysis

Shared core/periphery nodes analyses (SCA/SPA) aim to detect the effects of MADs on the numbers of

shared core/periphery species (nodes) between the H and D treatments because the decline of shared no-

des may signal the effects of MADs. Table S7 listed the results from shared core species (nodes) (the left

side) and periphery species (nodes) (the right side) analyses between the H and D treatments. The random-

ization tests were performed based on 1,000 sets of CPNs built with FDR (false discovery rate) control and p

value = 0.001, which ensures only significant correlations based on Spearman’s correlation coefficient are

admitted into the species correlation networks (SCN). From the SCNs (species correlation networks), the

corresponding CPNs were constructed based on the algorithms previously introduced. Figure 5 illustrates

the graphs of CPN and HSN (high-salience skeleton network) with BV case study as examples.

In Table S7, both the observed (actual) shared nodes and permutated (simulated) nodes were listed for the

core and periphery, respectively. The p value from comparing the observed- and permutated-shared species

(nodes) is used to determine whether or not the shared species (core or periphery) between the H and D

treatments decreased more than by chance. When the p value <0.05, the shared core or periphery species

were reduced more than the decrease by chance; in other words, disease caused the reduction of shared

nodes (core or periphery species). Otherwise, the reduction of shared nodes was not caused by disease, instead

by chance.

The bottom section of Table S7 exhibited the percentages (%) of MAD cases with decreased shared core

(24%) or periphery (18%) species, respectively. Figure 6 illustrated the same information listed in Table S7.

The cases with decreased shared species (core or periphery) were marked with star (*).

Core/Periphery Network Analysis: Testing the Differences in CPN Properties

Table S8 listed the p values from testing the differences in theCPNproperties (parameters) between theH andD

treatments. TheCPNproperties tested include core strength (r), the fractionof core nodes, the four components

of coredensitymatrix, and the network nestedness. The randomization testswereperformedagain based on the

same 1,000 sets of permutated networks used in the shared core/periphery analysis above, but the algorithm

used was slightly different (see the Supplemental Information for the related algorithms).

Table S8 shows that the disease effects on the CPN properties ranged from 45% to 64%; in all but two prop-

erties [C/(C + P) and B12/B21], the percentage with significant differences exceeded 50%. The parameter

with the highest percentage in the difference between the H andD is B22, which represents the interactions

among the periphery nodes. This should be expected since periphery nodes are weakly connected and

more likely influenced by perturbations such as diseases.

Figure 5. Continued

high-salience positive skeleton (links), thick lines in green; regular negative links, regular lines in red; high-salience

negative skeleton (links), thick lines in red.
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High-Salience Skeleton Network Analysis: Shared Skeleton Analysis

Table S9 listed the results from shared skeleton analysis between the H and D treatments. The randomiza-

tion test was performed based on 1,000 sets of permutated HSNs built with FDR control and p value =

0.001. In Table S9, both the observed (actual) shared skeletons and permutated (simulated) skeletons

were listed. The p value from comparing the observed- and permutated-shared skeletons is used to deter-

mine whether or not the shared skeletons between the H and D treatments decreased more than the

decrease by chance. When p value <0.05, the shared skeleton was reduced more than the decline by

chance; in other words, disease caused statistically significant reduction of shared skeletons. Otherwise,

the reduction of shared skeletons was not caused by disease, instead by chance.

The bottom section of Table S9 exhibited the percentages ofMADcaseswithdecreased shared skeletons (40%).

Figure 7 illustrated the same information listed in Table S9. The cases with declined shared skeletons were

marked with star (*). The percentage with significant decline in shared skeleton is higher than the percentage

of shared core (24%) and shared periphery (18%) in the previous subsection. This difference suggests that dis-

eases have more far reaching influences on the interactions (skeletons) than on the species per se (nodes).

High-Salience Skeleton Network Analysis: Testing the Differences in HSN Properties

Table S10 listed the p values from testing the differences in the HSN properties between the H and D treat-

ments. The HSN properties tested include links% (the percentage of high salience skeletons), the max,

mean, skewness, and kurtosis of the salience values, as well as assortativity (a measure of network resil-

ience). The randomization tests were performed based on the same 1,000 sets of permutated networks
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Figure 6. Share Core/Periphery Node Analysis

The numbers of shared core (the left graph) or periphery (the right graph) species (nodes) between the healthy (H) and

diseased (D) treatments: the permutation test was performed with 1,000 pairs (pair = H and D) of permutated networks

(‘‘*’’: represents the cases with significant difference between the H and D). The figure is plotted based on Table S6.
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used for the previous shared skeleton analysis, but the algorithm is slightly different from that used in the

shared skeleton analysis and is the same as that used for testing the CPN properties previously (see the

Supplemental Information).

Table S10 shows that the effects of diseases on the HSN properties ranged from 47% to 74%, and in all but

one property (skewness), the percentages with significant differences exceeded 50%. The highest percent-

age in the difference between the H and D occurred in assortativity (rHSS = 74%), which represents for the
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Figure 7. Share High-Salience Skeleton Analysis

The numbers of shared high-salience skeletons (HSS>0) between the healthy (H) and diseased (D) treatments: the

permutation test was performed with 1,000 pairs (pair = H and D) of permutated networks (‘‘*’’: represents the treatments

with significant difference between H and D). The figure is plotted based on Table S8.
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assortativity of HSN andmeasures the resilience of the network. This suggests that, in approximately three-

fourth (74%) studied cases, diseases significantly impact the network resilience. This finding cross-validated

the previous finding from shared skeleton analysis, i.e., diseases exert more far-reaching effects on species

interactions (skeletons) than on the species per se (nodes).

The Key Properties of Critical Network Structures (Core/Periphery/Skeletons)

The core/periphery nodes and high-salience skeletons represent for the critical structures of the species

interactions in the community (network), from either node or link perspective. In the previous sub-sections,

we focused on statistical (permutation) tests for the potential differences between the H and D treatments

in terms of either shared critical network structures (core/periphery/skeleton) or their network properties. In

this sub-section, we briefly introduce the key properties of those critical network structures per se, for

example, the list of shared or unique core species in the H or D treatment in the SI.

Table S11 listed the key network properties of the CPN for each of the 25 MAD case studies, including the

core strength (r), fraction of core nodes, density matrix of core/periphery structure, and network nested-

ness. For example, the average core strength (r) for the healthy and diseased treatments is 0.175 versus

0.216, with standard error of 0.026 versus 0.033. Theoretically, r ranges from 0 to 1 and represents for

the relative strength of core structure. The range indicates that the strength of human microbiome net-

works is relatively loose. As shown in Table S8, r is significantly different between the H and D treatments

in approximately 60% of the MAD cases. Similarly, Table S12 listed the key network properties of the HSN

for each of the 25 MAD cases. As exhibited in Table S10 previously, almost all HSN properties showed sig-

nificant difference between the H and D individuals in more than half of the 26MAD cases, and in particular,

the assortativity of high-salience skeletons differed in 74% of the cases.

Tables S13–S15 further listed the actually observed number of shared core nodes, observed number of

shared periphery nodes, and observed number of shared skeletons, respectively, shared between the H

and D treatments in each of the 25MAD datasets. Those three tables exhibited the actually observed levels

of similarity (shared core/periphery/skeletons) between the H and D treatments and deserve further inves-

tigations aimed to understand specific disease mechanisms/etiologies.

CONCLUSIONS AND DISCUSSION

Ecologists often seek to understand the relationships between the structure and function (process) of

ecological systems to deepen their understanding to ecological mechanisms. Nonetheless, this relation-

ship is rarely straightforward, and what is being seen (i.e., community or network structure) must be filtered

and analyzed carefully before committing a belief on what is going on in the system (e.g., community sta-

bility). This is because structure is usually only an imperfect and often ambiguous manifestation of the pro-

cess (Ma, 2015). In the case of this study, we aimed to detect the relationships between critical community

(network) structures and disease effects (states) beyond the findings revealed in our previous DDR, in which

we found that in only approximately one-third of the MAD cases disease states were related to diversity

measures, but in the majority of cases (approximately two-thirds) there was not a consistent DDR pattern

(Ma et al., 2019). In the present study, we focus on detecting the ecological/network ‘‘imprints’’ of MADs on

the human microbiomes, which may help to reveal underlying ecological mechanisms of MADs and

possibly act as diagnosis and risk prediction indicators for MADs. Such explorations are important because

revealing the relationships (imprints) is critical not only for understanding the disease mechanisms/etiol-

ogies but also for developing diagnosis and/or risk prediction techniques. Methodologically, we intro-

duced three approaches to looking into the structure-mechanism paradigms in the medical ecology of

the human MADs, including Hubbell (2001) UNTB, Ning et al. (2019) framework for stochasticity assess-

ment, and CPN/HSN networks (Csermely et al., 2013; Grady et al., 2012; Shekhtman et al., 2014; Ma and

Ellison, 2019). Here, we further summarize the following seven findings from the previous sections and

discuss their implications. It should be noted that the findings are supported by the analyses introduced

in previous sections, but the implications may include postulations or even speculations.

Finding (1)

The stochasticity or neutrality level, in the human microbiomes of the MAD case studies we analyzed, was

approximately one-third, which is revealed by Hubbell (2001) UNTB testing, cross-verified by Ning et al.
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(2019) stochasticity analysis framework. The disease status of MADs did not significantly influence the sto-

chasticity/neutrality level. The implications of this finding are as follows:

Since the neutrality level is a measure of stochastic drift, speciation, and dispersal (i.e., three of the four

processes of Vellend-Hanson synthesis) (Rosindell et al., 2011; Vellend, 2010; Hanson et al., 2012), it indi-

cates the extent or level (i.e., one-third) that the microbial community is driven by the stochastic neutral

forces. We might further postulate that the deterministic selection (i.e., the other process in the four pro-

cess of Vellend-Hanson synthesis) (Vellend, 2010, 2016; Hanson et al., 2012) could be ð1�1 =3Þ= 2= 3 at the

most. However, this postulation is contingent on the additivity of the four processes of the synthesis, which

is still an open question.

Finding (2)

In approximately one-third of the cases analyzed, MADs had significant effects on the fundamental biodi-

versity numbers (q), whereas the MAD effects on the fundamental dispersal numbers (m) were approxi-

mately 15%. Therefore, although MADs did not significantly influence the mode (nature of mechanism)

of microbiome assembly and diversity maintenance—whether the mechanism is stochastic or determin-

istic, as indicated by Finding (1) above—MADs may indeed have certain level of effects on the microbiome

diversity and the upper bound (ceiling) seems to be one-third as indicated by the disease effects on q.

This ‘‘one-third MAD effects on q (the fundamental biodiversity number)’’ offers a mechanistic interpreta-

tion for the ‘‘one-third DDR pattern’’ (i.e., in only approximately one-third of the MAD cases, diversity is

related to disease status) from our previous DDR analysis (Ma et al., 2019).

Finding (3)

The critical network structures detected with CPN/HSN analyses revealed that MADs can lead to significant

reductions of shared (common) core/periphery/skeleton structures, approximately 24%, 18%, and 40%

respectively. That is, there should be disease-specific core/periphery (species) and skeletons (species in-

teractions). First principles suggest that disease may lead to divergence between the H (healthy) and D

(diseased) individuals, consequently the reduction of shared (common) critical structures. Therefore, the

reduction of shared critical structures should be expected.

Finding (4)

Besides influencing the shared critical network structures (which ranged between 18% and 40%), as stated

above, the MAD effects on the CPN properties ranged between 45% and 64% depending on specific CPN

properties and the MAD effects on the HSN properties ranged between 47% and 74%. The difference be-

tween the ‘‘shared critical network structures’’ and ‘‘network (CPN/HSN) properties’’ lies in that the former

is holistic and structural and the latter is a collection of network properties that may reflect either global or

local network characteristics.

Summarizing Findings (3) and (4), we conclude that, for diagnostic and/or risk assessment purposes, the

properties (particularly network assortativity) of critical network structures can be more promising than

the numbers of network structures per se, and also more promising than the neutral theory parameters,

given that the MAD effects on most of the network properties exceeded half. The most promising

network property reflecting the microbiome resilience against MADs seems to be network assortativity,

which reached 74% of differences between the H and D treatments, which is discussed further below in

Finding (6).

