
Differential Dihydrofunctionalization of Terminal Alkynes: 
Synthesis of Benzylic Alkyl Boronates Through Reductive Three-
Component Coupling

Megan K. Armstrong, Gojko Lalic*

Department of Chemistry, University of Washington, Seattle, WA 98195.

Abstract

The differential dihydrofunctionalization of terminal alkynes is accomplished through the 

reductive three-component coupling of terminal alkynes, aryl halides and pinacolborane. The 

transformation results in hydrofunctionalization of both π bonds of an alkyne in a single reaction 

promoted by cooperative action of a copper/palladium catalyst system. The differential 

dihydrofunctionalization reaction has excellent substrate scope and can be accomplished in the 

presence of esters, nitriles, alkyl halides, epoxides, acetals, alkenes, aryl halides, and silyl ethers. 

Mechanistic experiments indicate that the reaction proceeds through copper-catalyzed 

hydroboration followed by a second hydrocupration. The resulting heterobimetallic complex is the 

key intermediate that participates in subsequent palladium-catalyzed cross coupling, which 

furnishes benzylic alkyl boronate products.

Alkynes are extensively used in organic synthesis as readily available and versatile 

intermediates. They participate in a wide range of transformations, the most common of 

which are C-H functionalization of terminal alkynes, addition to one of the π bonds, and a 

double addition to both π bonds. Also known, but significantly less common, are reactions 

that lead to the differential transformation of the two π bonds. One of the simplest and 

oldest1 reactions that mechanistically fits this description is the hydration of alkynes, which 

involves initial hydration followed by a tautomerization.2,3 This transformation has been 

known for a long time, and has inspired development of differential transformations of 

alkyne π bonds using other hydrofunctionalization reactions. However, these 

transformations are still rare,4 and generally rely on intramolecular reactions5 or reactions of 

alkynes activated by electron-withdrawing groups.6

Our interest in copper-catalyzed hydrofunctionalization reactions7 led us to explore the 

application of copper hydride chemistry8 in differential functionalization of the two alkyne 

π bonds. Successful applications developed so far have combined copper-catalyzed 

hydrofunctionalization of one π bond with catalytic reduction of the other (Scheme 1a).9 In 
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2014, Buchwald et al. reported the first example of such a reductive hydrofunctionalization 

reaction, which combines reduction and hydroamination.10 More recently, Mankad et al. 

reported an interesting example of a hydroacylation reaction followed by a reduction.11

The methods developed by the Buchwald and Mankad groups demonstrate the utility of 

copper hydride chemistry in differential transformations of alkyne π bonds. They also 

suggest a great potential for the development of reactions that would combine copper-

catalyzed hydrofunctionalization of one π bond with a different hydrofunctionalization of 

the other π bond (Scheme 1b). Such reactions would significantly increase the complexity of 

the products that can be accessed directly from alkynes and would enhance their utility as 

synthetic intermediates.

In this paper, we describe a method for the differential dihydrofunctionalization of terminal 

alkynes that formally combines hydroboration with hydroarylation (Scheme 1b). The overall 

reaction, promoted by synergistic Cu/Pd catalysis, results in reductive coupling of terminal 

alkynes, aryl bromides, and pinacolborane and the formation of benzylic alkyl boronates.12

Inspiration for our approach to differential dihydrofunctionalization came from a report by 

Sadighi et al. in 2006.13 The authors describe the hydrocupration of alkenyl Bpin by IPrCuH 

and formation of a heterobimetallic complex (eq 1).

(1)

While we7,14 and others15 have previously established that (NHC)copper hydride complexes 

are excellent catalysts for hydrofunctionalization of alkynes,8 this report demonstrated that 

these same complexes also participate in the selective hydrocupration of functionalized 

alkenes.16 Our plan was to combine these two facets of the (NHC)CuH chemistry and 

develop a differential dihydrofunctionalization of alkynes (Scheme 2).

We reasoned that the heterobimetallic intermediate IV could be accessed directly from 

alkynes through copper-catalyzed hydroboration and the subsequent hydrocupration of the 

alkenyl boronate ester (III). This simple access to the heterobimetallic intermediate provides 

an opportunity to systematically explore a wide range of differential 

dihydrofunctionalization reactions of alkynes through further functionalization of this key 

intermediate. We chose to pursue palladium-catalyzed cross coupling of the heterobimetallic 

intermediate (IV) with aryl bromides (II), inspired by known catalytic arylations of related 

copper(I) alkyl intermediates.17

Preliminary investigation of the proposed differential dihydrofunctionalization reaction 

began with 5-phenyl-1-pentyne (1), 4-bromoanisole (2) and pinacolborane as coupling 

partners, with IPrCuOt-Bu and a variety of palladium catalysts. Initially, we observed 

numerous reactions promoted by the Cu/Pd catalyst system. In addition to the desired 
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product (3), products of Miyaura borylation18 (4), hydroboration15b,19 (5), hydroarylation20 

(6) and geminal diboration21 (7) of the alkyne were also observed (Scheme 3).

