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Abstract

Respiratory motion during PET/CT imaging can cause significant image blurring and 

underestimation of tracer concentration for both static and dynamic studies. In this study, with the 

aim to eliminate both intra-cycle and inter-cycle motions, and apply to dynamic imaging, we 

developed a non-rigid event-by-event (NR-EBE) respiratory motion compensated list-mode 

reconstruction algorithm. The proposed method consists of 2 components, the first component 

estimates a continuous non-rigid motion field of the internal organs using the internal-external 

motion correlation (NR-INTEX). This continuous motion field is then incorporated into the 

second component, non-rigid MOLAR (NR-MOLAR) reconstruction algorithm, to deform the 

system matrix to the reference location where the attenuation CT is acquired. The point spread 

function (PSF) and time-of-flight (TOF) kernels in NR-MOLAR are incorporated in the system 

matrix calculation and therefore are also deformed according to motion. We first validated NR-

MOLAR using a XCAT phantom with a simulated respiratory motion. Non-rigid EBE motion 
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compensated image reconstruction using both components were then validated on three human 

studies injected with 18F-FPDTBZ and one with 18F-FDG tracers. The human results were 

compared to conventional non-rigid motion correction using discrete motion field (NR-Discrete, 

one motion field per gate) and a previously proposed rigid EBE motion compensated image 

reconstruction (R-EBE) that was designed to correct for rigid motion on a target lesion/organ. The 

XCAT results demonstrated that NR-MOLAR incorporating both PSF and TOF kernels effectively 

corrected for non-rigid motion. The 18F-FPDTBZ studies showed that NR-EBE out-performed 

NR-Discrete, and yielded comparable results with R-EBE on target organs while yielding superior 

image quality in other regions. The FDG study showed that NR-EBE clearly improved the 

visibility of multiple moving lesions in the liver where some of them could not be discerned in 

other reconstructions, in addition to improving quantification. These results show that NR-EBE 

motion compensated image reconstruction appears to be a promising tool for lesion detection and 

quantification when imaging thoracic and abdominal regions using PET.

Index Terms—

Event-by-event motion correction; image reconstruction; list-mode reconstruction; non-rigid 
motion correction; Positron Emission Tomography (PET)

I. INTRODUCTION

POSITRON emission tomography (PET) imaging in thoracic and abdominal regions is often 

degraded by respiratory motion. The average respiration-induced displacement of organs is 

in the range of 10 – 25 mm in the superior-inferior (SI) direction, and 5 – 10 mm in the 

anterior-posterior (AP) direction [1, 2]. This magnitude of movement can cause substantial 

blurring and reduction of signal to background contrast in tumors and organs, leading to 

hampered disease detection and radiotracer quantification in both static [3–7] and dynamic 

studies [8].

Many approaches have been proposed to correct for respiratory motion. Respiratory gating 

that divides the list-mode data into different gates, based on either temporal phase or 

respiratory displacement information [9, 10], can be reconstructed into multiple image 

volumes. Each image corresponds to a particular respiratory phase. However, albeit easy to 

implement, this method yields poor signal-to-noise ratio (SNR) as only a portion of the 

coincidence events are used in reconstruction. To maintain the count statistics in the 

reconstructed image while compensating for motion, approaches have been proposed to 

transform each gated image stack to a reference gate using non-rigid image registration 

followed by averaging [11]. The transformation field can be estimated based on 4D CT, 

simultaneously acquired MRI [4, 12] , joint PET/MR estimation [13], or gated PET images. 

Alternatively, the transformation field can also be incorporated into the iterative image 

reconstruction framework, which is often referred to as motion compensated image 

reconstruction (MCIR) [4–7, 14–20]. Several studies have shown that MCIR could yield 

better quantitative and qualitative performance than post-reconstruction registration 

approach for both rigid [21] and non-rigid motion compensation [6, 22].
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Non-rigid MCIR can be implemented in two ways: 1) Image deformation – this can be done 

by warping the reconstructed image from a reference respiratory geometry to other 

respiratory gates (i.e., target gates) prior to the forward projection. After back projection, the 

updating image is warped back to the reference gate position [14, 19, 23]; 2) System matrix 

deformation – this is done by deforming the system matrix from a target respiratory 

geometry to a reference respiratory gate for each respiratory phase [4, 17, 18, 24], allowing 

both the emission image and attenuation map not to move. Both approaches have been 

demonstrated to compensate for respiratory motion effectively and yield comparable 

performance [25]. The major difference between these two approaches is that the first 

approach requires two sets of motion fields, i.e., the forward transformation from the 

reference to the target gates, and the transpose of the transformation [26] or the inverse of 

the motion field [12, 14, 19] for back warping the updating image and the sensitivity map to 

the reference gate. Care must be taken to ensure that spatial mismatch after a full 

transformation cycle (target to reference, then reference to target) is minimal. Such 

inconsistency could lead to degradation of resolution and quantitative accuracy [19]. In 

contrast, the latter approach only requires one set of motion field between each pair of target 

and reference gates and does not need the transpose/inverse motion field.

Existing non-rigid MCIR methods incorporate discrete motion fields that assume each 

respiratory gate is motion free. However, there can be a large amount of intra-gate motion 

present, especially during inspiration gates, as shown in our previous study [5]. In addition, 

inter-cycle motion variation can also cause motion blur that is not properly corrected by 

existing methods [27]. Furthermore, none of these methods are applicable to dynamic 

studies that require the non-rigid motion field at each time point for list-mode 

reconstruction. We have previously proposed the Internal-External Motion Correlation 

(INTEX) method that estimates continuous rigid internal organ motion based on the 

respiratory trace acquired on an external device [5, 28]. This motion information is then 

incorporated into a motion-compensation OSEM list-mode algorithm for resolution-recovery 

reconstruction (MOLAR) framework [29] to perform Rigid Event-by-Event (R-EBE) 

respiratory motion correction during reconstruction. This approach has been shown to 

correct for both inter- and intra-gate respiratory motions effectively [5], and has been applied 

to dynamic data [8]. However, as this method can only correct for rigid motion, the target 

organ may have remaining motion blur caused by non-rigid motion. In addition, for patients 

with multiple lesions, multiple reconstructions with rigid INTEX (R-INTEX) may be 

required for each target lesion, which might be impractical.

