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Abstract

Background: There is a shortage of medical informatics and data science platforms using cloud computing on
electronic medical record (EMR) data, and with computing capacity for analyzing big data. We implemented,
described, and applied a cloud computing solution utilizing the fast health interoperability resources (FHIR)
standardization and state-of-the-art parallel distributed computing platform for advanced analytics.

Methods: We utilized the architecture of the modern predictive analytics platform called Cerner® HealtheDataLab
and described the suite of cloud computing services and Apache Projects that it relies on. We validated the
platform by replicating and improving on a previous single pediatric institution study/model on readmission and
developing a multi-center model of all-cause readmission for pediatric-age patients using the Cerner® Health Facts
Deidentified Database (now updated and referred to as the Cerner Real World Data). We retrieved a subset of 1.4
million pediatric encounters consisting of 48 hospitals’ data on pediatric encounters in the database based on a
priori inclusion criteria. We built and analyzed corresponding random forest and multilayer perceptron (MLP) neural
network models using HealtheDataLab.

Results: Using the HealtheDataLab platform, we developed a random forest model and multi-layer perceptron
model with AUC of 0.8446 (0.8444, 0.8447) and 0.8451 (0.8449, 0.8453) respectively. We showed the distribution in
model performance across hospitals and identified a set of novel variables under previous resource utilization and
generic medications that may be used to improve existing readmission models.

Conclusion: Our results suggest that high performance, elastic cloud computing infrastructures such as the
platform presented here can be used for the development of highly predictive models on EMR data in a secure
and robust environment. This in turn can lead to new clinical insights/discoveries.
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Background
The application of predictive analytics and artificial
intelligence (AI) in healthcare is met with several chal-
lenges including data access, standardization, collabor-
ation, computing resource needs, and deployment of
predictive models [1, 2]. In addition, challenges peculiar
to analyses of big data must be addressed. On the one
hand, the recent proliferation of big data in medicine [3]
and improvements in high performance cloud comput-
ing [4] have necessitated the consideration of cloud
computing for both storage and maintenance of data in
medical/life science research as well as for business
intelligence in general [5, 6]. The move from non-cloud
to cloud technologies is further strengthened by reduc-
tion in overall cost and maintenance as well as the elasti-
city that cloud architectures provide. But comparisons
between cloud and non-cloud storage and maintenance
of big data is nuanced [7]. On the other hand, big data
analyses require algorithms adapted to high performance
parallel distributed computing. This has been addressed
in the development and application of new methods in
bioinformatics, statistical genetics, and in data science.
These applications include analysis of structured data as
well as medical images and genomic data [6, 8–10].
In healthcare, research and business intelligence teams

can directly leverage the tools provided by cloud com-
puting using Amazon Web Services, Google Cloud Plat-
form, and Microsoft Azure among others. However,
expertise in high performance parallel distributed com-
puting is required to properly manage and leverage
cloud computing resources on specific projects and,
more so, at scale. In this study, we seek to address 3
questions as follows: First, can a high-performance dis-
tributed cloud computing tool for storage and analyses
of electronic medical record (EMR) data be developed?
Second, can the tool be integrated directly with the EMR
and receive automated updates from the EMR? And
third, can such system help in the improvement of exist-
ing machine and artificial intelligence learning models
that are deployable as decision support tools? This work
seeks to address these questions with an application to
predicting hospital readmissions using a large multicen-
ter data. The answer to the first question is clearly “yes”
as previous studies have leveraged high-performance dis-
tributed cloud computing tools for analyses of big data
in biomedical informatics and medicine [6, 11–15].
HealtheDataLab was developed by Cerner® Corporation,
partially in response to the second question. It is a
cloud-based high-performance parallel distributed (and
elastic) tool for automated retrieval of data from the
EMR, storage and management of the data, and applica-
tion of machine learning and artificial intelligence tools.
We addressed the challenges of improving predictive

