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Abstract

Prosthetic joint infection (PJI) is a devastating complication that results in substantial costs to 

society and patient morbidity. Advancements in our knowledge of this condition have focused on 

prevention, diagnosis, and treatment, in order to reduce rates of PJI and improve patient outcomes. 

Preventive measures such as optimization of patient comorbidities, and perioperative antibiotic 

usage are intensive areas of current clinical research to reduce the rate of PJI. Improved diagnostic 

tests such as synovial fluid α-defensin ELISA, and nucleic acid-based tests for serum, synovial 

fluid, and tissue cultures, have improved diagnostic accuracy and organism identification. 

Increasing the diversity of available antibiotic therapy, immunotherapy, and alternative implant 

coatings remain promising treatments to improve infection eradication in the setting of PJI.
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Introduction

Prosthetic joint infection (PJI) is a devastating complication that results in substantial costs 

to society and patient morbidity.1 Despite being the focus of research efforts for many years, 

treatment failure of PJI remains high with failures rates up to 50%.2-4 Current advancements 

in knowledge have focused on prevention, diagnosis, and treatment to reduce rates of PJI 

and improve patient outcomes. Preventive measures such as optimization of patient 

comorbidities, and perioperative antibiotic usage currently generate significant research 

interest and controversy5-9. Diagnosis of PJI remains challenging in certain cases due to 

false-negative cultures, non-diagnostic laboratory tests, and heterogeneous patient 

presentation10-13. Improved synovial fluid diagnostic tests such as α-defensins and nucleic 
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acid-based tests for serum, synovial fluid, and tissue cultures attempt to improve diagnostic 

accuracy and organism identification in PJI14-19. Lastly, treatment outcomes remain poor in 

PJI. Increasing the diversity of available antibiotic therapy, immunotherapy, and alternative 

implant coatings remain promising treatments to improve infection eradication in the setting 

of PJI19-23. In this review, we will focus on recent advancements in the prevention, 

diagnosis, and treatment of PJI.

New Advancements in Prevention of PJI

Patient-specific risk optimization

In recent years, preoperative optimization of medical comorbidities has received substantial 

research attention. Several modifiable risk factors have been independently correlated with 

the development of PJI, and large database and registry data have attempted to define the 

risk correlated with each factor (Table 1).5,6,24-43 The optimization of modifiable risk factors 

remains important in prevention efforts for PJI; however, significant controversies still exist 

regarding the best diagnosis and treatment strategies (Table 1).

The most important considerations for patient optimization are: 1) whether modification 

actually reduces perioperative risk, and 2) whether these risk factors can be successfully 

modified without reducing access to care. For example, morbid obesity, or a body mass 

index (BMI) greater than 40 (or 35 with obesity related health conditions), has been 

identified as an independent risk factor for PJI with a positive association with infection risk 

as BMI increases.44 This has led to some hospitals rationing care by restricting candidacy 

for total joint arthroplasty (TJA) to patients with BMI less than 35-40. Unfortunately, many 

obese patients don’t develop a PJI, and would otherwise benefit from surgery, making it 

difficult to identify the highest risk patients in this cohort. Other methods to define risk are 

needed; for example, anthropometric indices of adiposity, such as the thickness of 

subcutaneous fat, may be more reliable predictors of risk in obesity than BMI.28 A similar 

rationing of care is taking place regarding risk factors such as perioperative glucose control 

and tobacco use (Table 1). Preoperatively predicting perioperative glucose control remains 

challenging, however, and the validity of using hemoglobin A1c, which measures a 

collective 90-days of serum glucose control, as a surrogate measure has recently been 

questioned.29-31 Alternative tests such as perioperative serum glucose levels and 

fructosamine have been described as more sensitive measures of perioperative glucose 

control, and have demonstrated promise in preoperative screening for high risk patients.32,33. 

Multidisciplinary preoperative patient optimization strategies, such as the Perioperative 

Orthopedic Surgical Home model, as recently described by Kim et al., attempts to 

coordinate risk factor optimization amongst nutritional, medical and surgical specialists and 

may improve upon these optimization strategies.45,46 Further studies are needed to define 

the best methods to balance risk factor modification with access to care.