In this study, with the aim to correct for non-rigid respiratory motion on an event-by-event 

basis in the reconstruction for both static and dynamic PET data, we developed a solution 

that consists of two components: 1). Non-rigid INTEX (NR-INTEX) estimates a continuous 

deformation field for each voxel at a timing resolution that matches an external respiratory 

trace, e.g. 40 Hz or 50 Hz as in this study; 2). Non-Rigid MOLAR (NR-MOLAR) 

compensates for non-rigid motion by deforming the system matrix according to the 

deformation field to perform non-rigid motion correction for each coincidence event. The 

point spread function (PSF) and time-of-flight (TOF) kernels were also deformed according 

to the motion field in our implementation. We first validated NR-MOLAR using simulated 

XCAT phantom data, which provided known motion fields. The application of both NR-
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INTEX and NR-MOLAR for non-rigid EBE (NR-EBE) MCIR was then compared to: 1). 

single gated reconstruction at end-expiration phase; 2). A conventional non-rigid MCIR 

using discrete motion field (NR-Discrete, one motion field per gate); 3). and the previously 

developed R-EBE [5] on three healthy human studies with 18F-FPDTBZ (pancreas tracer 

[30]) and a 18F-FDG study of a liver cancer patient who had multiple lesions in the 

abdominal region. In section II, we describe NR-INTEX and NR-MOLAR in detail. Section 

III presents the experiments and the quantitative evaluation methods. Section IV presents the 

results of the simulations and human studies. The findings are discussed in Section V, and 

the conclusion of the study is given in Section VI.

II. Material and Methods

In this study, all data were acquired on Siemens Biograph mCT scanners. The respiratory 

traces in patient studies were acquired using Anzai belt system (Anzai Medical, Tokyo, 

Japan), which was attached to the human subjects’ lower abdomen to record the respiratory 

motion in the AP direction. An overview of the data generation and the steps of the proposed 

approaches is shown in Fig. 1. The dashed line denotes the reconstruction without motion 

information that is equivalent to conventional MOLAR; the solid lines denote the workflow 

of the proposed non-rigid EBE motion compensation method. The NR-INTEX component is 

presented in section II B, and NR-MOLAR is given in II C.

A. Estimation of Motion field and Motion Model

To generate motion fields, each PET list-mode dataset is first binned into eight phase gates 

followed by OSEM reconstruction with 3 iterations, 21 subsets using the manufacturer’s 

software, which includes PSF and TOF information. We denote the gated PET 

reconstruction as λg = λj
g, g = 1, …, G, j = 1, …, J  where g is the gth image in the sequence of 

G respiratory gates, and J is the total number of voxels in the image. The motion fields 

between each respiratory gate and a single reference gate (RG) image λRG are then 

estimated using non-rigid registration.

In general, non-rigid registration seeks to estimate the transformation T g RG:ℝ3 ℝ3, 

which is a spatial mapping of all points in the target image λg to their corresponding points 

in the reference image λRG, where the arrow notation g → RG indicates non-rigid 

deformation from image space g to space RG. We seek the transformation estimate T g RG

that maximizes a similarity metric Γ between the two images λg and λRG :

T g RG = arg max Γ λRG, λg ∘ T g RG + γR(T ) (1)

where ○ is the transformation operator that denotes application of the transformation to the 

image, R is a regularization term, which is a function of the transformation T , and γ is the 

regularization parameter. In this work, we set Γ to be the normalized mutual information 

metric (NMI) [31]. We parameterize our deformation model using a free-form deformation 

(FFD) [32], which uses the displacements of an isotropic grid of B-spline control points to 

define the transformation, and R is taken to be a measure of the linear elastic bending energy 

that enforces smoothness of the transformation deformation field. We implement the above 
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equation using a multi-resolution approach with 3 levels, with a final B-spline control point 

spacing of 15 mm, and optimize the similarity metric using the conjugate gradient method. 

This algorithm is implemented as part of the BioImage Suite software package [33]. For 

motion-compensated reconstruction, given xj
g = xj

g, yj
g, zj

g  as the center location of the jth 

voxel at gate g, the voxel based displacement/motion fields in each (x, y, z) direction can 

then be generated from the transformation:

xj
g + Δxj

g RG = xj
g RG (2)

where Δxj
g RG denotes the displacement of voxel j from gate g to RG in x : Left-Right 

(LR), y: AP, and z: SI directions, respectively. These non-rigid displacement fields will be 

used to estimate continuous displacement fields and be incorporated into MOLAR for event-

by-event motion correction.

Assuming the change of radiotracer distribution between gates is solely caused by motion, 

the following equivalence holds:

λj
g RGλ xj

g RG = λ xj
g + Δxj

g RG = λ xj
g λj

g
(3)

This is illustrated in Fig. 2, where the transformed voxel j centered at location (xj
g RG, 

yj
g RG, zj

g RG) may not align with the image grid and overlap with neighboring voxels. A 

tri-linear interpolation is therefore applied to combine all possible contributions of λl
g RG

(here we substitute index j with index l to avoid confusion) to λi
RG in the image grid 

corresponding to RG as used in previous studies [15, 17]:

λj
RG = ∑

l ∈ Nj, g
wl, j

g RGλl
g RG

(4)

where λi
RG denotes the mean intensity value in voxel j at RG after applying both 

transformation and interpolation, Nj,g represents all neighborhood voxels of the reference 

gate voxel j based on its position in gate g, wl, j
g RG is a weighting factor that determines the 

portion of the overlapping volume between voxel l (of gate g) and its neighboring voxel j (in 

gate RG).