analytics and AI in healthcare using the Cerner®

HealtheDataLab platform/tool. The platform solves most
of the challenges of data science in healthcare while sim-
plifying development of large-scale predictive analytics
solutions. It uses the Amazon Web Services (AWS) Sim-
ple Storage Solution (S3) bucket [11] as an encrypted
data lake for storage of structured and unstructured
data, and Amazon Web Services’ Elastic MapReduce for
high performance distributed computing. It integrates
several Apache Project Solutions, such as Hive [16] and
Spark [17, 18], and uses Jupyter [19] as the integrated
development environment. The platform is compliant
with Health Insurance Portability and Accountability
Act of 1996 (HIPAA) [20] with end-to-end encryption.
Herein, the platform is utilized to provide methodo-
logical improvement to a previous study on unplanned
readmissions at a single pediatric institution [21], and
for developing a multi-center model for predicting gen-
eral all-cause 30-day readmissions [21–25] among
pediatric-age patients (patients less than 18 years) using
the Cerner(R) Health Facts Deidentified Database which
has recently been updated and renamed as the Cerner
Real World Data. Previous research in the application of
machine learning in medicine has predominantly been
in adult medicine. As a result, there is need for research
in the application of machine learning algorithms in
pediatrics. We describe the HealtheDataLab platform
and AWS tools it depends on and application to devel-
opment of multi-center pediatric models for readmission
using the large protected deidentified database called the
Health Facts Database.

Methods
The HealtheDataLab platform
HealtheDataLab is a data science environment designed
to assist researchers and data scientists build statistical
and machine learning models in an elastic, cloud-based,
high-performance computing system that is HIPAA
compliant. It provides users access to a wide array of
data science-oriented tools for extraction, transform-
ation, and loading of data as well as development of
complex prediction models. Jupyter™ notebooks [19, 26],
the Python programming language [27], and Apache
Spark [17, 18] are the default programming tools access-
ible within HealtheDataLab, with support for the R Stat-
istical Computing Language just added. The architecture
of the platform is shown in Fig. 1.
The Jupyter notebook provides a “web-based applica-

tion suitable for capturing the whole computation
process: developing, documenting, and executing code,
as well as communicating the results” [26] and can be
shared among multiple collaborating users. The backend
computing engine is built on Apache Spark, a unified
analytics engine for big data analysis and machine learn-
ing [17] with a default integration with Python 3, an

Ehwerhemuepha et al. BMC Medical Informatics and Decision Making          (2020) 20:115 Page 2 of 12



object-oriented programming language. Together, the
Spark and Python integration is called PySpark [28].
Utilization of Amazon Web Services (AWS) [11] al-

lows for scalability and elasticity. At the time of writing,
there are 10 different HIPAA compliant services within
AWS [29] that are leveraged in the deployment of a
HealtheDataLab environment. These services include
Amazon Elastic Compute Cloud (EC2), Simple Storage
Solution (S3), Relational Database Service (RDS), Cloud
Formation, Directory Service, Virtual Private Cloud
(VPC), Route 53, Simple Notification Service, and Data
Pipeline. Refer to Additional file 1 for details on these
services. HealtheDataLab uses Cerner’s HealtheIntent
platform as its primary data source and as such can re-
ceive automated data updates.

The HealtheIntent platform
HealtheIntent is a cloud-based population health plat-
form designed to collect data from multiple sources in-
cluding EMR and used to stratify subpopulations that
require targeted care. This enables healthcare systems to
aggregate, transform, and reconcile longitudinal data of
their members and understanding gaps in their care [30,
31]. The HealtheIntent data provided can be de-
identified or identified, depending on IRB approvals for
HealtheDataLab users. HealtheIntent de-identification
method follows HIPAA compliant standards (Safe-Har-
bor Method [32]), which includes removing fields such
as patient name, telephone number, e-mail address, and
social security number. Date-shifting within HealtheDa-
taLab follows Cerner’s i2b2 date shifting guide-lines by
shifting dates consistently across patient records. This
preserves the day of the week that the observation oc-
curred on as well as its seasonality.