Finding (5)

Selection is the difference in the deterministic fitness between individuals from different species, and

it can also be treated as the deterministic interactions among species and between species and

their environments (Vellend, 2010, 2016). The former definition emphasizes the outcome of selection

at the individual level, and the latter definition emphasizes the process selection occurs at the species

level. According to these definitions, what CPN/HSN analyses reveal, including the asymmetrical and het-

erogeneous network structures (i.e., core/periphery/skeleton), can be considered as the outcome of

selection.
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Therefore, the selection effects should range from 18% to 74% but range between 40% and 60% in terms of

themost metrics, depending on the kinds of critical network structures or their properties. We consider that

the selection effects ranged between 40% and 60% in terms of the most metrics are moderate and non-

extreme. According to Vellend (2010, 2016), selectionmay vary across space or time, with potentially impor-

tant consequences for community dynamics. Furthermore, when selection is relatively strong and the

community size is large, any effects of drift may be canceled by selection. However, when selection is rela-

tively weak and the community size is small, the opposite can occur, i.e., drift can override selection effects.

Between the two previously conceived extremes, i.e., being moderate or non-extreme, selection could

make some community states more likely than others, but it does not guarantee any particular state

(outcome) (Nowak, 2006; Vellend, 2010, 2016). As we argued previously, the selection effects in human mi-

crobiomes should be non-extreme ormoderate. We postulate that, according to Nowak (2006) and Vellend

(2010, 2016), it is expected that, in the majority of cases, selection forces may not override the neutral forces

nor be overridden by neutral forces. There is no guarantee that the community will be in any particular state

(outcome). This uncertainty (unpredictability) may explain the lack of a consistent DDR pattern in the ma-

jority (approximately two-thirds) of MAD cases analyzed by Ma et al. (2019).

Finding (6)

The network assortativity is related to network resilience. It was found that slightly disassocitative networks

(negative assortativity but with small absolute value) are less resilient (Newman and Clauset, 2016). Table

S12 showed that the average assortativity of H andD is�0.041 and�0.022, respectively. Hence, the D treat-

ments should be less resilient than the H treatments, which were the case in 74% of the 25 MAD cases, as

revealed by the randomization tests exhibited in Table S10. In fact, the assortativity of HSN is the property

that exhibited the highest divergence (74%) between the H and D treatments we discovered in this study.

This finding may not be incidental given that assortativity can be considered as a measure of network resil-

ience and loss of resilience or dysbiosis is well recognized as a hallmark of MADs.

Finding (7)

The last finding here is indirectly inferred from the previous six findings and is more speculative.

Throughout the study, it appears that we could not break the ceiling limits of ‘‘one-third’’ in the case of

neutral theory modeling or ‘‘half to two-thirds’’ in the case of network analysis regarding disease effects

(also see Ma et al., 2019; Ma, 2020a, 2020b). The reality that we could not break the limits should not be

surprising. Besides the possible imperfectness of the ‘‘structure-process (mechanism)’’ strategy our ap-

proaches followed, we expect a major source for the unexplained gap in disease effects or lack of MAD

effects should be the intrinsic stability (resilience) of humanmicrobiome against disturbances including dis-

eases. The intrinsic resilience should primarily be due to host genomes, which should be rather stable at

ecological timescale, the scale MADs occur. Therefore, we conjecture that the genome effects on the

MADs should be approximately one-third or even more. Alternatively, we conjecture that the remaining

unexplained MAD effects could be due to nearly neutral forces (Ohta, 2008; He et al., 2012). Compared

with animal and plants, bacterial species seem to resemble each other closely in their demographic param-

eters but may not be the exactly same as the neutral theory assumes; consequently, nearly neutral effects

could be significant. Finally, Figure 1 further summarized the above-discussed seven findings.

Limitations of the Study

The present study was aimed to investigate the critical network structures andmedical ecologymechanisms un-

derlying the human MADs, and it was a direct extension to our previous works in this field, based on the same

MAD datasets but was approached with different objectives, analytic methods, and ecological theories (Ma

et al., 2019; Ma, 2020a; 2020b). The most important limitations of our works have been discussed in Finding

(7) in the previous section, which summarized the issues and proposed a conjectural hypothesis for further inves-

tigations. An additional limitation is that the scope of MAD datasets was limited to the marker gene (16s-rRNA)

sequencing reads obtained from amplicon sequencing technology, and the metagenome datasets from the

whole-genome sequencing (shotgun sequencing) were not implicated in this serious of studies (Ma et al.,

2019; Ma, 2020a; 2020b). Both types of metagenomics studies (datasets) have not only different data structures

(matrices of OTU abundances versus matrices of metagenomic gene abundances) but also very different bioin-

formatics and subsequent analytic approaches. In particular, there have been relatively few ecological ap-

proaches to the metagenomic gene abundance (GA) datasets. We argue that the lag in the applications of

ecological theories for GA studies is not because of the applicability or importance of ecological theories;

instead it is because of the enormous difficulties in analyzing the big data of metagenomic genes (the number
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ofwhich is orders ofmagnitude larger than the number ofOTUs in the case of humanmicrobiomes), whichmade

subsequent ecological analyses rather difficult. To deal with the difficulty, we have been developing the appli-

cations of major ecological theories for the metagenomic GA datasets in another series of studies (Ma and Li,

2018; Ma, 2020c; Ma and Ellison, 2020). We argue that the medical ecology of human microbiomes, which

can be considered as a cross-disciplinary field of microbiology, medicine, ecology, and bioinformatics (Ma,

2017; Ma et al., 2016), is complete only if bothmicrobial OTUs andmetagenomic genes are included. Therefore,

future studies to complement the present study based on metagenomic GA datasets are certainly worthy of

further explorations.
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Supplemental Information 
 
Supplemental Tables S1-S15 and Figures S1-S3 
 
 
Table S1. Brief information of the 27 case studies on microbiome associated diseases (MADs). Related to 
the Transparent Methods and Figs 2-7. 

Case 
No. Sites Disease Treatments (Groups) 

References* 
In “Transparent 

Methods” section  
1 Crohn’s disease (CD) (18), Ulcerative colitis 

(UC) (38), Healthy (18) Papa et al (2012) 

2#@ 

IBD (Inflammatory Bowel 
Disease) 

CD (251), UC (324), Healthy (62) Halfvarson et al (2017) 

3 Obesity Lean (61), Obese (196) and Overweight (24) Turnbaugh et al (2009) 

4 CRC Cancer (46) vs. Healthy (56) Wang et al (2012) 

5# Non-treatment (7) vs. ART treatment (11) Neff et al (2018) 

6 WithART(14), WithoutART(12), Healthy (22) Lozupone et al (2013)  

7 

HIV 

HIV Negative (20) vs. Positive (40) McHardy et al (2013) 

Normal T1D (33) vs Normal Healthy (33) 
8# Type 1 diabetes and Obesity 

Obesity T1D (24) vs. Obesity Healthy (26) 

Kim, Jane: 
https://clinicaltrials.gov/ct
2/show/NCT02938806  

9 Gout Disease (41) vs. Healthy (42) Guo et al (2015) 

10 MHE MHE (25), Cirrhotic (25), Healthy (25) Zhang et al (2013) 

11 Parkinson’s Disease Disease (205) vs. Healthy (133) Hill-Burns et al 2017) 

12 Schizophrenia Disease (25). vs. Healthy (25) 
Dilip Jeste (UC San 
Diego):https://profiles.ucsd.e
du/dilip.jeste 

13 Autism, Neurotypical Autism (88), Neurotypical (41), Healthy (14) Kang et al (2017) 

14 

Gut 

Atherosclerosis Disease (15) vs. Healthy (15) Koren et al (2010) 

15 Atherosclerosis Disease (14) vs. Healthy (15) Koren et al (2010) 

16 PB (22), PnB (22), Healthy (17) Abusleme et al (2013) 

17 
Periodontitis 

Disease (29), Control (29), Healthy (29) Griffen et al (2012) 

18 Smoking (6) vs. Non-smoking (9) Lazarevic et al (2010) 

19 

Oral 

Smoking 
Smoking (74) vs. Non-smoking (72) Charlson et al (2010) 

20 Nostril Smoking Smoking (74) vs. Non-smoking (71) Charlson et al (2010) 

21 Skin Psoriasis Disease (77), Control (83), Healthy (76) Alekseyenko et al (2013) 

22 End of Treatment (23) vs. Exacerbation (23) Fodor et al (2012) 

23 
Cystic Fibrosis (CF) 

Disease (16) vs. Healthy (10) Blainey et al 2012) 

24 

Lung 

HIV Disease (82) vs. Healthy (77) Lozupone  et al (2013) 

25 Vaginal Bacterial Vaginosis (BV) ABV, SBV, Healthy Srinivasan et al. (2012) 

26 Semen Infertile Abnormal (33), Subnormal (28), Normal (35). 
Genus level and species level Weng et al 2014 

27@ Milk Mastitis Mastitis (4) vs. Healthy (16) Urbaniak (2015) 

 
*These are the same datasets used in Ma, Li & Gotelli (2019) Diversity-disease relationships and shared species 
analyses for human microbiome-associated diseases. The ISME Journal, https://www.nature.com/articles/s41396-
019-0395-y, where a brief description on the datasets can be found.  
#: Case No. 2, 5 & 8 datasets were not used for neutral-theoretic analysis because of computational failures.  
@: Case No 2 & 27 datasets were not used for core/periphery/skeleton nerwork analysis (computational failures).   
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*References (Cited in Table S1 for Data Sources) 

 
Papa E, Docktor M, Smillie C, et al. 2012. Non-Invasive Mapping of the Gastrointestinal Microbiota 
Identifies Children with Inflammatory Bowel Disease. Plos One, 7(6):e39242. 
 
Halfvarson J, Brislawn CJ, Lamendella R, et al. 2017. Dynamics of the human gut microbiome in 
Inflammatory Bowel Disease. Nature Microbiology, 2:17004. 
 
Turnbaugh PJ, Hamady M, Yatsunenko T, et al. 2009. A core gut microbiome in obese and lean twins. 
Nature,  457(7228):480. 
 
Wang T, Cai G, Qiu Y, et al. 2012. Structural segregation of gut microbiota between colorectal cancer 
patients and healthy volunteers. The ISME Journal, 6(2):320-329. 
 
Neff CP, Krueger O, Xiong K, et al. 2018. Fecal Microbiota Composition Drives Immune Activation in 
HIV-infected Individuals. Ebiomedicine, 30. 
 
Lozupone C, Cota-Gomez A, Palmer B E, et al. 2013. Widespread colonization of the lung by 
Tropheryma whipplei in HIV infection. American Journal of Respiratory & Critical Care Medicine, 
187(10):1110-1117. 
 
Mchardy IH, Li X, Tong M, et al. 2013. HIV Infection is associated with compositional and functional 
shifts in the rectal mucosal microbiota. Microbiome, 1(1):26. 
 