In addition to alkenyl boronate 5, compounds 622 and 712b could, in principle, also serve as 

intermediates in the synthesis of the desired product 3. However, careful monitoring of the 

reaction mixture revealed that the formation of either the E-styrene (6) or alkyl diboronate 

(7) generally corresponded with a decreased yield of the desired product (3). On the other 

hand, any alkenyl boronate (5) formed was consumed over the course of the reaction, 

resulting in the corresponding increase in yield of the desired product. As a result, we 

focused on identifying reaction conditions that would minimize both hydroarylation and 

diboration of the terminal alkyne.

Initially, we found that the identity of the palladium catalyst and the alkoxide additive had 

the greatest effect on the product distribution. Extensive reaction development focused on 

these two parameters led to an efficient differential dihydrofunctionalization of terminal 

alkynes shown in Table 1 (entry 1).

During the reaction development, we made several observations summarized in Table 1. 

Considering that Pd2dba3
23 is rarely used in combination with dialkylbiaryl phosphine 

ligands, we were surprised that it was a significantly better precatalyst than other common 

palladium sources. For example, Pd(OAc)2 provided the product in only 54% yield at the 

full conversion (Table 1 entry 2) (see SI for further details). IPrCuOt-Bu performed better 

than IPrCuCl as a catalyst precursor (entry 3). Catalyst loading of both palladium and copper 

proved crucial. Lower loading of IPrCuOt-Bu resulted in decreased yield with full 

consumption of aryl halide (entry 4). Higher loading of the palladium catalyst increased 

formation of E-styrene (6) and lowered product yield (entry 5).

The reaction outcome was also greatly influenced by the choice of phosphine ligand. 

XPhos24 provided significantly higher selectivity for the desired product than closely related 

BrettPhos25 (entry 6) and other dialkylbiaryl ligands (see SI for details). Bisphosphine 

ligands like (R)-DTBM-SEGPHOS, formed the product of diboration (7) almost exclusively 

(entry 7). The choice of the alkoxide additive also proved important. KOt-Bu was superior to 

both NaOt-Bu and LiOt-Bu (entry 8 and 9), increasing conversion of alkenyl Bpin (5) to 

product, while suppressing formation of E-styrene (6).

High yields of the differentially dihydrofunctionalized product were obtained in aromatic 

hydrocarbon solvents such as toluene and benzene (entries 1 and 10), with lower yields in 

isooctane (entry 11) and minimal reactivity in ethereal solvents (entries 12 and 13) (see SI 

for details). Lastly, we observed that the concentration of the reaction mixture had a 

significant effect on yield. Doubling the concentration of the reaction mixture (entry 14) 

decreased the yield.26

Having established the conditions for the differential dihydrofunctionalization of terminal 

alkynes (Table 1, entry 1), we explored the scope of the reaction (Table 2). A broad range of 

aryl bromides serve as coupling partners. Both electron-rich (3 and 11) and electron-poor (8 
and 12) aryl bromides were viable coupling partners. A variety of functional groups were 
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tolerated, and reaction could be performed in the presence of aryl fluorides (9), aryl 

chlorides (10) and acetals (13 and 24). Styrenes (18) were also compatible with the reaction. 

Products derived from para (14), meta- (15) and ortho- (16) substituted aryl bromides were 

isolated in good yields. Notably, a variety of O, N and S containing heterocycles were 

compatible with this reaction (19 – 23).

We also explored the scope of the alkyne coupling partner. Alkynes containing nitriles (25), 

epoxides (27), chlorides (29), bromides (30), acetals (35) and esters (36) were compatible 

with the reaction conditions. Protected alcohols (28, 31 and 32) and functionalized phenyl 

ethers (26, 40 and 41) were competent coupling partners in the reaction. Propargylic 

substitution of the alkyne also provided products in good yields (32 – 34). Finally, electron 

rich (38) and electron deficient (39) aryl acetylenes can be utilized in this reaction.

We also noted several limitations of the reaction. The reaction is not compatible with 

aldehydes, ketones, activated alkenes (such as enones), free alcohols, or tertiary alkyl 

amines. Furthermore, reactions with several aryl chlorides provided no desired products, 

suggesting that aryl chlorides are not viable substrates. Finally, internal alkynes, including 

differentially substituted aryl alkyl alkynes provided no desired product in the reaction.

Considering our preliminary observations and the known reactivity of both palladium-

catalyzed cross coupling27 and copper-catalyzed hydrofunctionalization reactions,8 we 

envisioned three possible pathways for differential dihydrofunctionalization of terminal 

alkynes (eq. 2): a) copper-catalyzed hydroboration followed by hydrocupration and 

electrophilic functionalization, b) hydroarylation followed by hydroboration, or c) diboration 

to generate the alkyl diboronate, followed by mono-selective cross coupling with the aryl 

halide. Each pathway proceeds through a unique intermediate: a) alkenyl Bpin (5), b) E-

styrene (6) or c) alkyl diboronate (7).