EMR data is made available in HealtheDataLab using
HealtheIntent in one of two formats: the HealtheIntent
Core Information Model or HL7’s FHIR® data model
[33]. The HealtheIntent Core Information Model is a
representation of how the data is ingested from the EHR
into HealtheIntent and its implementation may vary by
data source [30]. HL7’s FHIR specifications provide a
“standard for exchanging healthcare information elec-
tronically,” which has been widely adopted throughout
the industry [33, 34]. Both standards allow for the
normalization of the data within HealtheDataLab, allow-
ing researchers to refer to a data model and its specifica-
tions in their research. In addition to HealtheIntent data,
it is also possible to upload external sources of data to
incorporate into analysis, although these data sources
may not be normalized to the HealtheIntent Core Infor-
mation Model or FHIR data model standards. The single
center models described in this study were carried out
using the default EMR data in HealtheDataLab of the
corresponding author’s institution.

Cerner health facts database (Cerner real world data)
The Cerner Health Facts Database is designed to provide
access to a large volume of multi-center, de-identified,
clinical data. The database captures and stores informa-
tion generated by Cerner Corporation which is aggre-
gated and organized into consumable datasets to
facilitate research and reporting. The data is encrypted
and secured to maintain patient confidentiality and en-
sure compliance with HIPAA privacy regulations. It con-
sists of clinical database tables with data on patient
demographics, encounters, medications, laboratory tests,
clinical events, and diagnoses among others. In 2018, it
consisted of greater than 95 healthcare systems com-
prised of greater than 650 individual facilities within the

Fig. 1 The HealtheDataLab architecture
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United States that are clients of Cerner Corporation who
contribute de-identified copies of EMR data. At the time
of this study, the Health Facts Database consisted of 6.9
million patients and 503.8 million encounters across all
care settings. The multi-center models developed in this
study were built using a subset of data from the database
based on a priori inclusion criteria. As at the first quar-
ter of 2020, the format of the database was been changed
to include the HealtheIntent Core Information Model
with additional updates and now referred to as the Cer-
ner Real World Data. This update was implemented
after model development for this study. As a result, this
study used the last iteration of the Health Facts DB.

Data
Replication of a single-center model on 30-day un-
planned readmission [21], herein referred to as M0, was
performed to validate the HealtheDataLab platform by
replicating and comparing to previously performed work
within our institution. Improvements to M0 were ob-
tained by addressing a methodological limitation of
model M0 (the exclusion of encounters for chemother-
apy); increasing the sample size by considering a longer
period of admission; and exploring additional EMR data
such as medications made more readily accessible in
HealtheDataLab. This led to the development of an up-
dated single-center model for unplanned readmission,
referred to as M1 from here on. Furthermore, we ex-
plored the generalizability of the methodological ap-
proach and results we obtained on the single institution
models to the multi-center database. We approached
this by building a model, M2, considering all readmis-
sions (planned and unplanned) on the single center data
to allow for a more precise comparison with models of
all readmissions on the multi-center database, M3. Note
that models M1 and M2 were built using copies of our
HealtheIntent EMR data made available in HealtheData-
Lab. Model M3 was built using the deidentified multi-
center Health Facts database which does not include in-
formation required to separate planned from unplanned
readmissions. We used the same statistical and machine
learning methodology for development of readmission
models M1, M2, and M3. Models M1 and M2 were ran-
dom forest models; however, for model M3, we present
both a random forest and multi-layer perceptron (MLP)
version. The data used to develop the single institution
models were not included in the data of multi-center
models. Details of the methodological approach is given
next for the multi-center models M3.
We retrieved inpatient hospitalization data on patients

less than 18 years from January 2000 to December 2017
from 48 hospitals in the Cerner Health Facts Database.
The data collected includes key information on each in-
patient encounter, patient demographics, diagnosis, and

medications. The 48 hospitals were selected based on a
priori inclusion criteria including hospitals where the
total number of inpatient encounters were greater than
2000 visits. These criteria ensure that we excluded po-
tential noise data and that there is enough data to esti-
mate model performance by hospital. We included
multiple index visits and readmissions for individual pa-
tients and each visit that was itself a readmission was
treated as an index visit for estimating subsequent re-
admission [22, 23].
We included variables previously identified to be pre-