Guo Z, Zhang J, Wang Z, et al. 2016. Intestinal Microbiota Distinguish Gout Patients from Healthy 
Humans. Sci Rep, 6:20602. 
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Table S3. The percentages (%) that passed neutrality test for Hubbell’s classic neutral theory with the 24 
datasets of the human MADs (Related to Fig 4) 

Remove rarest species 
Sites Diseases Treatments 

Raw 
Community 
Data Singleton M1 M2 M3 

Healthy 22.22 11.11 77.78 83.33 66.67 

CD 27.78 5.56 83.33 77.78 72.22 
IBD 
(Inflammatory 
Bowel Disease) 

1 

UC 65.79 44.74 84.21 81.58 71.05 

Lean 0.00 0.00 65.57 85.25 83.61 

Overweight 4.17 0.00 83.33 83.33 79.17 Obesity 2 

Obesity 2.06 0.52 58.76 77.84 81.35 

Healthy 0.00 0.00 30.36 80.36 75.00 
Cancer 3 

Cancer 2.17 0.00 45.65 84.78 80.43 

Negative 0.00 0.00 90.48 100.00 100.00 

Treatment 21.43 21.43 100.00 100.00 100.00 4 

Non-treat 0.00 0.00 83.33 100.00 100.00 

Negative NA 95.00 100.00 100.00 100.00 

HIV 

5 
Positive 100.00 100.00 100.00 100.00 100.00 

Healthy 38.10 26.19 97.62 100.00 97.62 
Gout 6 

Gout 60.98 58.54 100.00 100.00 97.56 

Healthy 12.50 4.17 62.50 65.22 65.22 

Control 16.00 8.00 68.00 80.00 84.00 MHE 7 

MHE 4.17 8.33 70.83 83.33 79.17 

Healthy 89.47 33.08 97.74 96.24 93.98 Parkinson’s 
Disease 8 

PD 88.29 26.47 98.53 95.07 95.57 

Healthy 12.00 8.00 92.00 100.00 100.00 
Schizophrenia 9 

Disease 12.00 20.00 100.00 100.00 100.00 

Healthy 92.86 50.00 85.71 85.71 78.57 

Autism 95.45 53.41 94.32 95.45 92.05 Autism 10 

Neurotypical 97.56 73.17 100.00 95.12 95.12 

Healthy 0.00 0.00 0.00 46.67 53.33 

Gut 

Atherosclerosis 11 
Disease 0.00 0.00 6.67 53.33 60.00 

Healthy 73.33 26.67 86.67 93.33 93.33 
Atherosclerosis 12 

Disease 42.86 14.29 100.00 100.00 100.00 

Healthy 82.35 52.94 94.12 82.35 82.35 

PB 63.64 18.18 77.27 63.64 68.18 13 

PnB 40.91 18.18 77.27 77.27 59.09 

Healthy 3.45 0.00 17.24 13.79 20.69 

Control 10.34 0.00 20.69 10.34 13.79 

Periodontitis 

14 

Disease 3.45 0.00 6.90 0.00 6.90 

Non-Smoker 0.00 0.00 55.56 88.89 77.78 
15 

Smoker 0.00 0.00 100.00 100.00 100.00 

Non-Smoker 26.76 38.03 92.96 97.18 94.37 
16 

Smoker 6.85 15.07 87.67 91.78 86.30 

Non-Smoker 22.22 0.00 83.33 76.39 72.22 

Oral 

Smoking 

17 
Smoker 19.18 4.17 69.44 68.06 63.89 

Control 7.23 2.41 32.53 73.49 85.54 Skin Psoriasis 18 

Normal 3.95 1.32 32.89 63.16 73.68 
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   Lesion 6.49 1.30 40.26 71.43 81.82 

Treated 100.00 95.45 100.00 95.45 95.24 
19 

Exacerbation 100.00 96.00 100.00 95.65 100.00 

Healthy 44.44 11.11 66.67 66.67 55.56 
Cystic Fibrosis 

20 
Disease 56.25 31.25 68.75 68.75 37.50 

Negative 68.42 44.26 78.69 75.00 68.33 

Lung 

HIV 21 
Positive 75.56 53.33 88.89 88.89 84.44 

Healthy 99.03 95.60 95.60 92.21 93.07 
Vaginal BV 22 

BV 76.92 47.41 67.24 56.52 49.57 

Normal 8.57 2.86 31.43 62.86 74.29 

Subnormal 0.00 0.00 35.71 75.00 89.29 Semen Infertile 
(Species level) 23 

Abnormal 0.00 0.00 30.30 66.67 72.73 

Healthy 93.75 100.00 100.00 100.00 100.00 
Milk Mastitis 24 

Mastitis 100.00 100.00 100.00 75.00 75.00 

Health 35.65 26.16 68.75 78.29 77.71 
Passing Percentages (%) 

Diseased  39.13 27.05 75.29 80.88 79.28 
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Table S4. The p-value of Fisher’s exact test for the numbers of samples passing the neutrality test 
between the healthy and diseased datasets (Related to Figs 2-3) 

Remove rarest species 
Microbiome Disease Index Healthy Diseased 

Raw 
Community 
Data Singleton M1 M2 M3 

Healthy CD 1.000 1.000 1.000 1.000 1.000 IBD (Inflammatory 
Bowel Disease) 1 

Healthy UC 0.075 0.078 1.000 1.000 1.000 

Lean Overweight 0.291 1.000 0.583 1.000 1.000 
Obesity 2 

Lean Obesity 0.576 1.000 0.638 0.744 0.913 

Cancer 3 Healthy Cancer 0.456 1.000 0.343 0.883 0.881 

Negative  Treatment 0.081 0.081 1.000 1.000 1.000 
4 

Negative Non-treatment 1.000 1.000 1.000 1.000 1.000 HIV 

5 Negative Positive NA 1.000 1.000 1.000 1.000 

Gout 6 Healthy Gout 0.255 0.069 1.000 1.000 1.000 

Healthy Control 1.000 1.000 1.000 0.663 0.660 
MHE 7 

Healthy MHE 0.611 1.000 0.823 0.657 0.822 

Parkinson’s Disease 8 Healthy PD 0.936 0.352 1.000 1.000 0.936 

Schizophrenia 9 Healthy Schizophrenia 1.000 0.427 0.843 1.000 1.000 

Healthy Autism 1.000 1.000 0.837 0.836 0.831 
Autism 10 

Healthy Neurotypical 1.000 0.614 0.823 1.000 0.819 

Gut 

Atherosclerosis 11 Healthy Atheroscierosis 1.000 1.000 1.000 1.000 1.000 

Atherosclerosis 12 Healthy Atheroscierosis 0.540 0.666 1.000 1.000 1.000 

Healthy PB 0.628 0.199 0.813 0.628 0.807 
13 

Healthy PnB 0.293 0.199 0.813 1.000 0.618 

Healthy Control 0.613 1.000 1.000 1.000 0.735 
Periodontitis 

14 
Healthy Disease 1.000 1.000 0.430 0.116 0.265 

15 Non-smoking Smoking 1.000 1.000 0.692 1.000 1.000 

16 Non-smoking Smoking 0.008 0.018 0.904 0.905 0.718 

Oral 
 
  

Smoking 

17 Non-smoking Smoking 0.841 0.245 0.527 0.700 0.695 

Control Lesion 1.000 1.000 0.541 1.000 0.907 
Skin Psoriasis 18 

Normal Lesion 0.720 1.000 0.536 0.702 0.714 

19 End of Treatment Exacerbation 1.000 1.000 1.000 1.000 1.000 Cystic Fibrosis 
(CF) 20 Healthy CF 1.000 0.634 1.000 1.000 0.716 Lung 

HIV 21 Negative Positive 0.836 0.610 0.771 0.660 0.550 

Vaginal BV 22 Healthy BV 0.236 0.002 0.096 0.033 0.004 

Normal Subnormal 0.256 1.000 0.806 0.695 0.707 
Semen Infertile  

(Species level) 23 
Normal Abnormal 0.243 1.000 1.000 1.000 1.000 

Milk Mastitis 24 Healthy Mastitis 1.000 1.000 1.000 1.000 1.000 
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Table S5. The p-values of the permutation tests for the differences in the neutral theory parameters 
between the healthy and diseased datasets (Related to Figs 2-3)  

Remove rarest species Raw Community 
Data Singleton M1 M2 M3 

Micro-
biome Disease Index Healthy Diseased 

θ  m θ  m θ  m θ  m θ  m 
Healthy CD 0.542 0.839 0.563 0.239 0.628 0.888 0.815 0.501 0.791 0.406 IBD 

(Inflammatory 
Bowel Disease) 

1 
Healthy UC 0.001 0.308 0.000 0.938 0.000 0.993 0.001 0.572 0.002 0.658 

Lean Overweight 0.722 0.926 0.707 0.322 0.657 0.030 0.693 0.671 0.650 0.957 
Obesity 2 

Lean Obesity 0.081 0.123 0.246 0.408 0.313 0.048 0.225 0.080 0.179 0.493 

Cancer 3 Healthy Cancer 0.000 0.062 0.043 0.359 0.042 0.827 0.076 0.699 0.321 0.508 

Negative  Treatment 0.052 1.000 0.096 0.325 0.127 0.414 0.175 0.702 0.263 0.606 
4 

Negative Non-treatment 0.811 0.782 0.471 0.427 0.385 0.699 0.326 0.242 0.274 0.044 HIV 

5 Negative Positive NA NA 0.694 0.650 0.460 0.994 0.408 0.866 0.735 0.506 

Gout 6 Healthy Gout 0.001 0.641 0.001 0.680 0.001 0.401 0.002 0.106 0.003 0.381 

Healthy Control 0.073 0.670 0.278 0.154 0.132 0.356 0.226 0.653 0.335 0.057 
MHE 7 

Healthy MHE 0.301 0.153 0.255 0.273 0.147 0.959 0.025 0.124 0.028 0.001 
Parkinson’s 
Disease 8 Healthy PD 0.084 0.149 0.118 0.736 0.077 0.234 0.118 0.471 0.135 0.718 

Schizophrenia 9 Healthy Schizophrenia 0.307 0.848 0.464 0.832 0.453 0.095 0.397 0.715 0.407 0.788 

Healthy Autism 0.314 0.487 0.283 0.163 0.300 0.305 0.343 0.842 0.481 0.789 
Autism 10 

Healthy Neurotypical 0.626 0.667 0.695 0.886 0.738 0.626 0.826 0.547 0.782 0.977 

 

Atherosclerosis 11 Healthy Atheroscierosis 0.595 0.267 0.775 0.137 0.775 0.217 0.838 0.217 0.870 0.461 

Atherosclerosis 12 Healthy Atheroscierosis 0.033 0.780 0.026 0.290 0.023 0.780 0.041 0.158 0.026 0.093 

Healthy PB 0.000 0.604 0.000 0.006 0.000 0.027 0.000 0.333 0.000 0.039 
13 

Healthy PnB 0.002 0.077 0.000 0.012 0.000 0.408 0.000 0.110 0.001 0.029 

Healthy Control 0.013 0.362 0.012 0.210 0.014 0.265 0.013 0.307 0.008 0.330 
Periodontitis 

14 
Healthy Disease 0.000 0.163 0.000 0.163 0.000 0.215 0.000 0.345 0.000 0.353 

15 Non-
smoking Smoking 0.607 0.456 0.328 0.088 0.388 0.005 0.689 0.776 0.864 0.272 

16 Non-
smoking Smoking 0.001 0.007 0.055 0.092 0.073 0.842 0.153 0.297 0.057 0.012 

Oral 
 
  

Smoking 

17 Non-
smoking Smoking 0.138 0.100 0.091 0.511 0.069 0.337 0.442 0.790 0.534 0.285 

Control Lesion 0.889 0.017 0.774 0.040 0.962 0.038 0.951 0.004 0.967 0.348 
Skin Psoriasis 18 

Normal Lesion 0.548 0.937 0.616 0.676 0.789 0.949 0.578 0.811 0.432 0.932 

19 End of 
Treatment Exacerbation 0.074 0.195 0.492 1.000 0.453 0.992 0.227 0.411 0.363 0.442 Cystic Fibrosis 

(CF) 
20 Healthy CF 0.000 0.388 0.000 0.207 0.000 0.251 0.049 0.032 0.049 0.037 Lung 

HIV 21 Negative Positive 0.286 0.422 0.697 0.486 0.645 0.730 0.828 0.571 0.843 0.571 

Vaginal BV 22 Healthy BV 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Normal Subnormal 0.550 0.437 0.429 0.645 0.470 0.645 0.462 0.174 0.268 0.726 
Semen Infertile  

(Species level) 23 
Normal Abnormal 0.705 0.922 0.592 0.542 0.617 0.212 0.464 0.271 0.335 0.145 

Milk Mastitis 24 Healthy Mastitis 0.494 0.554 1.000 0.800 0.800 0.533 1.000 0.800 0.374 0.304 

Significant difference rate (%) 33.33 9.09 30.30 12.12 30.30 18.18 30.30 9.09 30.30 21.21 
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Table S7. The shared core/periphery analysis between the healthy and diseased treatments based on the 
1000 sets of permutated core/periphery networks (CPN) built with FDR control and p=0.001 (Related to 
Figs 6-7)  

Core Periphery 
Microbiome Disease Index Healthy Diseased 

Obs. Perm. p-value Obs. Perm. p-value 
Healthy CD 1 1.618 0.545 7 9.674 0.282 IBD (Inflammatory 

Bowel Disease) 1 
Healthy UC 1 0.900 0.776 9 6.196 0.898 
Lean Overweight 1 1.895 0.505 12 7.495 0.932 