In this study, we choose the end-expiration phase, where the attenuation correction CT is 

acquired, as the RG, and the other respiratory gates are denoted as target gates (TG). Rather 

than directly registering all TG images to the RG, we instead take advantage of the fact that 

the image sequence is temporally smooth such that images λg and λg+1 have relatively less 

deformation than the deformation between images λg and λg+2. Here, we register each 

image only to its immediate temporal neighbor toward the RG. For example, by choosing 

gate 5 as the reference, for g < 5, we calculate the transformations T 1→2, T 2→3, T 3→4, and 

T 4→5, and for the images g > 5, we calculate the transformations T 6→5, T 7→6, and T 8→7. 

We then concatenate these transformations to form an overall transformation, e.g., T 1→5.
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B. NR-INTEX: Estimation of a continuous motion field

To perform non-rigid respiratory motion correction on an event-by-event basis, we must 

estimate the continuous motion field of the internal organs. We have previously developed 

INTEX to convert a respiratory trace acquired externally into rigid internal organ 

displacement for a single organ [5, 28]. The external trace is recorded by the Anzai belt in 

the format of relative displacement (unitless) denoted as D(t), where t is time, which is 

recorded at 40Hz or 50Hz (depending on the version of the Anzai software). The internal 

organ motion is obtained by measuring the displacement of the center of mass (in mm) 

Δxcom
g , of a target organ for each respiratory gate g with respect to the reference gate. By 

performing phase gating on the respiratory trace in the same way as the list-mode data, we 

compute the mean displacement Dg of the trace corresponding to each gate. Based on the 

internal displacement Δxcom = Δxcom
1 , …, Δxcom

G  and external motion information 

D = D1, …, Dg , linear correlations can be established for each direction:

Δxcom = P1xD + P2x (5)

where P1x, P2x, are the slope and intercept estimated from linear fitting in each direction 

x=(x, y, z). A 3D displacement vector xcom (t) that models the rigid motion of the target 

organ can therefore be obtained at each time point t by converting the continuous respiratory 

trace D (t) as follows:

Δxcom(t) = P1xD(t) + P2x (6)

In this study, we extend the INTEX correlation to continuous non-rigid displacement fields 

that will be used to deform the system matrix in NR-MOLAR. We first establish INTEX 

correlation between the displacement fields Δxj = Δxj1 RG, …, ΔxjG RG  and the mean 

displacement of the respiratory trace D for each voxel j:

Δxj = P1x, jD + P2x, j (7)

where P1x, j , P2x, j are the slope and intercept for each voxel j. A total of 6 parameter 

matrices (3 slopes and 3 intercepts) were generated as the inputs for NR-MOLAR. With this 

linear correlation for each voxel, the continuous time-dependent displacement field Δxjt RG

representing the point-to-point transformation between the respiratory displacement at time t 
and RG for each direction can be obtained:

Δxjt RG = P1x, jD(t) + P2x, j (8)

The displacement fields are generated at the temporal frequency of the Anzai acquisition 

during reconstruction. We also compute R2 of the linear fitting (Eq 7) in each direction to 

assess the goodness of linear fitting at the voxel level; this metric will be used for evaluation 

for all studies.
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C. NR-MOLAR: Deforming the System Matrix

In NR-MOLAR, we define yt = yi
t, i = 1, .., I  as the expected value of the prompt 

coincidences along LOR i at time t, where I is the total number of LORs. Let λt = (λt
j , j = 

1, … , J) denotes the time-varying radioactivity map (time varying solely due to motion), its 

element λt
j represents the average radioactivity concentration within voxel j at time t. 

Without motion compensation, the coincidence events acquired at time t can then be written 

as:

yt = Cλt + r + s (9)

where C is a simplified system matrix with dimension of I×J, and each element ci,j ci(xj ) 
denotes the probability of an annihilation originating from voxel j being detected on LOR i 
accounting for geometry, resolution, attenuation, and solid angle effects; r and s represent 

the expectations of random and scattered events. For motion compensation, our aim is to 

reconstruct a single image λ at the reference gate using all the coincidence events. This can 

be achieved by either deforming the image from the reference respiratory phase to a target 

phase at time t to obtain λRG→t, or the system matrix at each time t to a reference phase to 

obtain ci, jt RG. We adopted the latter approach in this study. Following Eq 3 and 4, ci, jt RG

can be derived and Eq 9 can be rewritten as:

yt = Ct RGλ + r + s (10)

Deforming the system matrix can be seen as “bending” the LORs into curves of response 

(CORs), where both forward and back-projections are traced along the CORs. Therefore, 

both emission and attenuation images can be kept at the reference position where the 

attenuation CT is acquired to achieve matched attenuation correction in the reconstruction. 

In list-mode notation, for event k occurring on LOR i(k) at time t(k), we replace indexes i by 

k, and substitute ck,j, in the conventional TOF MOLAR [29] by ck, j, τk
t RG, the updating 

equation for list-mode NR-MOLAR can then be derived as:

λj
n + 1 = λj

n

Qj
∑

k = 1

K ck, j, ik
t RGLkAkNk

T ∑j
′ ck, j′, τk

t RGLkAkNkλj′
n + Rk, τk + Sk, τk

Qj

= 1
nT

∑
tt′ = 1

nT
∑
i = 1

I
∑

τ = 1

nτ
ci, j, t′, τ

t RGLi, t′Ai, t′Ni

(11)

where n is the iteration number, k represents the index of each detected event, ck, j, τk
t RG is the 

deformed system matrix element including TOF kernel after applying Eq. 3 and 4 to ck, j, τk
t(k) , 

i.e.,

ck, j, τk
t(k) = ck, j

t(k)ζk, j, τk
t(k)

(12)
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where τk represents the TOF bin for event k, and ζk, j, τk
t(k)  is the TOF kernel indicating the 

contribution of image voxel j to time bin τk for event k. Since the LOR becomes curved, 

both the PSF and TOF kernels are deformed to match. Lk is the decay factor, Ak is the 

attenuation factor. Nk is the sensitivity (normalization) term, Rk, τk is the randoms rate 

estimate and Sk, τk is the scatter rate estimate in counts per second in TOF bin τk. Scatter 

events are estimated using the TOF SSS as proposed in [29]. Since respiratory motion is 

spatially smooth, for computational savings, scatter is considered as motion independent in 

this study. The random events are estimated from the product of the singles rates of the two 

detectors for each LOR, and then uniformly distributed across all TOF bins. Q is the 

sensitivity image that is calculated by back-projecting randomly sampled single events along 

the CORs to account for the effects of motion on voxel sensitivity. In the calculation of Q, 

each time frame of duration T (seconds) is divided into nT short time bins denoted t′ in 

seconds. nτ represents the total number of TOF bins (nτ =13 for the mCT).