Perioperative Antibiotic Usage

Perioperative antibiotic usage is a proven strategy to reduce rates of PJI, and is routinely 

implemented as a part of existing national guidelines from the Center for Disease Control 

(CDC). Optimal antibiotic selection and dosages specifically for TJA, however, remain 
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controversial. For instance, a recent large database study noted a 32% higher risk of PJI 

when non-cephalosporin antibiotics such as vancomycin were used for preoperative 

prophylaxis.7,47,48 This may be due to issues such as weight-based underdosage or improper 

administration protocols.48 Another controversial topic regarding perioperative antibiotic 

prophylaxis in TJA is the use of single versus multiple perioperative doses. The revised CDC 

guidelines in 2017 recommended against 24 hours of perioperative antibiotics in favor of a 

single perioperative dose.49 A recent meta-analysis and systematic review showed that single 

versus multiple doses of perioperative antibiotics does not seem to affect rates of PJI after 

TJA, however, the level of evidence supporting a single dose was low, and active randomized 

controlled trials will provide better guidance on these recommendations in the TJA 

population.50

Other prevention strategies have focused on the administration of local antibiotics during 

TJA. Unfortunately, this strategy has not proven effective in practice. The routine use of 

antibiotic loaded bone cement (ALBC) for cemented primary hip and knee arthroplasty is 

controversial, and it has not shown consistent efficacy or cost effectiveness in large scale 

studies to justify routine use in the United States.8,9,51 Local administration of vancomycin 

powder may be effective in reducing PJI rates after complex spine surgery; however, low-

quality data has demonstrated there may only be a slight decrease in PJI risk when used 

preventatively in TJA and may increase rates of wound seroma.52-54 Intraoperative antiseptic 

prophylactic irrigation solutions have become more popular in the past decade. Recent large-

scale studies have shown some benefit in the use of povidone-iodine solutions in infection 

prophylaxis prior to aseptic revision and primary TJA, however, it has not been consistent 

across all studies.56-58 Other irrigants such as chlorhexidine-gluconate have not been shown 

to improve infection rates, when compared with current antisepsis protocols.59

Another alternative antibiotic administration strategy that has generated interest is post-

operative extended antibiotic prophylaxis, particularly in high-risk patients. Inabathula et al. 

published a retrospective cohort study comparing an extended oral antibiotic protocol for 7 

days to standard perioperative antibiotic administration following elective TJA in groups of 

patients with high risk comorbidities.60 They found significantly reduced rates of PJI using 

this protocol with a 1% infection rate in the extended antibiotic group versus 2.2% in the 

perioperative administered group alone.60 While this is promising data, others have been 

critical of the methodology, and the potential global health impact of widespread adoption of 

these protocols needs to be balanced with maintaining appropriate antibiotic stewardship.61

New Advancements in Diagnosis of PJI

Serum-based Markers for PJI Diagnosis

Reliable identification of PJI typically involves invasive procedures such as joint aspiration 

or intra-operative tissue sampling. The use of blood-based biomarkers for diagnosis is 

advantageous as it: 1) can provide an organism-specific diagnosis without the need for tissue 

culture, 2) minimally-invasive, 3) easy to administer, and 4) less time-consuming. Table 2 

provides a summary of recent promising diagnostic markers for PJI. Currently, serum 

inflammatory cell counts and biomarkers such as erythrocyte sedimentation rate (ESR) and 

C-reactive protein (CRP) are measured routinely for diagnosis of PJI.62 Previous studies 
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have shown that elevated white blood cell (WBC) is unreliable for identifying PJI with a 

pooled sensitivity of only 45% with specificity at 87%, and it is not currently recommended 

for PJI diagnosis.10,63 Serum-based biomarkers such as CRP and ESR are currently the 

recommended first-line serum tests for identifying PJI with estimates of sensitivity and 

specificity at 86% and 72% for ESR and 87% sensitivity and 79% specificity for CRP.11,64 

As diagnostic tools, CRP, and ESR have limitations in monitoring response to treatment, 

diagnosis in the setting of low virulence organisms, and for those that have systemic 

inflammatory diseases. Given the limitations of current serum laboratory tests, recent studies 

have focused on the development of alternative serum biomarkers.