Obesity 3 
Lean Obesity 10 9.781 0.597 23 20.753 0.720 

Cancer 4 Healthy Cancer 9 11.796 0.249 11 15.48 0.160 
Negative  Treatment 22 28.498 0.178 43 37.691 0.792 

5 
Negative  Non-treatment 24 25.658 0.456 27 30.546 0.357 
Negative  Treatment 15 26.606 0.029 25 33.909 0.107 

6 
Negative  Non-treatment 11 26.427 0.002 23 32.571 0.106 

HIV 

7 Negative Positive 22 13.173 0.957 18 18.304 0.541 
T1D (Lean) Healthy T1D 10 8.496 0.763 19 16.18 0.792 
T1D (Obesity) 8 

Healthy T1D 20 15.005 0.902 28 24.807 0.760 
Gout 9 Healthy Gout 1 5.43 0.035 17 17.809 0.492 

Healthy MHE 6 4.86 0.772 6 13.842 0.026 
MHE 10 

Control MHE 3 4.702 0.342 12 13.68 0.427 
Parkinson’s Disease 11 Healthy PD 38 45.7 0.170 40 47.696 0.177 
Schizophrenia 12 Healthy Schizophrenia 30 29.815 0.547 26 34.969 0.077 

Healthy Autism 3 1.97 0.865 9 6.978 0.768 
Autism 13 

Healthy Neurotypical 0 0.706 0.679 4 4.875 0.580 

Gut 

Atherosclerosis 14 Healthy Atherosclerosis 29 27.573 0.671 23 30.778 0.102 
Atherosclerosis 15 Healthy Atherosclerosis 0 0.523 0.589 2 4.616 0.170 

Healthy PB 1 0.592 0.865 2 4.145 0.257 
16 

Healthy PnB 0 0.619 0.605 2 3.978 0.266 
Healthy Disease 15 6.815 0.928 14 6.387 0.939 

Periodontitis 

17 
Control Disease 0 6.799 0.092 0 6.244 0.085 

18 Non-smoking Smoking 4 2.368 0.887 13 14.387 0.438 
19 Non-smoking Smoking 20 34.991 0.019 20 34.701 0.008 

Oral 

Smoking 

20 Non-smoking Smoking 0 0.957 0.522 16 11.421 0.905 
Control Lesion 84 112.266 0.014 94 116.43 0.032 

Skin Psoriasis 21 
Normal Lesion 109 105.23 0.644 106 110.03 0.393 

22 End of Treatment Exacerbation 0 8.69 0.011 0 27.068 0.000 
Cystic Fibrosis (CF) 

23 Healthy CF 0 0.549 0.644 1 2.016 0.447 Lung 

HIV 24 Negative Positive 181 168.219 0.605 118 105.99 0.741 
Vaginal BV 25 Healthy BV 0 13.183 0.003 0 23.395 0.000 

Normal Subnormal 1 59.733 0.000 0 57.235 0.000 Infertile  
(Genus level) Normal Abnormal 0 63.879 0.000 4 58.901 0.000 

Normal Subnormal 69 64.506 0.658 63 67.569 0.378 
Semen 

Infertile Species 
level) 

26 

Normal Abnormal 67 65.134 0.584 51 69.039 0.066 
Percentage of Comparisons with Reduced Shared Skeletons  23.68%  (9/38) 18.42% (7/38) 
Percentage of Comparisons without the change  76.32%  (29/38) 81.58% (31/38) 

*Obs.=The Observed value. Perm.=The mean value from 1000 permutated networks. p-value is from permutation 
test.  
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Table S8. The p-values from the permutation test for the differences in the core/periphery network (CPN) 
properties between the H (healthy) & D (diseased) treatments with 1000 sets of permutated CPNs  
(p-value<0.05, indicating significant difference) (Related to Figs 6-7) 

Microbiome Disease Index Healthy Diseased ρ  C/ 
(C+P) B11 B12 (21) B22 Nestedness (S) 

Healthy CD 0.00 0.00 0.00 1.00 0.00 1.00 IBD (Inflammatory 
Bowel Disease) 1 

Healthy UC 0.00 1.00 1.00 0.00 0.00 0.00 
Lean Overweight 0.00 0.00 0.00 1.00 1.00 0.00 

Obesity 3 
Lean Obesity 0.00 0.00 0.00 1.00 0.00 0.00 

Cancer 4 Healthy Cancer 0.00 0.00 0.00 0.00 0.00 0.00 
Negative  Treatment 0.00 0.00 0.00 0.00 1.00 0.00 

5 
Negative  Non-treatment 1.00 1.00 1.00 0.00 0.00 0.00 
Negative  Treatment 0.00 1.00 0.00 0.00 0.00 0.00 

6 
Negative  Non-treatment 1.00 0.00 1.00 1.00 0.00 1.00 

HIV 

7 Negative Positive 0.00 1.00 0.00 0.00 1.00 0.00 
T1D (Lean) Healthy T1D 0.00 0.00 0.00 0.00 0.00 0.00 
T1D (Obesity) 8 

Healthy T1D 1.00 1.00 0.00 0.00 0.00 0.00 
Gout 9 Healthy Gout 1.00 1.00 1.00 0.00 0.00 1.00 

Healthy MHE 1.00 1.00 1.00 0.00 0.00 1.00 
MHE 10 

Control MHE 1.00 1.00 1.00 0.00 1.00 1.00 
Parkinson’s Disease 11 Healthy PD 0.00 0.00 0.00 0.00 0.00 0.00 
Schizophrenia 12 Healthy Schizophrenia 0.00 0.00 1.00 1.00 1.00 1.00 

Healthy Autism 1.00 1.00 1.00 1.00 0.00 1.00 
Autism 13 

Healthy Neurotypical 1.00 1.00 1.00 1.00 0.00 1.00 

Gut 

Atherosclerosis 14 Healthy Atherosclerosis 1.00 1.00 1.00 1.00 0.00 1.00 
Atherosclerosis 15 Healthy Atherosclerosis 0.00 0.00 0.00 1.00 0.00 0.00 

Healthy PB 1.00 1.00 0.00 1.00 1.00 1.00 
16 

Healthy PnB 0.00 0.00 0.00 1.00 1.00 0.00 
Healthy Disease 0.00 1.00 0.00 0.00 0.00 0.00 

Periodontitis 
17 

Control Disease 0.00 1.00 1.00 1.00 0.00 1.00 
18 Non-smoking Smoking 1.00 1.00 1.00 1.00 1.00 1.00 
19 Non-smoking Smoking 0.00 1.00 0.00 0.00 0.00 0.00 

Oral 

Smoking 

20 Non-smoking Smoking 1.00 0.00 1.00 0.00 1.00 1.00 
Control Lesion 0.00 1.00 1.00 1.00 1.00 0.00 

Skin Psoriasis 21 
Normal Lesion 0.00 1.00 1.00 0.00 0.00 0.00 

22 End of Treatment Exacerbation 0.00 0.00 1.00 1.00 0.00 0.00 Cystic Fibrosis 
(CF) 23 Healthy CF 1.00 1.00 1.00 1.00 0.00 0.00 Lung 

HIV 24 Negative Positive 0.00 1.00 0.00 0.00 0.00 0.00 
Vaginal BV 25 Healthy BV 0.00 0.00 0.00 1.00 0.00 0.00 

Normal Subnormal 0.00 1.00 0.00 1.00 0.00 0.00 Infertile  
(Genus level) Normal Abnormal 0.00 0.00 1.00 1.00 0.00 0.00 

Normal Subnormal 0.00 1.00 0.00 0.00 0.00 0.00 Semen 
Infertile Species 
level) 

26 

Normal Abnormal 1.00 1.00 1.00 1.00 1.00 1.00 
Percentage of Significant Differences (%)  59.18 44.90 51.02 46.94 63.27 57.14 

 Here the algorithm for permutation test is as follows:  
OP=|Observed Property Difference between H & D|   
PP=1000 values of |H-D| from permutated networks 
N=number of permutations satisfying PP≤OP  
Pseudo-P-value=N/1000  
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Table S9. The shared skeleton analysis between the healthy and diseased treatments based on the 
1000 sets of permutated high-salience skeleton networks (HSNs) built with FDR control and p=0.001 
(HSS>0) (Related to Figs 6-7) 

HSS (High Salience Skeleton) 
Value>0 Microbiome Disease Index Healthy Diseased 

Obs. Perm. p-value 
Healthy CD 49 143.27 0.111 IBD (Inflammatory 

Bowel Disease) 1 
Healthy UC 80 55.44 0.785 
Lean Overweight 166 111.85 0.803 Obesity 3 
Lean Obesity 1132 1072.96 0.605 

Cancer 4 Healthy Cancer 630 1185.00 0.026 
Negative  Treatment NA NA NA 5 
Negative  Non-treatment NA NA NA 
Negative  Treatment 2718 6057.995 0.007 6 
Negative  Non-treatment 1934 5855.577 0.003 

HIV 

7 Negative Positive 2049 1495.90 0.839 
T1D (Lean) Healthy T1D 1059 923.64 0.720 
T1D (Obesity) 8 

Healthy T1D 3393 2411.57 0.965 
Gout 9 Healthy Gout 407 748.53 0.046 

Healthy MHE 172 489.41 0.041 MHE 10 
Control MHE 309 478.13 0.206 

Parkinson’s Disease 11 Healthy PD 3630 6724.11 0.015 
Schizophrenia 12 Healthy Schizophrenia 4861 6664.09 0.067 

Healthy Autism 43 89.80 0.425 Autism 13 
Healthy Neurotypical 24 46.23 0.662 

Gut 

Atherosclerosis 14 Healthy Atherosclerosis 4288 5592.62 0.083 
Atherosclerosis 15 Healthy Atherosclerosis 2 26.69 0.031 

Healthy PB 1 23.57 0.057 16 
Healthy PnB 1 23.11 0.047 
Healthy Disease 1353 441.901 0.944 

Periodontitis 
17 

Control Disease 0 437.733 0.043 
18 Non-smoking Smoking 279 353.64 0.388 
19 Non-smoking Smoking 1707 4029.50 0.029 

Oral 

Smoking 
20 Non-smoking Smoking 153 147.17 0.577 

Control Lesion 37098 62519.264 0.002 Skin Psoriasis 21 
Normal Lesion 64145 55303.513 0.833 

22 End of Treatment Exacerbation 0 456.75 0.000 Cystic Fibrosis (CF) 
23 Healthy CF 0 6.78 0.202 Lung 

HIV 24 Negative Positive 19746 33750.779 0.346 
Vaginal BV 25 Healthy BV 0 23.359 0.000 

Normal Subnormal 3 654.33 0.000 Infertile  
(Genus level) Normal Abnormal 6 561.187 0.000 

Normal Subnormal 26291 29221.901 0.402 
Semen 

Infertile Species level) 
26 

Normal Abnormal 24225 29292.624 0.249 
Percentage of Comparisons with Reduced Shared Skeletons  39.47%(15/38) 
Percentage of Comparisons without the change  60.53%(23/38) 

*In general, the observed shared skeletons (OSS) should be smaller or, at most, equal with the permutated 
shared skeletons (PSS), i.e., OSS≤PSS. In other words, the case of O>P is unlikely and corresponding p-
value would be p=1.   
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Table S10. The p-values from the permutation test for the differences in the high salience skeleton 
network (HSN) properties between the H & D treatments with 1000 sets of permutated HSNs (p 
value<0.05, indicating significant difference) (Related to Figs 6-7) 

Microbiome Disease Index Healthy Diseased Links (%) Max Skewness Kurtosis rHSS 

Healthy CD 1.00 0.00 1.00 0.00 0.00 IBD (Inflammatory 
Bowel Disease) 1 

Healthy UC 1.00 0.00 1.00 1.00 0.00 
Lean Overweight 1.00 1.00 1.00 0.00 0.00 

Obesity 3 
Lean Obesity 0.00 0.00 0.00 0.00 0.00 

Cancer 4 Healthy Cancer 0.00 0.00 1.00 1.00 0.00 
Negative  Treatment 0.00 0.00 1.00 1.00 0.00 