D. PSF Modeling

In MOLAR, the PSF resolution modeling is approximated as the product of two line spread 

functions (LSF), one for radial ( fr(Δr)) and one for axial ( fz(Δz)) resolution, indexed by the 

perpendicular radial distance Δr and perpendicular axial distance Δz from voxel j to LOR 

i(k)of event k such as:

ck, j
t(k) = c0fk

r rk, j
t(k) fk

z zk, j
t(k) Ωk, j

t(k)
(13)

where c0 is a scaling term that gives c its correct units of mm, Ωis the factor compensating 

for the solid angle of the voxel with respect to the LOR, and f (.) is the Gaussian resolution 

function determined by the full-width-at-half-maximum (FWHM) of the system resolution 

[34]. The Gaussian resolution function is truncated such that the resolution contribution of 

the edge voxels is no more than 5% of the total. Each ck, j
t(k) of the PSF kernel is computed at 

the target location xjt and then deformed by applying Eq. 3 and 4. Since the motion 

compensation is non-rigid and the neighboring voxels contributing to the PSF kernel can 

move differently, the shape of the kernel in the reference image can therefore appear as 

deformed depending on the displacement fields.

III. Experiments

A. XCAT Simulations

To validate the quantitative performance of NR-MOLAR, we generated a XCAT phantom 

simulating a 18F-FDG scan of a lung cancer patient at end-inspiration and end-expiration 

phases. A lung tumor with 16 mm diameter was inserted in the lower lobe of the right lung. 

The tumor to lung contrast was set to 8:1. Respiratory motion was simulated with a 

maximum magnitude of 20 mm in the superior-inferior direction, and 12 mm in the anterior-

posterior direction using the XCAT’s internal respiratory trace. To isolate the effect of 

motion correction without confounding factors due to motion estimation, we used the 
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ground truth motion vectors (TG −> RG) generated by XCAT simulator in the motion 

compensated reconstruction.

Both TG and RG list-mode datasets were generated using the forward-projector of MOLAR 

simulating a 10-min acquisition based on the Siemens mCT scanner. Attenuation was 

incorporated in the simulation. Randoms, scatter and TOF were not simulated. About 300M 

events were generated per respiratory gate to simulate a high-count study to reduce the 

confounding factors of noise on image quality. To assess the performance of NR-MOLAR, 

we reconstructed the TG list-mode data without and with system matrix deformation, and 

compared to the reconstruction of the RG list-mode data. The reconstruction from TG list-

mode data motion deformed to the RG position is denoted as TG-NR-MOLAR hereafter. An 

ideal reconstruction should yield similar results for RG and TG-NR-MOLAR. All the 

images were reconstructed with 3 iterations and 21 subsets using 2 × 2 × 2 mm voxels. A 4-

mm FWHM Gaussian PSF kernel was modeled in the reconstruction. For the reconstructions 

of TG and RG, phase-matched attenuation maps were used. For the TG-NR-MOLAR, the 

RG attenuation map was used. All the reconstructions were then post-filtered with a 4 mm 

FWHM Gaussian filter.

B. Human Studies

We applied the proposed NR-EBE (NR-INTEX combined with NR-MOLAR) to the scans 

from three healthy human subjects (S1, S2, and S3) injected with 18F-FP-DTBZ [30] and 

one liver cancer patient injected with 18F-FDG. All human studies were acquired on the 

Siemens mCT scanner. An Anzai belt was attached to each subject’s lower abdomen to 

record respiratory traces.

In the 18F-FPDTBZ studies, an average of 248 MBq was injected and the first 10 min of a 2-

h scan was evaluated. The liver cancer patient was injected with 225 MBq FDG followed by 

a 3-min scan, 60 min post-injection. The FPDTBZ and FDG list-mode data were first 

reconstructed into 8 respiratory phases, and 5 respiratory phases, respectively, based on 

phase gating using the vendor’s default reconstruction. Fewer respiratory gates were used for 

the FDG study since the count level was low. The motion fields between each respiratory 

gate and the reference gate at end-expiration were obtained using the freeform deformation 

registration as discussed in section IIA. The CT images were acquired at end-expiratory 

phase by coaching the subjects to hold their breath at end-expiration. The single-phase 

attenuation maps were used in all PET reconstructions. Scatter, randoms and decay were 

corrected in the reconstruction. TOF and 4-mm FWHM Gaussian PSF kernel were modeled 

in the reconstruction. For the FDG study, a 3D Gaussian filter with 5 mm FWHM was 

applied to the reconstructed images to reduce noise.

We evaluated NR-EBE against four other reconstructions: 1). no motion correction (NMC); 

2). single gated reconstruction at end-expiration phase (Gated); 3). NR-Discrete, which uses 

the same inter-gate motion fields, Δxj = Δxj1 RG, …, ΔxjG RG , as used to build 

continuous NRINTEX. The difference is that NR-Discrete uses one motion field per gate to 

deform the system matrix in NR-MOLAR; 4). R-EBE (R-INTEX+MOLAR) as previously 

described [5]. For R-EBE, the pancreas of the FPDTBZ study and a medium sized lesion (~ 
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15 mm diameter) located at the center of the liver of the FDG study were selected as the 

target organ to calculate R-INTEX.

C. Performance Evaluations

To evaluate the performance of NR-MOLAR with the XCAT data, we first computed the 

difference images between the reconstructions of TG, TG-NR-MOLAR and the ground truth 

RG. Effective MCIR would produce minimal structural differences between the ground truth 

RG and TG-NR-MOLAR reconstructions, which was assessed visually.