dictors of readmission such as length of stay, admission
type (elective, emergency, urgent, or trauma), diagnoses,
and number of ED visits, hospitalizations, and previous
30-day readmissions within the prior 6 months of the
visit [21, 35–37]. Demographics and proxies for socio-
economic status [38] such as age, gender, race/ethnicity,
insurance payer/type, were also included. We searched
for novel predictors by exploring the maximum previous
length of stay within the last 6 months; an indicator for
whether the index visit is itself a readmission from a pre-
vious visit; all generic medications a patient received as
well as the route of administration during the
hospitalization that met an a priori inclusion criteria.
The a priori inclusion criterion for including a generic
medication or medication administration route is based
on frequency of administration. Only medications and
medication administration routes for which at least 4%
of hospitalized patients received or qualified were in-
cluded to guarantee that there will be no problem of
parameter estimation during model building due to rar-
ity of event, and that only the most common medica-
tions likely to provide clinically significant opportunities
for interventions are considered. Rare event studies re-
quire exact statistical tests that is beyond the scope of
this study [39].
The dataset was randomly split into a training and test

set with 50% of observations in each. The randomization
limited distributional differences between the training
and test set, and guided against overfitting. We built a
machine learning model using random forest algorithm
that can be used to easily explore complex non-linear re-
lationships between a set of predictor variables and an
outcome variable of interest while providing a measure
of variable importance [40]. Rather than search a ran-
dom parameter space, we chose to purposefully explore
selected tree depths at a fixed number of trees with en-
tropy as the impurity function [41]. We explored ran-
dom forest modes with tree depths of 2 to 16 on a
logarithm scale and fixed the number of trees at 256
based on previous studies [42]. We used 3-fold cross-
validated AUC on the training data to determine the
final/selected tree depth of the random forest model.
We kept other parameters of the model (developed
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using Spark Machine Learning Library version 2.3.0) at
their default value. In addition to the random forest
model, we built an MLP model [43] by exploring 3-, 4-,
5- and 6-layer architectures where each hidden layer has
half the neurons of the previous layer in a fully con-
nected network. We used the sigmoid function for inter-
mediate nodes and the softmax function on the output
layer [44]. We used 3-fold cross validation for selection
of the final MLP architecture/model. All data prepro-
cessing and model development computation were car-
ried out using the PySpark [28] (including Spark SQL
and the Spark Machine Learning library [18, 45]) on the
HealtheDataLab platform.

Results
We successfully validated the HealtheDataLab platform
by replicating the published study on readmission with
similar results in performance and inference. Model M0
was shown to have an AUC of 0.79 by Ehwerhemuepha
et al. [21] Models M1 and M2 were obtained using the
best performing random forest model (obtained through
cross validation) consisting of 256 trees and maximum
tree depth of 16 on the HealtheIntent Data in the
HealtheDataLab platform of adopting institution. The
inclusion of patients with chemotherapy, increase in
sample sizes, inclusion of medication classes, and use of
the random forest architecture (as described in the
Methods section) resulted in an AUC of 0.8226 for
Model M1—an increase of 0.0326 in AUC over M0.
Model M2 (which included both planned and unplanned
readmissions in the training and test data) resulted in an
AUC of 0.8756—an increase of 0.0530 in AUC over M1.
The clinical significance of the improvement in AUC of
model M2 over M1 is unknown since the data used to
train model M2 included planned readmissions.

Model M3 – the multi-center model for pediatric
readmissions
There were 1.4 million pediatric encounters during the
18-year period considered in the multi-center database.
Each hospital contributed different number of years of
data with a mean of 13 years across all hospitals. Train-
ing and test set were divided in the same manner as the
data used for models M1 and M2.
In the training data, there were 88,737 readmissions

within the study period across all 48 hospitals in the
training dataset with a readmission rate of 12.6%. There
were 50.7% males, 44.4% females, and 4.9% patients with
unknown sex. Patient coding for race/ethnicity included
White (48.5%), African American/Black (22.6%), His-
panic (3.0%), Asian (1.5%), Native American (1.0%), and
other/mixed/unknown races (23.4%). The mean (stand-
ard deviation) for patient age is 5.9 (6.0) years. There
were 34.7% of patients with index visit length of stay of

