Table 2.
Comparison of the performance (%) of the hybrid metaheuristic over various feature selection approaches.
Approach | Metric | Dataset | ||
---|---|---|---|---|
D![]() |
D![]() |
D![]() |
||
Cuckoo-Firefly-GR | ACC | ![]() |
![]() |
98.74 |
MCC | ![]() |
![]() |
![]() |
|
Cuckoo-GR | ACC | 98.47 | 97.11 | ![]() |
MCC | 94.34 | 91.97 | 97.57 | |
Firefly-GR | ACC | 97.37 | 97.61 | 92.36 |
MCC | 92.73 | 93.36 | 94.16 | |
Deep Autoencoders (4 Layers) | ACC | 89.85 | 95.62 | 83.54 |
MCC | 57.82 | 87.65 | 65.92 | |
Deep Autoencoders (8 Layers) | ACC | 87.77 | 95.82 | 82.06 |
MCC | 47.96 | 88.23 | 62.65 | |
LSTM Autoencoders (Compression = 0.4) | ACC | 89.08 | 92.33 | 77.30 |
MCC | 53.83 | 78.35 | 50.90 | |
LSTM Autoencoders (Compression = 0.8) | ACC | 88.43 | 67.83 | 77.90 |
MCC | 50.42 | 39.61 | 51.39 |