The quantitative evaluations were performed by measuring the relative bias of the mean 

activity in the lesion and myocardium between the ground truth RG and TG-NR-MOLAR.

Rel . Bias =
mROI

TG − NR − MOLAR − mROI
RG

mROI
RG × 100% (14)

where m is the mean intensity value in the selected ROI, and the superscript denotes the 

corresponding reconstruction. The lesion ROI was selected as the entire lesion defined on 

the phantom, and the ROI on the myocardium was defined on three central slices in the 

coronal view.

In the human studies, to evaluate the quality of linear correlation between the respiratory 

trace and the motion field at a voxel level, we first assessed the goodness of fit (R2) for each 

voxel for each human study visually. We further used scatter plots of R2 versus motion 

amplitude of each voxel to reveal the relationship between the correlation and motion 

amplitude.

The quantitative evaluations for the human FP-DTBZ studies were performed by measuring 

the mean activity concentrations (Bq/mL) in pancreas and kidney, and the target (pancreas 

and kidneys) to background contrast (TBC). The ROIs were drawn on 3 consecutive slices in 

the coronal view (Supplementary Fig. S11). For the FDG study, we computed the mean SUV 

values of 26 small-to-medium metastatic lesions (< 15 mm diameter). All the ROIs (as 

shown in Supplementary Fig. S1) were defined on the Gated image at end-expiration phase 

and applied to NMC, Gated, NR-Discrete, R-EBE and NR-EBE corrected reconstruction.

IV. Results

A. XCAT Simulations

The reconstructed images of the XCAT simulations at one coronal slice are shown in Fig. 3. 

Comparing the reconstructions of TG (Fig. 3a) and RG (Fig. 3b) list-mode data, it can be 

seen the locations of the liver dome, heart and the lesion are different due to respiratory 

motion. The lung volume is also smaller in the TG than in the RG. The reconstruction of the 

TG list-mode data with NR-MOLAR (Fig. 3c) using the ground truth motion field 

(∇xTG→RG) generated by the XCAT simulator yielded similar images as the RG 

reconstruction. The difference images between the reconstructions and the ground truth 

1Supplementary materials are available in the supplementary files /multimedia tab.
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phantom RG are shown in Fig. 3(d) – (f), respectively, which also confirms that NR-

MOLAR can effectively account for respiratory motion displacement by deforming system 

matrix. For quantification, the relative differences of the mean activity between RG and TG-

NR-MOLAR (Eq. 14) were 2.7% and 4.1% in the lung lesion and the myocardium ROIs, 

respectively.

B. Human Studies

Figure 4 shows the estimated motion field (end-inspiration to end-expiration) overlaid on 

trans-axial, coronal and sagittal views of a sample 18F-FP-DTBZ human study (subject S2). 

The motion amplitudes in the SI direction measured from the centroid of the pancreas was 

17.4 mm, 8.3 mm and 7.4 mm, for S1, S2 and S3, respectively. For a sample voxel located in 

the renal cortex (denoted by the red dot in Fig. 4a), its correlation with the external Anzai 

trace is shown in Fig. 5. For this voxel, high correlations (R2≈0.9) were observed in both SI 

and AP directions, and no correlation was found in the LR direction. However, it can be seen 

that the motion amplitude in the LR direction was negligible. To assess the goodness of fit 

for all the voxels, we generated images of R2 in each direction (SI, AP, and LR), allowing us 

to assess the quality of fitting in relation to anatomical location. The R2 distributions from 

the same subject in Figs 4 and 5 in the same coronal slice is shown in Fig. 6(b–d) overlaid 

by the contours of the liver, pancreas and spleen (Fig. 6a). It can be seen that the R2 value 

was generally uniform and high (>0.7) in the SI direction. The distribution in the AP 

direction had more local variations in the middle of the image, but the correlation was larger 

than 0.5 in most of the regions. In contrast, the distribution was patchy in the LR direction 

with very low correlation in the center of the image, and relatively higher correlation in the 

left and right regions.

To investigate the potential impact of voxels with low correlation with the Anzai data on 

motion correction, we generated scatter plots of the displacement of each voxel versus their 

R2 values in each direction and the results are shown in Fig. 7. The orange rectangular boxes 

highlight the voxels that have motion displacements smaller than 4 mm with R2 values 

below 0.6. For voxels with low correlation, their absolute displacements were mostly smaller 

than 4 mm, which was the FWHM of the PSF kernel used in NR-MOLAR. Similar trends 

were also observed in the other human studies (results not shown). This analysis illustrated 

that while some voxels have low correlation with the external trace in certain directions, 

most of them had small motion amplitudes, and therefore, we did not expect those voxels to 

have substantial impact on the motion correction results.

Fig. 8 presents sample reconstructed images in the coronal view of a 18F-FP-DTBZ study 

(one study is shown here and the other two studies can be found in the supplementary 

materials Fig. S2). It can be seen in the NMC images that the fine structures of the renal 

cortex (denoted by the solid arrows) were blurred due to respiratory motion. The Gated 

reconstruction at end-expiration phase yielded sharper fine structures in the renal cortex at 

the cost of substantially increased image noise as only 1/8 of the counts were used. NR-EBE 

yielded sharper and thinner fine structures of renal cortex, and recovered a higher contrast of 

the cold spot in spleen than NR-Discrete (denoted by the dotted arrow), which is likely 

attributed to the reduced intra-gate motion with NR-EBE. Although R-EBE yielded similar 
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image quality as NR-EBE in the renal cortex, NR-EBE yielded noticeably sharper rental 

cortex in the right kidney, and higher contrast of the cold spot in the spleen. In addition, 

since R-EBE transformed the LORs in the entire FOV rigidly based on the motion 

information estimated from a single organ, for the organs that do not move in accordance 

and have non-rigid movement components, R-EBE can yield artifactual blurring. This 

situation is demonstrated in Fig. 9 with zoomed-in images showing the uptake in the bone 

marrow. It can be seen that R-EBE blurred the gaps in the bone marrow (denoted by the 

arrows) compared with other reconstructions.