4 days or more, 23.6% with a previous visit within the
last 6 months, and 14.4% with maximum length of stay
of 4 days or more from the previous visits. The percent-
age of patients who had a previous emergency depart-
ment visit within the last 6 months of the index visit was
23.1%. We included an indicator for whether the index
visit is itself a readmission from a previous visit, and
there were 13.6% of such visits. Additionally, we in-
cluded data on previous readmissions with 9.3% having
had a readmission prior to, and not counting, the index
visit. We considered diagnosis groupings as shown in
Table 1, as well as generic medications and medication
administration routes as shown in Table 2.
The resulting random forest model (M3:RF) consisted

of 256 trees with a tree depth of 16. There was a linear
increase in the training data cross-validated AUC as the
depth of tree increased exponentially. The AUC of the
model on the test set is 0.8446 (0.8444, 0.8447) across all
48 hospitals (Fig. 2a). The top 30 most important vari-
ables are shown in Fig. 3. The most important variables
include previous readmissions, index visits that are read-
missions from a prior visit, previous hospitalizations,
and the length of stay of visits prior to the index visit.
The performance of model M3:RF across each hospital
was variable with majority of hospitals having AUCs
greater than 0.75 as shown in Fig. 4a. The best perform-
ing MLP model (M3:MLP) consists of 4 layers and re-
sulted in an AUC of 0.8451 (0.8449, 0.8453) across all 48
hospitals (Fig. 2b). The distribution of AUCs across the
hospitals (Fig. 4b) was identical to M3:RF but with less
spread in this occasion (that is, conditional on the
hyperparameter search space we explored in this study).
In Fig. 5, we presented a comparison of the random for-
est model performance for models M1, M2, and M3.

Comparison with models from previous studies
We conducted head-to-head model performance com-
parisons with the LACE readmissions model. The LACE
readmissions model is a model that uses 4 variables
(Length of stay, acuity of admission, comorbidity of the
patient, and emergency department use) as predictors of
readmissions. The AUC of the corresponding LACE
model equivalent of M1 is 0.6952 (0.6851, 0.7054); the
AUC of its equivalent of M2 is 0.6786 (0.6705, 0.6867);
and the AUC of its equivalent of M3 is 0.7014 (0.6994,
0.7033). In other words, all models developed in this
study have higher model performance than the standard
LACE readmission model. In addition to these compari-
sons to the LACE readmission model, we searched for
model performance of similar models using a systematic
review of over 30 studies and 26 unique models [24] and
an additional review of 60 studies [46] with 73 unique
models. This indicate that the AUCs for general medi-
cine (all cause) prediction models ranged from a
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Table 1 Summary Statistics – Demographics, SES Proxies, Resource Utilizations, and Diagnosis

Variables Level Not Readmitted Readmitted

n (%) or mean (sd) n (%) or mean (sd)

Gender Male 311,260 (50.60) 45,338 (51.09)

Female 273,009 (44.38) 39,194 (44.17)

Unknown 30,861 (5.02) 4205 (4.74)

Race/ethnicity White 304,559 (49.51) 36,807 (41.48)

Asian 9205 (1.50) 1163 (1.31)

Black/African American 144,376 (23.47) 14,833 (16.72)

Native American 6537 (1.06) 688 (0.78)

Hispanic 19,201 (3.12) 2120 (2.39)

Others/Unknown 131,252 (21.34) 33,126 (37.33)

Age – 5.73 (6.00) 6.90 (5.95)

Admission type Emergency 276,802 (45.00) 27,986 (31.54)

Elective 97,886 (15.91) 18,569 (20.93)

Urgent 120,468 (19.58) 15,880 (17.90)

Trauma 1521 (0.25) 51 (0.06)

Others 118,453 (19.26) 26,251 (29.58)

Admission source Referral 247,863 (40.29) 36,602 (41.25)

Emergency/ER 105,515 (17.15) 9585 (10.80)

Transfer 134,410 (21.85) 10,618 (11.97)

Others 127,342 (20.70) 31,932 (35.98)

Length of stay < 2 days 154,703 (25.15) 12,198 (13.75)

< 4 days 268,635 (43.67) 24,353 (27.44)

< 7 days 101,594 (16.52) 16,549 (18.65)

7 days or more 90,198 (14.66) 35,637 (40.16)

Previous visits 0 506,358 (82.32) 31,389 (35.37)

1 72,659 (11.81) 15,502 (17.47)