5 
Negative  Non-treatment 0.00 0.00 1.00 0.00 0.00 
Negative  Treatment 0.00 0.00 0.00 0.00 0.00 

6 
Negative  Non-treatment 0.00 1.00 0.00 1.00 0.00 

HIV 

7 Negative Positive 1.00 1.00 1.00 0.00 0.00 
T1D (Lean) Healthy T1D 1.00 1.00 1.00 0.00 1.00 
T1D (Obesity) 8 

Healthy T1D 0.00 0.00 1.00 1.00 1.00 
Gout 9 Healthy Gout 0.00 0.00 1.00 1.00 1.00 

Healthy MHE 1.00 0.00 1.00 1.00 0.00 
MHE 10 

Control MHE 0.00 1.00 0.00 0.00 0.00 
Parkinson’s Disease 11 Healthy PD 0.00 0.00 1.00 1.00 0.00 
Schizophrenia 12 Healthy Schizophrenia 0.00 0.00 0.00 0.00 0.00 

Healthy Autism 0.00 0.00 0.00 0.00 0.00 
Autism 13 

Healthy Neuro-typical 1.00 1.00 0.00 0.00 1.00 

Gut 

Atherosclerosis 14 Healthy Atherosclerosis 0.00 0.00 0.00 0.00 0.00 
Atherosclerosis 15 Healthy Atherosclerosis 1.00 0.00 1.00 1.00 0.00 

Healthy PB 0.00 0.00 0.00 0.00 0.00 
16 

Healthy PnB 0.00 0.00 1.00 1.00 0.00 
Healthy Disease 1.00 1.00 0.00 0.00 0.00 

Periodontitis 
17 

Control Disease 1.00 1.00 0.00 0.00 0.00 
18 Non-smoking Smoking 1.00 1.00 1.00 0.00 1.00 
19 Non-smoking Smoking 0.00 0.00 0.00 0.00 1.00 

Oral 

Smoking 

20 Non-smoking Smoking 1.00 1.00 1.00 1.00 1.00 
Control Lesion 0.00 1.00 1.00 1.00 0.00 

Skin Psoriasis 21 
Normal Lesion 1.00 1.00 0.00 0.00 1.00 

22 End of Treatment Exacerbation 1.00 0.00 1.00 1.00 0.00 Cystic Fibrosis 
(CF) 23 Healthy CF 0.00 0.00 0.00 0.00 1.00 Lung 

HIV 24 Negative Positive 0.00 0.00 0.00 0.00 0.00 
Vaginal BV 25 Healthy BV 0.00 0.00 0.00 0.00 0.00 

Normal Subnormal 1.00 0.00 0.00 0.00 0.00 Infertile  
(Genus level) Normal Abnormal 1.00 0.00 0.00 0.00 0.00 

Normal Subnormal 1.00 1.00 1.00 1.00 1.00 
Semen 

Infertile Species 
level) 

26 

Normal Abnormal 1.00 0.00 1.00 0.00 0.00 
% With significant differences 52.63 65.79 47.37 63.16 73.68 

 
  

  
 
 

  
  

 
 
  



 12 

Table S11. The observed core/periphery parameters in the core-periphery networks for the  
25 MAD (microbiome associated disease) datasets with FDR control and p-value=0.001  
(Related to Figs 6-7) 

Density Matrix 
Sites Diseases Treatments r C/(C+P) 

B11 B12 (21) B22 
Nestedness 

(S) 

Healthy 0.179 0.310 0.098 0.001 0.022 0.020 
CD 0.254 0.174 0.210 0.000 0.016 0.018 

IBD 
(Inflammatory 
Bowel Disease) 

1 
UC 0.246 0.344 0.119 0.003 0.014 0.021 
Lean 0.405 0.250 0.277 0.004 0.013 0.026 
Overweight 0.236 0.283 0.129 0.007 0.012 0.019 Obesity 3 

Obesity 0.042 0.478 0.012 0.004 0.005 0.009 
Healthy 0.027 0.470 0.006 0.002 0.003 0.003 Cancer 4 
Cancer 0.079 0.406 0.021 0.003 0.004 0.006 
Negative 0.074 0.459 0.019 0.003 0.005 0.007 
Treatment 0.104 0.498 0.031 0.006 0.004 0.012 5 
Non-treatment 0.086 0.465 0.028 0.007 0.006 0.011 
Negative 0.117 0.446 0.039 0.007 0.006 0.013 
Treatment 0.082 0.442 0.026 0.005 0.007 0.010 6 

Non-treatment 0.091 0.413 0.034 0.007 0.008 0.012 
Negative 0.180 0.444 0.066 0.006 0.007 0.018 

HIV 

7 
Positive 0.064 0.434 0.017 0.003 0.006 0.007 
Normal-Healthy 0.098 0.426 0.029 0.003 0.007 0.009 T1D (Lean) 
Normal-T1D 0.068 0.480 0.018 0.003 0.007 0.007 
Obesity-Healthy 0.068 0.465 0.016 0.002 0.006 0.006 T1D (Obesity) 

8 

Obesity-T1D 0.068 0.469 0.020 0.004 0.008 0.009 
Healthy 0.178 0.411 0.071 0.006 0.010 0.018 Gout 9 
Gout 0.118 0.436 0.041 0.004 0.011 0.013 
Healthy 0.174 0.310 0.081 0.005 0.011 0.015 
Control 0.182 0.345 0.087 0.006 0.014 0.019 MHE 10 
MHE 0.225 0.287 0.120 0.003 0.014 0.018 
Healthy 0.083 0.429 0.023 0.004 0.005 0.013 Parkinson’s 

Disease 11 
PD 0.037 0.507 0.008 0.003 0.003 0.007 
Healthy 0.058 0.490 0.017 0.005 0.005 0.008 Schizophrenia 12 
Disease 0.059 0.460 0.018 0.005 0.006 0.008 
Healthy 0.301 0.331 0.218 0.013 0.030 0.043 
Autism 0.176 0.345 0.075 0.005 0.010 0.023 Autism 13 
Neurotypical 0.187 0.374 0.086 0.004 0.017 0.021 
Healthy 0.054 0.483 0.015 0.004 0.006 0.007 

Gut 

Atherosclerosis 14 
Disease 0.039 0.500 0.012 0.004 0.006 0.006 
Healthy 0.430 0.218 0.470 0.000 0.043 0.047 Atherosclerosis 15 
Disease 0.164 0.340 0.076 0.000 0.019 0.017 
Healthy 0.336 0.255 0.286 0.000 0.035 0.037 
PB 0.186 0.289 0.128 0.000 0.032 0.027 16 
PnB 0.612 0.136 1.000 0.000 0.034 0.042 
Healthy 0.113 0.496 0.153 0.068 0.093 0.095 
Control 0.027 0.518 0.032 0.023 0.021 0.025 

Periodontitis 

17 
Disease 0.013 0.513 0.021 0.024 0.029 0.024 
Non-Smoker 0.187 0.378 0.114 0.016 0.023 0.032 18 
Smoker 0.296 0.383 0.205 0.017 0.031 0.049 
Non-Smoker 0.170 0.391 0.082 0.011 0.012 0.037 19 
Smoker 0.094 0.437 0.032 0.006 0.008 0.019 
Non-Smoker 0.382 0.206 0.324 0.001 0.020 0.031 

Oral 

Smoking 

20 
Smoker 0.491 0.188 0.431 0.006 0.013 0.030 
Control 0.036 0.497 0.010 0.004 0.003 0.007 Skin Psoriasis 21 
Normal 0.032 0.491 0.008 0.003 0.003 0.006 
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   Lesion 0.028 0.501 0.008 0.004 0.003 0.007 
Treated 0.000 1.000 1.000 0.000 0.000 1.000 22 
Exacerbation 0.471 0.250 1.000 0.000 0.200 0.143 
Healthy 0.681 0.207 1.000 0.000 0.063 0.076 

Cystic Fibrosis 
23 

Disease 0.608 0.167 1.000 0.000 0.053 0.061 
Negative 0.089 0.496 0.050 0.020 0.012 0.045 

Lung 

HIV 24 
Positive 0.188 0.495 0.146 0.045 0.024 0.090 
Healthy 0.387 0.353 0.400 0.000 0.109 0.092 Vaginal BV 25 
BV 0.632 0.500 1.000 0.000 1.000 0.333 
Normal 0.326 0.250 0.400 0.000 0.076 0.066 
Subnormal 0.625 0.227 1.000 0.000 0.103 0.104 

Infertile  
(Genus level) 

Abnormal 0.348 0.214 0.400 0.000 0.048 0.045 
Normal 0.051 0.501 0.014 0.005 0.004 0.007 
Subnormal 0.082 0.461 0.027 0.007 0.005 0.011 

Semen 

Infertile 
(Species level) 

26 

Abnormal 0.049 0.488 0.016 0.007 0.005 0.008 
Mean 0.175 0.419 0.178 0.010 0.023 0.051 Healthy 
Standard Error 0.026 0.020 0.042 0.003 0.004 0.022 
Mean 0.216 0.374 0.238 0.006 0.052 0.037 Diseased 
Standard Error 0.033 0.020 0.060 0.001 0.028 0.010 
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Table S12. The observed statistical network properties of the high-salience skeleton networks for 
the 25 MAD (microbiome associated disease) datasets with FDR control and p-value=0.001 
(Related to Figs 6-7) 

Statistics of HSS Assortativity 
Sites Diseases Treatments Links 

(%) Max Mean Std. 
Error Skewness Kurtosis rHSS 

Healthy 99.985 0.026 0.017 0.000 -33.349 3334.500 -0.009 

CD 99.945 0.035 0.023 0.001 -17.459 911.999 -0.012 
IBD 
(Inflammatory 
Bowel Disease) 

1 

UC 99.984 0.019 0.013 0.000 -31.949 3059.750 -0.006 

Lean 99.948 0.026 0.013 0.000 -7.085 973.275 -0.007 

Overweight 99.994 0.016 0.011 0.000 -53.842 8695.000 -0.005 Obesity 3 

Obesity 73.168 0.519 0.004 0.020 22.358 519.682 -0.002 

Healthy 99.992 0.008 0.003 0.000 29.987 8911.597 -0.002 
Cancer 4 

Cancer 100.000 0.004 0.004 0.000 0.000 0.000 -0.002 

Negative 99.959 0.015 0.003 0.000 50.530 5104.754 -0.002 

Treatment 99.998 0.005 0.002 0.000 -72.261 24815.977 -0.001 5 

Non-treat 99.950 0.017 0.002 0.000 54.377 5780.542 -0.001 

Negative 99.995 0.007 0.004 0.000 -48.101 10994.593 -0.002 

Treatment 99.999 0.007 0.004 0.000 -129.184 50063.500 -0.002 6 

Non-treat 99.999 0.007 0.004 0.000 -129.184 50063.500 -0.002 

Negative 99.995 0.010 0.005 0.000 -37.779 9847.053 -0.003 

HIV 

7 
Positive 99.973 0.015 0.006 0.000 -3.581 2036.490 -0.003 

Normal-Healthy 99.998 0.010 0.007 0.000 -87.327 22876.000 -0.003 
T1D (Lean) 

Normal-T1D 99.996 0.010 0.007 0.000 -62.362 11664.500 -0.003 

Obesity-Healthy 100.000 0.006 0.006 0.000 0.000 0.000 -0.003 
T1D (Obesity) 