Tables 1 and 2 show the quantitative analysis of the mean radioactivity concentration and the 

TBC in different organs, respectively. The results are summarized as percentage increase 

compared to NMC images. It can be seen that NR-Discrete achieved an average of ~8% 

increase across 3 human subjects in 3 regions, while R-EBE and NR-EBE achieved an 

average increase of ~10% in the same measurement. Gated reconstruction yielded a larger 

increase from 12.4% to 17.5% in those regions likely because the ROIs were defined on the 

Gated reconstructions, which matches the best with Gated reconstruction but might have a 

slight mismatch around the boundaries in other reconstructions. Regarding TBC, NR-EBE 

yielded higher contrast than NR-Discrete, where both were substantially better than R-EBE. 

The higher TBC achieved by NR-Discrete and NR-EBE was mainly due to the reduced 

activity in the background (supplementary materials Table S1). This could be attributed to 

the more accurate motion estimation based on the non-rigid registration, which reduced the 

spill-over of the activity from renal cortex and pancreas into the background regions and led 

to higher contrast.

For the 18F-FDG study, two sample coronal slices that include multiple metastatic lesions 

are shown in Fig. 10. The lesion denoted by the red solid arrow is the target lesion for 

computing rigid INTEX in R-EBE. The red dashed arrows denote 7 sample lesions that were 

subject to respiratory motion blurring. Gated reconstruction led to higher contrast on some 

of the lesions. However, the significantly increased background noise prohibited the 

detection of lesions 1 and 5. Although NR-Discrete increased the lesion contrast, some of 

the lesions, e.g. lesion 6, still appeared as motion blurred. This is likely due to the intra-gate 

motion. R-EBE yielded increased contrast and more rounded shape on the target lesion and 

its neighboring lesions (1 – 3). However, lesions 4 – 7 located in a different part of the liver 

and the lesions denoted by the green solid arrows were even more blurred than the NMC 

reconstruction. Among all the reconstructions, NR-EBE yielded the highest contrast and 

rounder shape of the lesions. Lesions 4 and 5 have also become clearly discerned.

The relative difference of lesion SUV mean of all the reconstructions compared to NMC 

were computed for 25 lesions (the full result is shown in the supplementary materials Fig. 

S3). The mean and standard deviation of the percentage improvements over all the lesions 

for Gated, NR-Discrete, R-EBE and NR-EBE are 35% ± 37%, 25% ± 23%, −5% ± 19%, 

and 34% ± 26%, respectively. Gated reconstruction yielded reduced SUV on 5 lesions 

(range: −3% - −13%) , which might be attributed to noise. R-EBE, NR-Discrete and NR-

EBE all yielded 26% increase in SUV on lesion 1 as it was the target lesion. However, R-

EBE yielded reduced SUV on 15 other lesions as those did not move in coherent with the 

target lesion. NR-EBE yielded superior performance than NR-Discrete on 19 out of 25 
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lesions and similar performance on the rest. All the motion corrected reconstructions yielded 

a small SUV reduction on lesion 25 (Gated: −13%, NR-Discrete: −3%, R: −12%, NR-EBE: 

−6%), which is the one located in the bone marrow.

V. Discussion

In this study, we have proposed a novel approach to compensate for non-rigid respiratory 

motion on an event-by-event basis in the reconstruction. This approach consists of two 

components, NR-INTEX and NR-MOLAR. NR-INTEX estimates the non-rigid internal 

organ motion for each voxel in high temporal resolution by using the linear correlation 

between an external respiratory trace and the motion fields estimated from gated 

reconstructions. NR-MOLAR uses the motion field to deform the system matrix that 

consists of LOR based PSF kernel to compensate for motion in the reconstruction.

In NR-MOLAR, we adopted a system matrix deformation approach that involves 

transformation followed by a tri-linear interpolation as proposed in [17, 18, 35]. Lamere et 

al. [17, 36] reported that this approach could potentially lead to artifacts in areas such as in 

the diaphragm where large elastic deformation occurred. This might be attributed to the fact 

that when two neighboring voxels are “pulled apart” due to large motion displacement, the 

voxels between them might not be “filled in” with tri-linear interpolation. These “void” 

voxels will not be intersected by the CORs in the forward/back projections and will not get 

updated. This is particularly the case when Siddon ray-tracing was used as the forward/back 

projector, and the PSF kernel was not modeled in their studies. The resolution model 

implemented in MOLAR is a wide-band projection operator which could potentially remedy 

this problem as the PSF consists of more neighboring voxels in addition to the tri-linear 

interpolation. Therefore, such “void” voxels are less likely to be created. Indeed, we did not 

observe any artifact in the liver dome in our XCAT study that was simulated with 20 mm 

maximum motion magnitude in the SI direction. Another solution that might completely 

eliminate the possibility of “void” voxels could be reconstructing the images using 

unorganized point clouds [37]. In addition, the transformation implementation did not 

preserve mass. Previous studies have reported using different approaches to achieve mass 

preservation such as multiplying the Jacobian determinant after interpolation [12, 38] or 

activity preserving interpolation [26]. However, all these studies aimed to correct for cardiac 

motion, where the motion field can change abruptly locally. In contrast, the gradient of 

respiratory motion field is locally smooth. Therefore, we do not expect preserving mass will 

have a big impact on our results. That being said, comparisons between mass-preserving and 

non-mass preserving techniques on respiratory motion correction with different gradient and 

magnitude, and their impacts on transforming image versus transforming system matrix 

warrant comprehensive further investigations, which are beyond the scope of this study.

To obtain motion fields at high temporal resolution for event-by-event non-rigid motion 

correction, we extended the previously proposed R-INTEX [5], which was designed to 

correct for rigid motion, to NR-INTEX. This was achieved by establishing linear 

correlations between the external respiratory trace and each voxel in the motion field. 

However, as poor correlation may affect the accuracy of motion compensation as 

demonstrated in our previous study [5], it is therefore, important to examine the quality of 
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the correlation for each voxel, and its relationship with the motion magnitude. The 

distributions of R2 in Fig. 6 showed that the correlation was high and relative uniform in the 

SI and AP directions in general. A heterogeneous correlation distribution was seen in the LR 

direction with very low correlation in the center of the body, which was in line with our 

expectation as the organs along the midline should have minimal motion in the LR direction. 