2 18,949 (3.08) 8895 (10.02)

3 or more 17,164 (2.79) 32,951 (37.13)

Previous maximum length of stay < 2 days 524,932 (85.34) 36,463 (41.09)

< 4 days 34,051 (5.54) 7349 (8.28)

< 7 days 21,348 (3.47) 9670 (10.9)

7 or more 34,799 (5.66) 35,255 (39.73)

Previous ED 0 478,460 (77.78) 62,745 (70.71)

1 88,412 (14.37) 13,094 (14.76)

2 27,999 (4.55) 5347 (6.03)

3 or more 20,259 (3.29) 7551 (8.51)

Index visit is a readmission Yes 52,355 (8.51) 43,633 (49.17)

No 562,775 (91.49) 45,104 (50.83)

Readmission history 0 587,646 (95.53) 50,463 (56.87)

1 14,808 (2.41) 8518 (9.60)

2 5127 (0.83) 5456 (6.15)

3 or more 7549 (1.23) 24,300 (27.38)

Diagnosis - ICD 10

Bacterial infections – 0.05 (0.27) 0.07 (0.39)
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minimum of 0.56 to a study with a maximum of 0.83 in
models for pediatrics or comparable in population to the
pediatric models herein. These values for the model per-
formance indicate that the models presented in this
study (M2 and M3) have significant improvements over
existing pediatric models.

Discussion
We provided an architectural layout of the design of
Cerner’s HealtheDataLab platform, which is an advanced
analytics platform for parallel distributed data science
using cloud computing. This study can help other

healthcare organizations replicate the platform using any
cloud provider. However, highly specialized skills differ-
ent from those of a data scientist and statistician are re-
quired to appropriately provision and manage such tools
– in fact, this is a domain for data engineers. The main
contribution of HealtheDataLab is the utilization of
high-performance cloud computing resources for seam-
less integration with and update from the EMR. There-
fore, structured EMR data is readily accessible in a high-
performance cloud platform wherein open source tools
such as Apache Spark can be used for analyses of any
size or complexity. The tool is managed by data

Table 1 Summary Statistics – Demographics, SES Proxies, Resource Utilizations, and Diagnosis (Continued)

Variables Level Not Readmitted Readmitted

n (%) or mean (sd) n (%) or mean (sd)

Blood and blood organs – 0.11 (0.50) 0.25 (0.77)

Central Nervous System – 0.20 (0.76) 0.25 (0.86)

Cerebrovascular blood vessels – 0.05 (0.47) 0.06 (0.52)

Conditions from perinatal period – 0.44 (1.98) 0.22 (1.52)

Congenital and chromosomal – 0.31 (1.28) 0.36 (1.55)

Digestive – 0.33 (1.23) 0.43 (1.40)

Ear, mastoid process – 0.05 (0.35) 0.03 (0.29)

Endocrine – 0.08 (0.56) 0.08 (0.58)

External causes of morbidity – 0.10 (0.52) 0.07 (0.39)

Eye and adnexa – 0.08 (0.80) 0.08 (0.77)

Genitourinary – 0.15 (0.68) 0.15 (0.64)

Hypersensitivity – 0.02 (0.19) 0.04 (0.28)

Immune mechanisms – 0.01 (0.13) 0.02 (0.22)

Injury and poison – 0.61 (8.44) 0.39 (5.45)

Ischemic heart disease – 0.00 (0.04) 0.00 (0.04)

Malnutrition – 0.01 (0.13) 0.02 (0.16)

Mental, behavioral, neurodevelopmental – 0.26 (1.49) 0.22 (1.08)

Metabolic and other endocrine process – 0.18 (0.67) 0.24 (0.92)

Musculoskeletal and connective tissues – 0.12 (0.62) 0.12 (0.61)

Neoplasms – 0.05 (0.32) 0.34 (0.87)

Other heart diseases – 0.04 (0.38) 0.06 (0.47)

Overweight and hyperalimentation – 0.01 (0.12) 0.01 (0.12)

Pregnancy, childbirth, puerperium – 0.08 (1.02) 0.04 (0.74)

Pulmonary heart disease – 0.03 (0.38) 0.04 (0.49)