8 

Obesity-T1D 99.998 0.008 0.006 0.000 -103.204 31951.000 -0.003 

Healthy 99.949 0.030 0.008 0.000 27.417 3262.266 -0.004 
Gout 9 

Gout 99.986 0.017 0.008 0.000 -6.210 3660.833 -0.004 

Healthy 100.000 0.010 0.010 0.000 0.000 0.000 -0.005 

Control 99.996 0.014 0.009 0.000 -63.368 12044.500 -0.005 MHE 10 

MHE 100.000 0.013 0.013 0.000 0.000 0.000 -0.007 

Healthy 88.116 0.332 0.005 0.012 22.326 540.969 -0.003 Parkinson’s 
Disease 11 

PD 59.691 0.638 0.003 0.024 24.250 610.921 -0.001 

Healthy 100.000 0.004 0.004 0.000 0.000 0.000 -0.002 
Schizophrenia 12 

Disease 99.999 0.005 0.004 0.000 -114.004 38988.500 -0.002 

Healthy 99.992 0.019 0.013 0.000 -45.183 6122.500 -0.006 

Autism 91.270 0.301 0.009 0.013 18.661 378.342 -0.004 Autism 13 

Neurotypical 99.947 0.040 0.011 0.000 16.341 2387.524 -0.006 

Healthy 99.999 0.006 0.004 0.000 -141.020 59657.500 -0.002 

Gut 

Atherosclerosis 14 
Disease 99.999 0.005 0.004 0.000 -163.247 79947.000 -0.002 

Healthy 100.000 0.036 0.036 0.000 0.000 0.000 -0.019 
Atherosclerosis 15 

Disease 100.000 0.019 0.019 0.000 0.000 0.000 -0.010 

Healthy 100.000 0.036 0.036 0.000 0.000 0.000 -0.019 

PB 99.899 0.067 0.044 0.002 -12.865 494.500 -0.023 16 

PnB 99.894 0.068 0.045 0.002 -12.576 472.500 -0.023 

Healthy 99.999 0.008 0.005 0.000 -115.039 39700.000 -0.003 

Control 100.000 0.002 0.002 0.000 -350.019 367538.500 -0.001 

Periodontitis 

17 

Disease 100.000 0.002 0.001 0.000 -409.198 502326.000 -0.001 

Non-Smoker 99.995 0.014 0.010 0.000 -60.193 10867.500 -0.005 
18 

Smoker 99.993 0.017 0.011 0.000 -50.379 7612.000 -0.006 

Non-Smoker 70.997 0.520 0.008 0.029 14.357 223.799 -0.004 
19 

Smoker 91.622 0.202 0.006 0.008 18.791 387.874 -0.003 

Non-Smoker 99.029 0.108 0.020 0.003 7.964 211.591 -0.010 

Oral 

Smoking 

20 
Smoker 98.322 0.121 0.013 0.004 15.895 348.415 -0.007 
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Control 96.188 0.133 0.002 0.003 38.406 1640.442 -0.001 

Normal 94.728 0.170 0.002 0.003 39.778 1789.015 -0.001 Skin Psoriasis 21 

Lesion 94.563 0.149 0.002 0.003 34.358 1341.691 -0.001 

Treated 100.000 1.000 1.000 NA NA NA -1.000 
22 

Exacerbation 100.000 0.250 0.250 0.000 0.000 0.000 -0.143 

Healthy 100.000 0.069 0.069 0.000 0.000 0.000 -0.036 
Cystic Fibrosis 

23 
Disease 99.770 0.100 0.067 0.004 -8.544 217.000 -0.034 

Negative 13.101 0.946 0.001 0.020 29.803 1053.016 -0.001 

Lung 

HIV 24 
Positive 92.261 0.365 0.003 0.004 52.143 4337.595 -0.001 

Healthy 99.265 0.176 0.118 0.012 -4.814 67.500 -0.062 
Vaginal BV 25 

BV 100.000 0.500 0.500 0.000 0.000 0.000 -0.333 

Normal 99.474 0.150 0.100 0.009 -5.672 94.500 -0.053 

Subnormal 100.000 0.091 0.091 0.000 0.000 0.000 -0.048 Infertile  
(Genus level) 

Abnormal 100.000 0.071 0.071 0.000 0.000 0.000 -0.037 

Normal 99.993 0.012 0.002 0.000 105.660 33899.677 -0.001 

Subnormal 99.997 0.007 0.002 0.000 112.384 35971.995 -0.001 

Semen 

Infertile 
(Species level) 

26 

Abnormal 99.998 0.006 0.002 0.000 102.264 55854.225 -0.001 

Mean 95.506 0.126 0.049 0.003 -25.693 22119.667 -0.041 
Healthy 

Std. Err. 2.924 0.045 0.032 0.001 14.768 12064.204 0.032 

Mean 97.065 0.109 0.037 0.003 -22.651 25354.820 -0.022 
Diseased 

Std. Err. 1.429 0.029 0.016 0.001 15.350 14832.102 0.010 
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Table S13. The observed number of shared core nodes between the healthy (H) and diseased (D) 
treatments in the 25 MAD (microbiome associated disease) datasets (Related to Figs 6-7)   

Microbiome Disease Index Healthy Diseased 
Number of 
Core Nodes 
in Healthy 

Number of 
Core 

Nodes in 
Diseased 

Shared 
Core 

Nodes 

% of Core 
Nodes in 
terms of 
Healthy  

% of Core 
Nodes in 
terms of  
Diseased  

Healthy CD 36 15 1 2.78 6.67 IBD 
(Inflammatory 
Bowel Disease) 

1 
Healthy UC 36 54 1 2.78 1.85 

Lean Overweight 38 53 1 2.63 1.89 
Obesity 3 

Lean Obesity 38 257 10 26.32 3.89 
Cancer 4 Healthy Cancer 280 182 9 3.21 4.95 

Negative  Treatment 278 413 22 7.91 5.33 
5 

Negative  Non-treatment 278 382 24 8.63 6.28 

Negative  Treatment 246 198 15 6.10 7.58 
6 

Negative  Non-treatment 246 185 11 4.47 5.95 

HIV 

7 Negative Positive 175 145 22 12.57 15.17 
T1D (Lean) Healthy T1D 129 147 10 7.75 6.80 
T1D (Obesity) 8 

Healthy T1D 167 168 20 11.98 11.90 

Gout 9 Healthy Gout 109 105 1 0.92 0.95 
Healthy MHE 61 43 6 9.84 13.95 

MHE 10 
Control MHE 76 43 3 3.95 6.98 

Parkinson’s 
Disease 11 Healthy PD 164 386 38 23.17 9.84 

Schizophrenia 12 Healthy Schizophrenia 271 257 30 11.07 11.67 
Healthy Autism 52 79 3 5.77 3.80 

Autism 13 
Healthy Neurotypical 52 65 0 0.00 0.00 

Gut 

Atherosclerosis 14 Healthy Atherosclerosis 236 283 29 12.29 10.25 
Atherosclerosis 15 Healthy Atherosclerosis 12 35 0 0.00 0.00 

Healthy PB 14 13 1 7.14 7.69 
16 

Healthy PnB 14 6 0 0.00 0.00 
Healthy Disease 198 728 15 7.58 2.06 

Periodontitis 

17 
Control Disease 628 728 0 0.00 0.00 

18 Non-smoking Smoking 79 67 4 5.06 5.97 
19 Non-smoking Smoking 97 156 20 20.62 12.82 

Oral 

Smoking 

20 Non-smoking Smoking 21 28 0 0.00 0.00 

Control Lesion 446 508 84 18.83 16.54 
Skin Psoriasis 21 

Normal Lesion 499 508 109 21.84 21.46 

22 End of 
Treatment Exacerbation 2 2 0 0.00 0.00 Cystic Fibrosis 

(CF) 
23 Healthy CF 6 5 0 0.00 0.00 Lung 

HIV 24 Negative Positive 804 338 181 22.51 53.55 
Vaginal BV 25 Healthy BV 6 2 0 0.00 0.00 

Normal Subnormal 5 5 1 20.00 20.00 Infertile  
(Genus level) Normal Abnormal 5 6 0 0.00 0.00 

Normal Subnormal 429 473 69 16.08 14.59 
Semen 

Infertile 
Species level) 

26 

Normal Abnormal 429 519 67 15.62 12.91 
Mean 175.32 199.66 21.24 8.41 7.98 

Mean & Standard Error 
Standard Error 31.13 33.59 5.98 1.29 1.58 
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Table S14. The observed number of shared periphery nodes between the healthy and diseased treatments 
in the 25 MAD (microbiome associated disease) datasets (Related to Figs 6-7) 

Microbiome Disease Index Healthy Diseased 

Number of 
Periphery 
Nodes in 
Healthy 

Number of 
Periphery 
Nodes in 
Diseased 

Shared 
Periphery 

Nodes 

% of 
Periphery 
Nodes in 
terms of 
Healthy  

% of 
Periphery 
Nodes  in 
terms of  
Diseased  

Healthy CD 80 71 7 8.75 9.86 IBD 
(Inflammatory 
Bowel Disease) 

1 
Healthy UC 80 103 9 11.25 8.74 

Lean Overweight 114 134 12 10.53 8.96 
Obesity 3 

Lean Obesity 114 281 23 20.18 8.19 
Cancer 4 Healthy Cancer 316 266 11 3.48 4.14 

Negative  Treatment 328 416 43 13.11 10.34 
5 

Negative  Non-treatment 328 440 27 8.23 6.14 
Negative  Treatment 306 250 25 8.17 10.00 

6 
Negative  Non-treatment 306 263 23 7.52 8.75 

HIV 

7 Negative Positive 219 189 18 8.22 9.52 

T1D (Lean) Healthy T1D 174 159 19 10.92 11.95 
T1D (Obesity) 8 

Healthy T1D 192 190 28 14.58 14.74 
Gout 9 Healthy Gout 156 136 17 10.90 12.50 

Healthy MHE 136 107 6 4.41 5.61 
MHE 10 

Control MHE 144 107 12 8.33 11.21 
Parkinson’s 
Disease 11 Healthy PD 218 376 40 18.35 10.64 

Schizophrenia 12 Healthy Schizophrenia 282 302 26 9.22 8.61 

Healthy Autism 105 150 9 8.57 6.00 
Autism 13 

Healthy Neurotypical 105 109 4 3.81 3.67 

Gut 

Atherosclerosis 14 Healthy Atherosclerosis 253 283 23 9.09 8.13 
Atherosclerosis 15 Healthy Atherosclerosis 43 68 2 4.65 2.94 

Healthy PB 41 32 2 4.88 6.25 
16 

Healthy PnB 41 38 2 4.88 5.26 
Healthy Disease 201 690 14 6.97 2.03 

Periodontitis 

17 
Control Disease 585 690 0 0.00 0.00 

18 Non-smoking Smoking 130 108 13 10.00 12.04 
19 Non-smoking Smoking 151 201 20 13.25 9.95 

Oral 

Smoking 

20 Non-smoking Smoking 81 121 16 19.75 13.22 
Control Lesion 452 506 94 20.80 18.58 

Skin Psoriasis 21 
Normal Lesion 517 506 106 20.50 20.95 

22 End of 
Treatment Exacerbation 0 6 0 NA 0.00 Cystic Fibrosis 

(CF) 23 Healthy CF 23 25 1 4.35 4.00 Lung 

HIV 24 Negative Positive 816 345 118 14.46 34.20 
Vaginal BV 25 Healthy BV 11 2 0 0.00 0.00 

Normal Subnormal 15 17 0 0.00 0.00 Infertile  
(Genus level) Normal Abnormal 15 22 4 26.67 18.18 

Normal Subnormal 428 553 63 14.72 11.39 
Semen 

Infertile Species 
level) 

26 

Normal Abnormal 428 545 51 11.92 9.36 
Mean 208.79 231.76 23.37 10.15 9.11 

Mean & Standard Error 
Standard Error 29.40 31.41 4.65 1.02 1.06 
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Table S15. The observed number of shared skeletons with HSS>0 between the healthy and diseased 
treatments in the 25 MAD (microbiome associated disease) datasets (Related to Figs 6-7) 