We further explored the correlation between R2 and their motion magnitude for each voxel. 

The scatter plot results in Fig. 7 reveal that the majority of the voxels with low correlations 

(<0.6) also had motion magnitudes smaller than 4 mm. As this small estimated motion 

magnitude was smaller than the intrinsic system resolution, we do not expect the voxels with 

low correlation would impact the resulting image quality substantially. Nonetheless, for 

those voxels that do not actually move, minor motion displacements introduced by the non-

rigid B-spline warping operator and tri-linear interpolation in the reconstruction could 

introduce blurring effects. Although it did not seem to affect the quantification substantially, 

we expect this quantification bias might be further reduced for static lesions if a threshold is 

used in NR-INTEX, such that the effective motion displacement is set to zero if the motion 

magnitude or correlation is smaller than certain levels.

Comparing to NR-Discrete for the human studies, NR-EBE further reduced motion blurring 

and yielded higher mean activity in the organs/lesions. NR-Discrete applied one motion field 

to all the events in the same respiratory phase. However, as large intra-gate motion could 

occur within an inspiration phase [5], a single motion field may not be most accurate for 

these events, and therefore residual motion remained in the results. In contrast, NR-EBE 

used NR-INTEX to interpolate the motion field according to the respiratory trace, which 

adapts to the respiratory motion variation down to millisecond, thus generating a more 

accurate motion field at each time point for each event. On the other hand, R-EBE applied 

rigid-motion displacement obtained from a target organ (i.e., pancreas in the FPDTBZ 

studies or a single lesion in the FDG study) to the entire FOV, whereas other organs (i.e., 

spleen or the other lesions) might not move consistently with the target organs/lesion. We 

observed that NR-EBE and REBE performed similarly for the target organs/lesion, while R-

EBE introduced artefactual blurring to bone marrow and reduced SUV for the rest of the 

lesions. Indeed, previous studies have demonstrated that liver, pancreas, spleen and kidneys 

all have different magnitudes of movement during breathing [1]. Therefore, if a single 

known lesion/organ is the target for motion correction, R-EBE would be desired due to its 

simplicity on the estimation of the motion displacement. However, if multiple targets are 

present in the FOV or if there are no known targets, NR-EBE is a more practical and 

accurate approach.

Further investigation should be performed to compare NR-EBE results with gated 

reconstruction at matched count statistics acquired from prolonged scans, and the 

commercial optimal gating approaches [39] on more patient studies. We expect that for 

patient with regular breathing patterns and no baseline shift of the respiratory trace, the 

optimal gating or quiescent period gating [40] approaches could yield comparable 

quantification, albeit with moderately increased image noise. However, these motion 

correction approaches will become less effective if the breathing pattern is more irregular or 

in count-limited studies such as 90Y-PET/CT [41]. In addition, while we focused on motion 
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correction for static PET in this study, the NR-EBE can be directly applied to dynamic PET 

studies, similar to our previous implementation of R-EBE for dynamic PET [8].

A preset number of gates (8 gates for the FPDTBZ studies, and 5 gates for the FDG study) 

were used to generate gated PET images and derive continuous displacement fields. The 

optimal number of gates depends on multiple factors such as the total number of coincidence 

events and the patient’s breathing pattern. For high-count studies with irregular breathing 

pattern, a moderate increase of the number of gates, e.g., from 5 to 8, would reduce intra-

gate motion blurring, which might lead to more accurate motion estimation and higher 

correlation with the external trace. However, for studies with lower counts, such as the FDG 

study, the increased noise associated with more gates could lead to less accurate motion 

estimation. In addition, since we perform registration on adjacent gated images, the 

increased number of gates could lead to very small displacements between adjacent gates, 

which might not be captured by the registration algorithm. We also do not expect that more 

than 8 gates would substantially improve the already high linear correlation. Therefore, 

based on our data to date, 5 – 8 respiratory gates are suggested depending on the factors 

discussed above.

One of the factors that could impact the performance of motion correction is the 

optimization of the registration. In the current study, the FFD B-spline control point spacing 

was set to 15 mm to provide a balanced tradeoff between the smoothness of the motion 

fields and the accuracy of the registration result on individual organs, such as the kidneys. 

This parameter was applied in all the human studies, and the registration results were 

assessed visually for each individual dataset prior to reconstruction. Since PET images are 

noisy, a smaller control point space (e.g., 5 mm) caused registration of noise and the cost 

function optimization was trapped at local minima. The algorithm eventually returned 

erroneous registrations such that the organs in the deformed target image appeared distorted. 

On the other hand, a larger control point space (e.g., 30 mm) did not yield satisfactory 

registration for individual organs like kidneys. In addition, we set the regularization term to 

be γ =0.001. In reality, respiratory motion in the abdomen results in discontinuous motion 

fields, e.g., at the boundaries between soft tissue and rigid anatomical structures, such as the 

bone. Our transformation model, on the other hand, is smooth and continuous. We therefore 

chose a small regularization value to allow for large, local deformations in the 

transformations while maintaining smoothness. Larger γ values resulted in displacement 

fields that were overly smooth (e.g., we observed false spine motion where there was in fact 

none). Finally, our registration method used a hierarchical approach that proceeded in a 

coarse to fine manner. Using a multi-resolution sampling factor of 2, we adjusted both the 

transformation model B-spline control point spacing and the image resolution at each level. 

For registration using three levels, we thus started the registration procedure using a 60-mm 

isotropic B-spline control point grid, and progressed to 30-mm and 15-mm control point 

spacing. During the hierarchical registration procedure, the images were also down-sampled 

using the same factor. By registering the images using this hierarchical approach, the initial 

registration level first aligned large soft tissue structures with large displacements, and then 

the motion was subsequently refined at later registration levels. Using a greater number of 

registration levels showed no improvement to the registration results.
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We also took the advantage of the temporally smooth nature of the image sequence to 

register images to their immediate temporal neighbor (adjacent gate in the direction towards 

the reference gate (RG)). Adjacent transformations were then concatenated together to form 

a registration chain back to the RG image. We performed this approach because adjacent 

images have less deformation in the anatomy than when using non-adjacent images. 