Respiratory – 0.48 (1.14) 0.35 (1.05)

Rheumatic fever – 1.67 (0.02) 1.47 (0.01)

Rheumatic heart disease – 0.00 (0.08) 0.00 (0.10)

Skin, subcutaneous tissues – 0.14 (0.66) 0.11 (0.58)

Symptoms, signs, and abnormal lab findings – 0.82 (1.71) 0.91 (1.94)

Viral infections – 0.16 (0.79) 0.16 (0.80)

Health Hazards due to family/personal history – 0.24 (0.79) 0.34 (0.98)

Health Hazards - others – 0.26 (0.75) 0.21 (0.57)
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engineering teams at Cerner and made for teams with
people who are highly skilled in data science as well as in
big data analysis. As a result, it does not lend itself to use
by administrators or teams without the technical skillsets
of a data scientist. On the one hand, the contribution of
HealtheDataLab implies that advanced parallel distributed
analytics can be run on EMR data in search for associa-
tions that may be useful for advancement of care. On the
other hand, highly skilled data scientists or statisticians
are required to use this tool which is inaccessible to ad-
ministrators or providers without in-depth big data and
data science skills. In addition to EMR data, other data
sources (such as the Health Facts Database) can be added
directly to an Amazon S3 bucket which is accessible by
the platform. We validated the platform by replicating a
previous study on a novel model for unplanned readmis-
sion with a reported AUC of 0.79 using the EMR of the
corresponding institution of study.
We provided an application of the tool by developing a

multi-center random forest and multi-layer perceptron
(neural network) models for predicting all cause planned
and unplanned readmission with an AUC of approxi-
mately 0.8446 and 0.8451, respectively. The ranking of
predictor importance by the random forest model indi-
cates that the numbers of certain medications adminis-
tered and the routes of administration (during
hospitalization) are associated with the risk of readmis-
sion. Novel variables, such as the maximum length of stay
within the last 6 months (excluding index visit) and an in-
dicator representing whether the index visit is a readmis-
sion itself, were found to be important predictors. We
showed that in all cases, the models developed here were
more powerful than the LACE readmission model, com-
petitive with all other models developed in literature, and
had the highest AUC in pediatric readmission studies.
This multi-center application is limited by use of dei-

dentified data for which unplanned visits cannot be sep-
arated from planned ones. On the one hand, if there is
no significant difference between risk factors for planned
and unplanned readmissions, a model considering all
readmissions would achieve statistical boost over un-
planned readmissions due to increase in the readmission
rate/number of cases in the training set. On the other
hand, if there are significant differences between both
groups, the accuracy of predicting unplanned readmis-
sion using models on all readmission may result in de-
creased performance of the model. The strength from
large sample sizes and use of multi-center EMR data
helps to reduce concerns about differences between
planned and unplanned readmissions. Further studies
using logistic regression with random intercepts (to ac-
count for baseline differences between hospitals) are re-
quired to determine effect sizes and their directions, and
statistical or clinical significance. The list of the top 30

Table 2 Summary Statistics – Medications

Variables Not Readmitted Readmitted

mean (sd) mean (sd)

Medication Administration Route/Type Count

Inhalation 0.37 (0.99) 0.30 (0.91)

Injectable 2.14 (4.08) 2.61 (4.91)

Intramuscular 0.15 (0.44) 0.09 (0.41)

Intravenous 1.55 (3.18) 2.16 (4.31)

Ophthalmic 0.13 (0.44) 0.08 (0.41)

Oral 2.01 (3.27) 2.75 (4.42)

Rectal 0.14 (0.44) 0.11 (0.42)

Topical 0.31 (0.73) 0.38 (0.89)

Generic Medications

Acetaminophen 0.43 (0.71) 0.39 (0.71)

Acetaminophen hydrocodone 0.05 (0.25) 0.04 (0.21)

Albuterol 0.18 (0.54) 0.13 (0.43)

Cefazoline 0.10 (0.38) 0.08 (0.33)

Ceftriaxone 0.07 (0.31) 0.07 (0.29)

Dexamethasone 0.08 (0.34) 0.11 (0.43)

Diphenhydramine 0.11 (0.39) 0.22 (0.53)