(2)

We explored the reactivity of each presumed intermediate under the standard conditions for 

differential dihydrofunctionalization (Scheme 4). When alkenyl Bpin (5) was the substrate, 

the desired product (3) was formed in 43% yield after 6 h (Scheme 4a), whereas neither E-

styrene (6), nor alkyl diboronate (7) formed the desired product in appreciable yields even 

after 24 h (Scheme 4b and c). In both cases, products of other side reactions were observed 

and/or starting material was recovered. These results strongly suggest that the operative 

pathway involves hydroboration of the alkyne (eq 2, a).

Armstrong and Lalic Page 4

J Am Chem Soc. Author manuscript; available in PMC 2020 June 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We also wanted to verify that the heterobimetallic complex (IV) could be formed directly 

from terminal alkynes and is the key catalytic intermediate in the reaction. The 

stoichiometric reaction between terminal alkyne, IPrCuOt-Bu, and HBpin resulted in the 

formation of hetermobimetallic complex 42, in excellent yield (Scheme 4d). Additionally, 

the stoichiometric cross coupling between 42 and aryl bromide (2) yielded the desired 

benzylalkylboronate in 98% yield (Scheme 4e). Altogether, these results support our 

proposed pathway.

Considering the results of these experiments, we propose the mechanism outlined in Scheme 

5. Initial transmetallation between IPrCuOt-Bu and HBpin generates IPrCuH, and 

hydrocupration of the terminal alkyne (I) results in alkenyl copper (VI). Additional 

transmetallation between a second equivalent of HBpin and VI delivers alkenyl Bpin (III) 
and regenerates IPrCuH. Reinsertion of III into IPrCuH furnishes heterobimetallic complex 

(IV).

The heterobimetallic complex (IV) participates in a standard palladium-catalyzed cross 

coupling with the aryl bromide to produce the differentially dihydrofunctionalized product V 
and Pd(0). IPrCuOt-Bu catalyst is regenerated in the presence of KOt-Bu.

In conclusion, we have developed a method for the differential dihydrofunctionalization of 

alkynes that results in the reductive three-component coupling of terminal alkynes, aryl 

bromides, and pinacolborane. The benzylic alkyl boronate products are accessed directly 

from terminal alkynes by accomplishing two different regioselective hydrofunctionalization 

reactions promoted by a Cu/Pd catalyst system.

The reaction has excellent substrate scope and functional group compatibility, providing the 

desired products in high yields. The results of mechanistic experiments indicate that the 

reaction proceeds through copper-catalyzed hydroboration, followed by a second 

hydrocupration of the alkenyl boronate, and palladium-catalyzed arylation of the resulting 

heterobimetallic intermediate. The most important finding of our studies is that the 

heterobimetallic intermediate can be readily accessed directly from the terminal alkyne in 

the presence of a copper catalyst and HBpin. We believe that the access to this 

heterobimetallic intermediate provides an exciting opportunity for a systematic development 

of other differential dihydrofunctionalization reactions.
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Scheme 1. 
Copper Hydride Chemistry in Differential Functionalization of Alkyne π Bonds.
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Scheme 2. 
Design of Differential Dihydrofunctionalization
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Scheme 3. 
Preliminary Investigation of Differential Dihydrofunctionalization
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Scheme 4. 
Mechanistic Experiments
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Scheme 5. 
Proposed Catalytic Cycle
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Table 1.

Reaction Development

Entry deviation from above yield
a

1 none 86

2 Pd(OAc)2 instead of Pd2dba3 54

3 IPrCuCI instead of IPrCuOt-Bu 67

4 10 mol% IPrCuOt-Bu instead of 20 mol% 31

5 2.5 mol% Pd2dba3 instead of 1.25 mol% 59

6 BrettPhos instead of XPhos 20

7 (R)-DTBM-SEGPHOS instead of IPr 8

8 NaOt-Bu instead of KOt-Bu 46

9 LiOt-Bu instead of KOt-Bu 34

10 benzene instead of toluene 65

11 isooctane instead of toluene 24

12 1,4-dioxane instead of toluene 5

13 THF instead of toluene 0

14 0.1 M instead of 0.05 M
b 74

a
Α11 reactions performed on 0.05 mmol scale and monitored by GC with 1,3,5-trimethoxybenzene as an internal standard.

b
Concentration of alkyne in the reaction mixture. EPr 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene, dba = dibenzylideneacetone, pin = 

pinacolato.
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Table 2.

Scope of Differential Dihydrofunctionalization of Alkynes

a
Reactions run on 0.5 mmol scale.

b
IPrCuCl instead of IPrCuOt-Bu and NaOt-Bu instead of KOt-Bu.

c
toluene:isooctane (1:1) used.

J Am Chem Soc. Author manuscript; available in PMC 2020 June 19.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Armstrong and Lalic Page 16

d
GC yield, with 1,3,5-trimethoxybenzene as internal standard.

e
KOTMS used instead of KOt-Bu and toluene:THF (1:1) was used. Ar1 = 4-OMe(C6H4), Ar2 = 4-CF3(C6H4)
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