A few studies have explored proinflammatory cytokines produced in response to bacterial 

infections as potential serum biomarkers for identifying PJI.63,65,66 Randau et al. observed 

that serum IL-6 levels were significantly elevated in patients presented with PJI compared to 

healthy controls and those with aseptic loosening of the implants.67 A meta-analysis, based 

on 17 studies involving >700 patients, revealed that serum IL-6 could achieve diagnostic 

accuracies of 83%, with 72% sensitivity and 89% specificity.68 Intriguingly, combining 

serum IL-6 with other serological tests such as CRP can markedly improve PJI diagnostic 

accuracy.69,70 Non-cytokine biomarkers such as procalcitonin are also secreted during PJI-

induced systemic inflammation, and therefore being explored as a potential biomarker. 

However, the lack of sensitivity may limit the usefulness of PCT for PJI diagnosis.71-73 

Other serum-based biomarkers such as D-Dimer, TNF-α, intracellular adhesion molecule-1, 

and lipopolysaccharide-binding protein have shown diagnostic promise68-71. Nonetheless, 

rigorous clinical studies are required to evaluate their clinical utility.

One limitation of the previously described serum biomarkers is that they are not pathogen-

specific, which often forces clinicians to prescribe broad empiric antimicrobial agents until 

tissue samples are surgically obtained and cultured. There has been a recent push to utilize 

pathogen-specific B cell responses and antibodies as diagnostic and prognostic markers of 

PJI, particularly S. aureus PJI. This pathogen has evolved many strategies to efficiently 

evade host immune responses to cause chronic PJI.74,75 Nonetheless, anti-S. aureus antibody 

responses during an infection can be utilized to diagnose S. aureus infections. The authors of 

this review have developed a serum-based multiplex immunoassay for reliably diagnosing S. 
aureus PJI.76 Utilizing this immunoassay, it was shown that antibody responses against 

certain S. aureus antigens dominate during PJI. Employing S. Aureus specific antigens either 

singly or in combination, this assay was able to achieve a diagnostic accuracy of 89%.76 

Additionally, assessing anti-S. aureus antibody titers expressed by a subset of pathogen-

specific B cells called “circulating plasmablasts” or antibody secreting cells (ASCs) 

achieved a greater than 85% diagnostic and prognostic accuracy to follow treatment 

response in patients with S. aureus diabetic foot infections.77 A recent study by Wood et al. 

demonstrated the utility of serologic anti-cytotoxin LukAB antibodies for diagnosing 

orthpaedic S. aureus infections in children. Interestingly, the authors observed that serum 

anti-LukAB antibody titers reliably discriminated children with S. aureus infections from 

uninfected controls with greater than 80% accuracy.78 Nonetheless, antibody-based 

diagnostic studies such as ours and others, are still at the proof-of-concept stage.76-78
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Synovial-fluid Based Markers for PJI Diagnosis

The synovial spaces in joints are the sites where most infections actually occur, and they are 

consequently particularly apt places for tissue sampling of suspected infections. During an 

ongoing infection, synovial fluid experiences a drop in viscosity and a massive increase in 

innate and adaptive immune cells, predominantly polymorphonuclear cells (PMNs). These 

changes are reflected by other features including: 1) transformation from the normally clear, 

pale-yellow fluid to one that is dark yellow, and cloudy or opaque; 2) increase in volume; 

and 3) the presence of inflammatory mediators and anti-inflammatory products secreted by 

the resident synovial cells and by the infiltrating immune cells. Furthermore, these synovial 

products are retained in the joint and not diluted by rapid mixing with the plasma because 

they are constrained by the synovial capsule. Given these dramatic changes in the synovial 

fluid, many investigators have sought distinctive synovial markers to indicate the presence of 

an ongoing infection.12

Recent studies have attempted to identify unique biomarkers independent of traditional 

synovial fluid culture or cell count for the diagnosis and prognosis of infection. CRP and D-

dimer have been examined for their increase in synovial fluid during ongoing PJI. 13,79 Their 

performance has generally been good-to-excellent with sensitivities as high as 99%, 

however, many wonder if they provide the sensitivity needed for identifying low-virulence 

pathogens such as S. epidermidis. In fact, a recent critical examination of the clinical utility 

of the serum-borne analytes, even in combination with WBC in the synovial fluid, revealed 

that while the analytic power is quite good, its accuracy remains only about 85% with 

substantial opportunity for improvement.12 Other promising synovial fluid biomarkers 

include PMN derived products such as neutrophil gelatinase-associated lipocalin and α-

defensins.