Docusate 0.04 (0.23) 0.06 (0.26)

Epinephrine 0.05 (0.25) 0.07 (0.30)

Erythromycin ophthalmic 0.07 (0.25) 0.02 (0.12)

Fentanyl 0.16 (0.45) 0.14 (0.45)

Glycopyrrolate 0.05 (0.24) 0.05 (0.24)

Heparin 0.17 (0.54) 0.33 (0.74)

Hepatitis B vaccine 0.06 (0.24) 0.01 (0.12)

Ibuprofen 0.14 (0.39) 0.09 (0.32)

Ketorolac 0.07 (0.29) 0.05 (0.24)

Lidocaine 0.08 (0.31) 0.07 (0.30)

Lidocaine topical 0.11 (0.33) 0.14 (0.36)

Lorazepam 0.07 (0.31) 0.14 (0.42)

LVP solution 0.48 (1.01) 0.72 (1.40)

LVP solution with potassium 0.20 (0.45) 0.21 (0.48)

Midazolam 0.12 (0.40) 0.12 (0.40)

Morphine 0.20 (0.56) 0.19 (0.58)

Ondansetron 0.20 (0.48) 0.29 (0.59)

Oxycodone 0.05 (0.24) 0.06 (0.28)

Phytonadione 0.08 (0.27) 0.03 (0.18)

Polyethylene glycol 3350 0.05 (0.23) 0.10 (0.30)

Potassium chloride 0.07 (0.32) 0.12 (0.43)

Propofol 0.10 (0.35) 0.10 (0.36)

Ranitidine 0.07 (0.30) 0.11 (0.37)

Rocuronium 0.05 (0.23) 0.04 (0.22)

Sodium chloride 0.19 (0.54) 0.25 (0.65)
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predictors identified in this work provides organizations
additional variables to consider during model develop-
ment. This may result in reducing false positive predic-
tions that waste clinical intervention efforts.
Improvements in such models put limited resources to
better use for providing in-hospital interventions [21] as
well as post-discharge follow-up. The machine learning
methodology used in this study may also be used by other
organizations although our study indicates that perform-
ance of predictive models of readmission may vary across
pediatric institutions—this merit further study.

Conclusion
We have demonstrated the utility and strength of high-
performance cloud computing resources, directly

integrated to the EMR, for advanced predictive analytics
in healthcare. In addition to the analysis of our institu-
tion’s readmission data, we were able to apply machine
learning algorithms on data from multiple institutions
originating outside of our EMR. Therefore, this study
provides information required by organizations consid-
ering high-performance cloud computing resources, as
well as information by which they can improve predict-
ive models for readmission. Most notably, we have dem-
onstrated that cloud computing solutions that integrate
directly with the electronic medical records can be de-
veloped for application of data science algorithms in
building and deploying predictive models back to the
EMR. More specifically, we addressed the 3 goals of this
study as follows: First, researchers in healthcare have

Fig. 2 Area under the receiver operator characteristics of a the random forest and b the MLP models

Fig. 3 Top 30 important variables by the random forest model
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applied cloud computing for individual projects by indi-
vidual teams to a select problem and dataset within hos-
pitals. HealtheDataLab provides an enterprise-wide
approach for storage of all EMR data and the tools/algo-
rithms required to analyze the data for research and for
business intelligence applications. Second, HealtheData-
Lab can be seamlessly and directly integrated with the
EMR and receive automated updates from it. Lastly, ma-
chine and artificial learning models can be developed
and used for discovery of novel risk factors as well as
improvement of existing models. In this study, we did
not show how models can be automatically deployed
from HealtheDataLab to the EMR for use as a decision

support tool as the functionality was still nascent at the
time of writing. Although we used HealtheDataLab in
this study, the goal is to demonstrate that tools like it
(regardless of EMR and cloud computing vendors) can
be developed and used to further the use of big data an-
alytics and data science in healthcare. Managed services
and tools such as HealtheDataLab would ensure that
cloud computing in medicine is accessible to a wider
number of teams who, otherwise, may not be able to
navigate and manage the highly technical ecosystem of
cloud computing tools.
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1186/s12911-020-01153-7.
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