Microbiome Disease Index Healthy Diseased 
Number 
of Edges 

in Healthy 

Number 
of Edges 
Diseased 

Shared 
Edges 

% of Edges 
in terms of 

Healthy  

% of Edges 
in terms of  
Diseased  

Healthy CD 6669 3653 49 0.73 1.34 IBD (Inflammatory 
Bowel Disease) 1 

Healthy UC 6669 12244 80 1.20 0.65 

Lean Overweight 11470 17390 166 1.45 0.95 
Obesity 3 

Lean Obesity 11470 105694 1132 9.87 1.07 

Cancer 4 Healthy Cancer 177296 100128 630 0.36 0.63 

Negative  Treatment 183240 343199 6984 3.81 2.03 
5 

Negative  Non-treatment 183240 337262 3762 2.05 1.12 

Negative  Treatment 152069 100127 2718 1.79 2.71 
6 

Negative  Non-treatment 152069 100127 1934 1.27 1.93 

HIV 

7 Negative Positive 77417 55596 2049 2.65 3.69 

T1D (Lean) Healthy T1D 45752 46663 1059 2.31 2.27 
T1D (Obesity) 8 

Healthy T1D 64261 63902 3393 5.28 5.31 

Gout 9 Healthy Gout 34962 28916 407 1.16 1.41 

Healthy MHE 19306 11175 172 0.89 1.54 
MHE 10 

Control MHE 24089 11175 309 1.28 2.77 

Parkinson’s Disease 11 Healthy PD 64123 173070 3630 5.66 2.10 

Schizophrenia 12 Healthy Schizophrenia 152628 155959 4861 3.18 3.12 

Healthy Autism 12245 23827 43 0.35 0.18 
Autism 13 

Healthy Neurotypical 12245 15043 24 0.20 0.16 

Gut 

Atherosclerosis 14 Healthy Atherosclerosis 119315 159894 4288 3.59 2.68 

Atherosclerosis 15 Healthy Atherosclerosis 1485 5253 2 0.13 0.04 

Healthy PB 1485 989 1 0.07 0.10 
16 

Healthy PnB 1485 945 1 0.07 0.11 

Healthy Disease 79400 1004652 1353 1.70 0.13 
Periodontitis 

17 
Control Disease 735077 1004652 0 0.00 0.00 

18 Non-smoking Smoking 21735 15224 279 1.28 1.83 

19 Non-smoking Smoking 21745 58222 1707 7.85 2.93 

Oral 

Smoking 

20 Non-smoking Smoking 5101 10841 153 3.00 1.41 

Control Lesion 387400 485669 37098 9.58 7.64 
Skin Psoriasis 21 

Normal Lesion 488439 485669 64145 13.13 13.21 

22 End of Treatment Exacerbation 1 28 0 0.00 0.00 Cystic Fibrosis 
(CF) 23 Healthy CF 406 434 0 0.00 0.00 Lung 

HIV 24 Negative Positive 171801 214879 19746 11.49 9.19 

Vaginal BV 25 Healthy BV 135 6 0 0.00 0.00 

Normal Subnormal 189 231 3 1.59 1.30 Infertile  
(Genus level) Normal Abnormal 189 378 6 3.17 1.59 

Normal Subnormal 366772 525807 26291 7.17 5.00 
Semen 

Infertile Species 
level) 

26 

Normal Abnormal 366772 565507 24225 6.60 4.28 

Mean 109477.68 164327.1 5597.37 3.05 2.27 
Mean & Standard Error 

Standard Error 26413.27 41954.41 2086.53 0.57 0.45 
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Supplementary Figs S1-S3 
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Fig S1. The neutrality passing rates for each of the 24 case studies: for each case, the test results for five 
data pre-processing schemes are plotted (Related to Fig 2).  
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Fig S2. The fundamental diversity number (θ) for each of the 24 case studies: for each case study, the test 
results for five data pre-processing schemes are plotted (Related to Fig 3).  
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Fig S3. The immigration probability (m) (fundamental dispersal number) for each of the 24 case studies, 
for each case study, the test results for five data pre-processing schemes are plotted (Related to Fig 3).  



 22 

Transparent Methods 
 
Datasets of Human Microbiome Associated Diseases  
A brief description on the metagenomic datasets of the 27 MAD (microbiome associated disease) 
studies is provided in Table S1 of the online supplementary information (OSI), which are the 
same datasets used in Ma et al. (2019). Among the 27 datasets, there were 3 and 2 datasets that 
are not suitable for the neutral-theoretic analysis and CPN/HSN analyses, respectively, and 
therefore were excluded from the analyses of this study. The 27 case studies cover most of the 
high-profile MAD including obesity, IBD, diabetes, BV (bacterial vaginosis), periodontitis, and 
neurodegenerative diseases. The datasets were in the abundance of 16s-rRNA reads clustered at 
the species level (97% similarity level), equivalent with the species abundance tables in 
macrobial ecology.     
 
Hubbell’s unified neutral theory of biodiversity (UNTB) 
Hubbell (2001) classic neutral theory describes a local community containing J individuals, one 
of which, randomly chosen, dies and is replaced at every time step. Two ways the individual is 
replaced are: an offspring of another randomly chosen individual from the local community, 
occurring with probability (1–m), or offspring from a randomly chosen individual from an 
outside pool of individuals (metacommunity) with probability m. The metacommunity is a well-
mixed source pool of individual organisms; each individual has the potential to reproduce 
offspring migrated to the local community being studied. Neutral theory assumes that the species 
abundance distribution (SAD) of metacommunity is governed by a similar neutral process. The 
replacement individuals in the metacommunity are offspring from a randomly chosen individual 
in the metacommunity, or from speciation (which occurs with probability v). Obviously, in 
previous description of community dynamics (birth, death, migration, speciation), all individuals 
are assumed to be equivalent and are distinguished only by their species labels. The species 
labels are preserved solely for describing SAD.  
 
The neutral theory is formulated as a sampling theory, which takes into account the effect of 
sampling a small proportion from the much larger natural system (sampling space). The 
mathematical model used to describe the neutral process is multi-nominal distribution, which can 
be mechanistically derived from a master equation—a differential equation that describes the 
community dynamics based on the neutral principles. It makes predictions about SADs, which 
can be statistically tested against observed species abundances data obtained from sampling 
actual communities. In the following, we briefly describe the parameters and statistical tests used 
in testing the neutrality for a sole purpose to interpret the results from our analysis.    
 
The total number of individuals of all species in a local community (represented as J) is the local 
community size. In our case, it is the total number of 16s-rRNA reads of all OTUs from a 
community sample. The UNTB assumes a finite community size.  
 
The number of species (S) in the community may change due to speciation, extinction and 
immigration from meta-community.  
 
The fundamental biodiversity number (θ) is actually a measure of speciation, which can be seen 
from its definition, 

€ 

θ = JM [ν /(1−ν)] , where JM is the number of individuals in the 
metacommunity and v is the per capita speciation rate. Therefore, the fundamental biodiversity 
number (θ) represents the speciation process in Vellend (2010) & Hanson et al. (2012) synthesis 
for community patterns.    
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The immigration probability (m) is a measure for dispersal limitation, and it is defined as 
m=I/(I+J–1), where I is the number of immigrants that are searching for vacant spot in the local 
community (i.e., competing with the local individuals), and J is the number of individuals as 
mentioned previously.  Dispersal limitation is a process that causes the location of an individual 
to be limited in some sense by the location of its parent (Rosindell et al. 2011). The immigration 
probability (m) therefore, characterizes the dispersal process in Vellend (2010) and Hanson et al. 
(2012) synthesis for community ecology.   
 
Etienne’s (2005, 2007) exact neutrality test adopts a mixture test strategy of Monte Carlo 
(simulation) significance test and the parametric bootstrap. The test is ‘exact’ since type I error 
can be exactly specified. It compares the probability (the likelihood) of the realized or observed 
configuration (i.e., SAD of actually sampled community) with the probabilities of the artificially 
simulated configurations based on the neutral theory model by using a Chi-squared test. If the p-
value from the test is p>0.05, we conclude that the neutrality of the community under testing 
cannot be rejected, and that the observed SAD is consistent with the prediction from the neutral 
theory, i.e., passing the neutrality test. 
 
To apply Hubbell’s (2001) UNTB for measuring the effects of drift, speciation and dispersal 
(Rosindell et al. 2011), we adopted Etienne (2005) sampling formula (distribution model) and a 
standard R-package UNTB by Hankin (2007) that implemented Etienne (2005) exact probability 
test procedure. An illustration of testing the neutrality of the human microbiome is provided in Li 
& Ma (2015).   
 
In consideration of the potential influence of sequencing errors on the neutrality test, we 
removed singleton (removing the OTUs represented by a single read), minus one, two, and three 
reads across all OTUs, respectively.  We also included the test with “raw” OTU reads, i.e., 
without removing any reads from the OTU tables computed from standard bioinformatics 
pipelines used in Ma et al. (2019). That is, a total of five tests are performed for each community 
sample based on five different data pre-processing schemes to enhance the robustness of our 
analysis.        
 
Fisher’s exact probability test is designed to compare the frequency of occurrences (observations) 
in a fourfold table setting when the numbers are too small to use the Chi-square test (Fisher 1922, 
1954). We use Fisher’s exact probability test to determine if there are pair-wise differences 
between the treatments (the healthy and diseased) in their passing rates of the neutrality test. We 
used the R-function (fisher.test) from the standard R-package (stats) (http://stat.ethz.ch/R-manual/R-
patched/library/stats/html/fisher.test.html) to conduct the Fisher’s exact test in this study. Note that the step 
of Fisher’s exact test was performed after the FDR (false discovery rate, i.e., multiple testing 
corrections) control for the p-values from Etienne’s (2005) neutrality test of Hubbell’s (2001) 
UNTB.    
 
Ning et al. (2019) framework for quantifying ecological stochasticity   
We use a new framework recently developed by Ning et al. (2019) for quantifying ecological 
stochasticity to cross-verify the results from neutral theory modeling. The theoretical basis of 
their mathematical framework is that deterministic processes should drive ecological 
communities more similar or dissimilar than null expectation, and they formulated a 
sophisticated procedure to implement a null model for quantifying stochasticity. Our motivation 
to apply Ning et al. (2019) framework for estimating community stochasticity level is to cross-
verify the findings from Hubbell’s UNTB, especially to determine a possible ceiling limit for 
stochasticity given that UNTB model tended to overestimate the stochastic neutral processes. 
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Technically, this is possible since the normalized stochasticity ratio (NSR) of Ning et al. (2019) 
is a dimensionless metric in percentages or between 0 and 1.  The NSR represents for the strength 
of stochasticity in the community assembly, and should range from 0 to 100%. If the community 
assembly is extremely deterministic without any stochasticity, then NSR should be 0%; otherwise 
SR should be 100%. However, when expected stochasticity is very low, NSR could overestimate 
stochasticity (Ning et al. 2019).   
 
Core/periphery network (CPN) 
Given that network analysis has been widely applied to microbiome research (e.g., Faust et al. 
2012, Faust & Raes 2012, Kurtz et al. 2015, Ma & Ye 2017, Xiao et al. 2017, Röttjers & Faust 
2018, Ma & Ellison 2019), what are special with CPN or HSN (see next sub-section)? 
Informally, the network core usually denotes a centrally and densely connected set of network 
nodes, while the network periphery refers to a sparsely connected, usually non-central set of 
nodes that are linked to the core (Csermely et al. 2013). Ecological communities/systems are 
typical complex systems (networks), which can be formulated as core/periphery network (CPN). 
More recent studies established that network cores promotes system robustness and evolvability, 
which can help system to adapt to large fluctuations of the environment, as well as to noise of 
intrinsic processes (Csermely et al. 2013). The core/periphery structure was found to be 
ubiquitous in the species dominance network of the human vaginal microbiome and the structure 
plays an important role in controlling the community diversity-stability relationships (Ma & 
Ellison 2019). For example, an extensive core (extensively large core size) allows for a more 
resilient network (community) but could be more difficult to control.  
 
According to Csermely et al. (2013), a perfect or ideal core/periphery network consists of a fully 
linked core and a periphery that is fully connected to the core, but none of the periphery nodes 
are connected with each other. Formally, let G=(V, E) be an undirected, unweighted graph with n 
nodes and m edges, and let A=(aij) is the adjacency matrix of G, where aij=1 if node i & node j 
are linked and 0 otherwise. Let δ be a vector of length n with entries of 1 or 0, if the 
corresponding node belongs to the core or the periphery, respectively. Additionally, let P=(pij) be 
the adjacency matrix of the ideal or perfect core/periphery network of n nodes and m edges.  The 
detection of core-periphery structure is an optimization problem to find the vector δ such that the 
objective function (ρ) achieves its maximum. With the vector δ, it is then trivial to classify nodes 
into either core or periphery.    
     

€ 

ρ = Aij
i, j
∑ Pij      (1) 

When applied to the human microbiome, the CPN structures reflect the heterogeneity or 
asymmetry of species (OTUs) from node perspective. In terms of the Vellend-Hanson four-
processes synthesis (Vellend 2010, Hanson et al. 2012), which states that drift, speciation, 
dispersal, and selection are the underlying processes or mechanisms shaping community 
diversity patterns and driving community dynamics, the heterogeneity or asymmetry of species 
(nodes) revealed by CPN represents for the effects of selection. Therefore, at least, conceptually, 
the CPN analysis offers a framework to investigate the effects of selection from node 
perspective.  
 