Therefore, the registration algorithm will more easily converge to a satisfactory 

transformation estimate between adjacent gates. On the other hand, if the deformations 

between corresponding anatomical structures are too large, as observed in non-adjacent 

images, e.g. between gate 1 and gate 5 (the RG) in the sequence, then the registration 

algorithm might have to optimize a transformation with large displacements that can more 

likely become trapped in suboptimal local minima due to the low SNR in noisy PET images. 

The advantage of this sequential registration versus direct registration is further 

demonstrated in Fig. S4 in the supplementary material.

A more objective assessment of the registration result would require segmentation of the 

VOIs in each frame, and then computing the overlap measures between TG and RG after 

registration [42]. This objective assessment would also allow the registration parameter to be 

optimized for each dataset. We anticipate that an optimized registration for each individual 

dataset could further improve the image quality and quantitative accuracy. In future work, it 

is worthwhile to investigate the impact of the registration on NR-EBE, and at what extent the 

registration errors could corrupt the reconstruction results.

A caveat of the human studies presented in this study is the use of single phase attenuation 

CT to reconstruct the gated PET images followed by registrations. The motion estimation 

might be affected by attenuation artifacts that could be present in the gated reconstructions, 

particularly near the liver dome. Nonetheless, no obvious artifacts were observed in the 

reconstruction results. Further investigation should be conducted on estimating the motion 

fields based on non-attenuation corrected PET images in non-rigid registration and compare 

to ground truth motion fields or by using a joint reconstruction and motion estimation 

approach [43, 44].

Another limitation of the proposed method could be the computation time for reconstruction. 

For a list-mode data with ~38M true events (the 18F-FDG study) and running the 

reconstruction on a cluster with 32 CPUs, the conventional MOLAR [29] (3 iter, 21 subsets) 

completed the reconstruction in 80 min, while the NR-INTEX NR-MOLAR reconstruction 

took 187 min. The longer reconstruction time might hinder its use for routine reconstruction. 

However, it has also been shown that GPU-accelerated MOLAR can perform 40x faster than 

the CPU only code [45]. Therefore, we anticipate that NR-INTEX can be vastly accelerated 

using the GPU based version, which will be investigated in the future.

VI. Conclusions

In this study, we have proposed a novel approach to correct for non-rigid respiratory motion 

on a continuous event-by-event basis for list-mode PET reconstruction. The proposed 

method demonstrated improved visibility of moving lesions and radiotracer uptake 

quantification in comparison to discrete non-rigid motion correction, and continuous rigid 
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motion correction on multiple human studies, which appears to be a promising tool for 

compensating respiratory motion in both static and dynamic PET studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Overview of the proposed motion compensation framework. The dashed line denotes the 

reconstruction without motion information which equivalents to conventional MOLAR; the 

solid lines denote the workflow of the proposed motion compensation method.
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Fig. 2. 
Illustration of the transformation from the target location to the reference location on a 

single image grid.
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Fig. 3. 
Results of the XCAT phantom simulation. (a) NMC reconstruction of target gate (TG). (b) 

NMC reconstruction of reference gate (RG). (c) NR-MOLAR reconstruction of TG with the 

ground truth motion field. (d) The difference image between the reconstructed TG and the 

ground truth phantom RG. (e) The difference image between the reconstructed RG and the 

ground truth phantom RG. (f) The difference image between TG-NR-MOLAR and the 

ground truth phantom RG.

Chan et al. Page 22

IEEE Trans Med Imaging. Author manuscript; available in PMC 2020 June 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Estimated motion fields (yellow arrows) from a human FP-DTBZ scan (subject S2) in (a) 

trans-axial (b) coronal, and (c) sagittal directions point from end-inspiration phase to end-

expiration phase overlaid on gated PET reconstructions post-filtered with a Gaussian filter (5 

mm FWHM).

Chan et al. Page 23

IEEE Trans Med Imaging. Author manuscript; available in PMC 2020 June 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Correlations between the external Anzai displacement and the motion vector in 3 directions 

of a sample voxel located in the renal cortex (denoted by the red dot) as shown in Fig. 4.
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Fig. 6. 
(a) A sample coronal slice of the gated reconstruction of a 18F-FP-DTBZ study showing 

elevated radiotracer uptake in the pancreas. The contours of the liver, pancreas and spleen 

are highlighted in green color. Maps of R2 (goodness of fit) in the (b) SI, (c) AP, and (d) LR 

directions overlaid by the contours of the organs.
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Fig. 7. 
Scatter plots of the voxel displacements in the motion field versus R2 in each direction of the 

same human study as shown in Fig. 4.
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Fig. 8. 
Sample reconstructed images of one 18F-FP-DTBZ subject (S2). The solid arrows denote the 

fine structures of the renal cortex that are noticeably sharper in R-EBE and NR-EBE 

reconstructions where both of which corrected for intra-gate respiratory motion. The dotted 

arrows denote a cold spot in spleen that has higher contrast in NR-EBE reconstruction than 

other reconstructions.
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Fig. 9. 
Zoomed-in images showing the bone marrow of the same subject as shown in Fig. 8. The 

arrows denote the gaps where R-EBE yielded artificial blurring due to the rigid 

transformation of the LORs in the FOV. Non-rigid motion corrections, i.e. NR-Discrete and 

NR-EBE yielded similar results as NMC reconstruction in these motionless structures.
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Fig. 10. 
Two sample coronal slices of the 18F-FDG study. The red solid arrows denote the target 

lesion for estimating rigid motion in R-EBE. The red dotted arrows denote 7 sample lesions 

on which NR-EBE yielded substantial improvements in terms of contrast and shape 

compared to other reconstructions. The green solid arrows denote the lesions that are more 

blurred after R-EBE motion correction. This could be due to their movements were different 

to the target lesion.
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