More importantly, the core/periphery (nodes or species) can be considered as critical network 
structures, and we postulate that they should be more sensitive to disturbances including MADs. 
In the present study, we mainly perform two kinds of statistical tests with CPNs. The first is to 
conduct shared core/periphery analysis, which assesses and interprets the effects of MADs on the 
possible increase or decrease of shared core/periphery between the healthy and diseased 



 25 

individuals. The second is to test the differences between the healthy and diseased individuals in 
the properties of critical network structures.  
 
High-salience skeleton network (HSN) and network assortativity  
While core/periphery network distinguishes the different structural and functional roles between 
core and periphery nodes (species), the high-salience skeleton network (HSN) makes distinctions 
among the links (edges). Arguably the most important reason (also the advantage) why network 
analysis has been experiencing explosion is its capacity in reducing the complexity of complex 
systems (networks) while preserving their certain key features. In other words, network analysis 
can shed critical lights on complex networks by reducing complexity and leveraging the 
information from the key features. The HSN allows us to focus on critical paths (interactions) in 
complex networks (Grady et al. 2012, Shekhtman et al. 2014).   
 
High salience skeletons or backbones reduce the number of links in the network while preserving 
the nodes (Grady et al. 2012, Shekhtman et al. 2014). However, reducing link complexity is 
particularly challenging because of the mix of link and node heterogeneity. In the case of human 
microbiome network, the heterogeneities of both nodes and links were equally significant, which 
is evidenced by the near universal fitting of the power law distributions to various network 
properties of nodes and links (Ma & Ellison 2019). Whether generic heterogeneous networks can 
be intrinsically segregated into qualitatively distinct clusters is still an open problem in network 
theory (Grady et al. 2012, Shekhtman et al. 2014). Grady et al. (2012) introduced the concept of 
link salience to deal with the problem, which measures the significance of a link and is based on 
an ensemble of node-specific perspectives of the network, and quantifies the extent to which a 
consensus among nodes exist regarding the importance of a link. The so-termed high-salience 
skeletons then constitute the backbones (“highways”) of the network.   
 
Besides identifying backbones or highways in complex networks, another advantage of high 
salience skeleton network is its particular suitability for exploring the response of networks 
under different perturbations such as intentional attack and random failure. High salience 
network has been particularly successful in the studies of transportation networks, where 
skeletons (backbones) are responsible for carrying the majority of the traffic. When encountering 
perturbations such as traffic jams or natural disasters, backbones again are critical for 
transportation rerouting and cancellations to survive disasters (Grady et al. 2012, Shekhtman et 
al. 2014). In this study, MADs can be treated as perturbations at ecological time scale and as 
selection force at evolutionary time scale, which may not be separable according to Hanson et al. 
(2012) due to the fast-track evolution of microbes.    
 
Link salience (s) is defined based on the notion of shortest paths in weighted networks, e.g., the 
species correlation network with the inverse of correlation coefficients as weights (Ma & Ellison 
2019). Assume a weighted network defined by weight matrix wij and a shortest path between 
node x and y, the indicator function can be defined as:

€ 

σ ij (y,  x) =1 if edge (i, j) is on the shortest 
path from x to y, 

€ 

σij (y,  x) = 0, otherwise. A shortest path tree T(x) rooted at node x is described 

by a matrix with elements: 

€ 

Tij (x) =1, if 

€ 

σij (y,  x) > 0
y
∑ , 

€ 

Tij (x) = 0 otherwise. Link salience sij of 

edge (i, j) is computed with the following formula: 

    

€ 

sij =
1
N

Tij
x
∑ (x) = Tij (x) V

    (2)  

where 

€ 

• V is the average across the set of root nodes x.  
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As explained previously, when applied to the human microbiome, the high salience skeletons 
(links) reflect the heterogeneity or asymmetry of species (OTUs) interactions from the link 
perspective. According to the four-process synthesis (Vellend 2010, Hanson et al. 2012), 
heterogeneity or asymmetry of species interactions or species interactions with their 
environments represents for the effects of selection, which can be revealed by the HSN 
introduced here from link perspective, cross-verified with the CPN from node perspective 
introduced previously.  
 
Specifically, we will first test whether or not the shared high-salience skeletons between the 
healthy and diseased individuals are increased or decreased due to the disease effects, similar to 
the previously described shared core/periphery nodes analysis. Second, we will also test the 
properties of high-salience skeleton networks, which are critical network structures from link 
perspective, similar to the testing of properties of core/periphery network from node perspective. 
Furthermore, integrated with previous CPN analysis, the combined shared analyses of the 
core/periphery/skeleton structures, as well as testing the differences in the key properties of the 
core/periphery/skeleton networks, are expected to reveal the differences between the healthy and 
diseased individuals and identify potentially invaluable diagnosis and risk prediction indicators 
for MADs.  
 
As to the CPN/HSN properties, we mention one particularly important network property, the 
assortativity coefficient. The property is important because it is highly relevant to network 
resilience, the loss of which is known as dysbiosis in the literature of human MADs. In 
assortative networks, the nodes with many connections tend to be connected to other nodes that 
also possess many connections (Newman 2002, 2003). The assortativity coefficient (r) is a 
concept for measuring the homophyly level of the graph (network). The homophyly refers to 
resemblance due to common ancestry based on values (such as degree) assigned to vertices. A 
higher assortativity coefficient (r) indicates that connected vertices tend to have more similar 
assigned values. For an undirected network, the assortativity based on vertex degree is defined as 

     

€ 

r =
1
σq
2 jk(e jk−q jqk )

jk
∑ ,   (3)   

where ejk is the fraction of edges connecting vertices of type j and k (i.e., vertices that have 
degrees j and k), σq is the standard deviation of the distribution qk, and qk is equal to:

€ 

qk = e jk
j
∑ . 

From eqn. (3), one can find that the r is equal to the Pearson’s correlation coefficient of degree 
between pairs of linked nodes. The value of r lies in the range −1 ≤ r ≤ 1, with r = 1 indicating 
perfect assortativity and r = −1 indicating perfect disassortativity. When the value of r lies 
around 0, it is null or neural result, meaning that it is not statistically different from zero. 
Assortative networks are more resilient against removal of their vertices, especially highest-
degree vertices, than disassortative or neutral (r ≈ 0) networks. The above definition for 
assortativity index is based on general complex network such as species correlation network 
(SCN). In this study, we compute the assortativity (rHSS) for the high-salience skeleton networks 
based on the degree of high-salience skeletons (HSS) of vertices. Different from SCNs, the high-
salience skeleton networks are typically disassortative (Grady 2012).  
 
Computational procedures/algorithms for CPN & HSN analyses   
As introduced previously, two types of statistical tests, i.e., the shared core/periphery/skeleton 
analyses between the healthy (H) and diseased (D) treatments (i.e., test the change of shared 
critical network structures between the H & D treatments), as well as test the differences in key 
properties of the critical network structures between the H & D treatments. Both types of tests 
depend on the construction of CPN/HSN, which are built from species correlation networks 
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(SCN). The samples from both H & D treatments are randomly mixed before building SCN 
networks. From the randomly mixed (permutated) samples, 1000 pairs (pair=H vs. D) of 
permutated networks are constructed, and the p-values of the permutation tests for determining 
the significances of the differences (i.e., disease effects) are computed from comparing the 1000 
pairs of networks. Spearman’s correlation coefficients with FDR (false discovery rate) control 
with p-value=0.001 are first used to construct SCNs. From the SCNs, the algorithms outlined in 
previous sections are applied to reconstruct the corresponding CPN and HSN networks. The 
computation procedures for building SCN can be found in Junker & Schreiber (2008) and Ma & 
Ye (2017), and those for building CPN/HSN can be found in Ma & Ellison (2019). Further 
information on the algorithms for performing the two types of statistical tests outline above is 
briefly introduced below: 
 
General outline for generating permutated networks for performing shared 
core/periphery/skeleton analyses and for testing the network properties  
 
(1) Building 1000 sets (pairs) of healthy (H) & diseased (D) networks by randomly reshuffling 
the H and D samples for 1000 times using Spearman’s rank correlation coefficients with FDR 
(false discovery control).  
 
A. For Shared Core/Periphery (Nodes) Analysis  
(2A) Detect core/periphery nodes from the H & D networks built in (1), construct core/periphery 
networks (CPN), and compute shared core/periphery nodes between the H & D samples. 
(3A) Perform permutation test with the 1000 permutated networks and test the change of shared 
core/periphery nodes between the H & D samples, based on the results from (2A).  
 
B. For Shared Skeleton (Edge or Link) Analysis  
(2B) Detect high salience skeletons from the H & D networks built in (1), construct high salience 
skeleton networks (HSN), and compute the shared skeletons between the H & D samples.   
(3B) Perform permutation test with the 1000 permutated networks and test the change of shared 
skeletons between the H & D samples, based on the results from (2B).  
 
C. Significance Test for Core/Periphery and Skeleton Networks Properties 
Using the results from A & B to test the difference in the network properties by performing the 
standard permutation tests.  
 
Test Algorithms    
 
Algorithm for Shared Core/Periphery Analysis based on Permutated Networks 
Step [1]: Assuming there are a samples from the healthy (H) treatment, and b samples from the 
diseased (D) treatment, compute the pair-wise Spearman’s correlation coefficients for the a 
samples in the H and the b samples in the D treatment, respectively. Use FDR control with 
p=0.001 to filter out insignificant correlations, and obtain the final correlation relationships for 
building the species correlation networks for the H and D treatments. From the two species 
correlation networks, detect the core/periphery nodes for each network, and compute the shared 
core/periphery nodes between the H & D networks, respectively. This step is no difference from 
regular core/periphery network analysis, until computing the shared core/periphery nodes.   
 
The shard core/periphery nodes obtained from this Step [1] is the actually or observed shared 
core/periphery nodes.  
 



 28 

Step [2]: Pool together all samples from H & D and perform random permutation of the 
combined (a+b) samples. Treat the first a samples as the permutated healthy treatment and the 
leftover b samples as the permutated diseased treatment.    
 
According to the algorithm in Step [1], compute the shared core/periphery nodes for this specific 
pair of permutated H & D treatments.  
 
Step [3]: Repeat Step [2] for 1000 times, and obtain 1000 sets of shared core/periphery nodes.  
 
Step [4]: Compute a pseudo-p value. Using the number of shared core nodes as example, assume 
the shared core nodes from Step [1] is N, the numbers of shared core nodes from the 1000 
random permutations in Step [2-3] are N1, N2,…, Ni, ...N1000, the pseudo-p value is the proportion of 
the permutations with Ni>N among 1000 times of permutations. That is, assuming n is the 
number of times satisfying Ni>N in 1000 permutations, p=n/1000.  
 
Algorithm for Shared Skeleton Analysis Based on Permutated Networks 
Step [1]: Assuming there are a samples from the healthy (H) treatment, and b samples from the 
diseased (D) treatment, compute the pair-wise Spearman’s correlation coefficients for the a 
samples in the H and the b samples in the D treatment, respectively. Use FDR control with 
p=0.001 to filter out insignificant correlations, and obtain the final correlation relationships for 
building the species correlation networks for the H and D treatments. From the two species 
correlation networks, compute the HSS (high salient skeleton) value for each edge, and compute 
the shared skeletons between the H & D networks with HSS>0, and HSS≥0.2, respectively. This 
step is no difference from regular skeleton network analysis, until computing the shared 
skeletons.  
 
The shard skeletons obtained from this Step [1] is the actually or observed shared skeletons.   
 
Step [2]: Pool together all samples from H & D and perform random permutation of the 
combined (a+b) samples. Treat the first a samples as the permutated healthy treatment and the 
leftover b samples as the permutated diseased treatment.    
 
According to the algorithm in Step [1], compute the shared skeletons for this specific pair of 
permutated H & D treatments.  
 
Step [3]: Repeat Step [2] for 1000 times, and obtain 1000 sets of shared skeletons. 
 
Step [4]: Compute a pseudo-p value. Assume the shared skeletons from Step [1] is N, the 
numbers of shared skeletons from the 1000 random permutations in Step [2-3] are N1, N2,…, 
Ni, ...N1000, the pseudo-p value is the proportion of the permutations with Ni>N among 1000 times 
of permutations. That is, assuming n is the number of times satisfying Ni>N in 1000 permutations, 
p=n/1000.  
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