Because the joint becomes heavily populated by PMN during infection, high abundance 

secretory proteins produced by those cells accumulate in the small volumes of the synovial 

capsule. One family of polypeptides that have demonstrated diagnostic promise in recent 

years are α-defensins. Produced primarily by PMN, α-defensins are a set of related low 

molecular weight polypeptides (called antimicrobial peptides) that have anti-bacterial 

activity.14 When used for the diagnosis of PJI in synovial fluid, it achieved sensitivity and 

specificity of over 90% in the hands of multiple investigators.14,80-85 In addition, a recently 

introduced lateral flow immunoassay kit, Synovasure™, is now recommended for rapid 

analysis (~20 minutes) in the surgical suite, though it was found to be slightly less sensitive.
15,16,85 Leukocyte esterase (LE) is a 168-kDa enzyme also secreted primarily by PMN. 

Recent reports are very encouraging about the diagnostic power of LE in a conventional 

immunoassay format that is both sensitive and specific, and in an immunoassay strip format, 

like Synovasure™, that can be used in the surgical suite and can yield results in 20 minutes, 

albeit with slightly reduced sensitivity. Another promising synovial fluid biomarker 

produced by neutrophils is lipocalin-2.86 A recent study by Vergara et al. showed an 86% 

sensitivity and 77% specificity to discriminate PJI versus aseptic revision failures.86 

Recently, a third neutrophil-expressed marker protein that has been examined: Calprotectin 

is a 24-kDa heterodimer that can be as much as 60% of the soluble protein in the cytoplasm 

of PMN. In one report, calprotectin had greater than 95% specificity and sensitivity in 
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distinguishing infected from aseptic patients.87 All three of these biomarkers reflect the high 

abundance of PMN that enter the synovial space and there is promise for each to be a useful 

tool alone or in combination with other markers. With this impressive success in the recent 

past, one cautionary note in regards to low virulence pathogens like S. epidermidis or C. 
acnes. There is at least one report which claims that low virulence organisms elicit modest 

and not readily measurable changes in these assays potentially yielding false negatives.88 A 

second concern regards the impact of metallosis from certain implants that can cause false 

positives in the α-defensin assay. This can be corrected by a complementary marker like 

synovial CRP, which is typically not elevated in the setting of metallosis even with a positive 

α-defensin assay.17

An alternative approach that demonstrates promise includes nucleic acid-based techniques. 

Nucleic acid-based approaches such as polymerase chain reaction (PCR) or more recently 

next generation sequencing (NGS) have offered great hope for rapid and accurate 

identification of infecting pathogens. At the same time, they raised substantial concerns 

about the creation of confounding, potentially incorrect diagnostic information.89 As with 

culture, pathogens collected from the skin can be problematic contaminants. Possibly more 

confusing is the potential for residual nucleic acids from dead cells to be collected in the 

synovial samples taken for analysis90 Another concern in these nuclei acid-based methods is 

their potential vulnerability to recent antibiotic use.18,91 NGS approaches can readily 

distinguish multiple species but may also be vulnerable to similar contamination issues and 

further studies are warranted.19

Aware of these concerns, several investigators have begun to explore the utility of the 

following potentially powerful, and reasonably rapid, approaches. One alternative method to 

DNA-based methods of PCR, which may be complicated by false positive results, is the use 

of reverse transcriptase PCR (RT-PCR) of bacterial ribosomal RNA18. In contrast to DNA, 

rRNA degrades at the time of cell death, theoretically reducing the rates of false positive 

results. In support of this theory, a recent examination of SF samples from culture-positive 

PJI patients showed thatRT-PCR of 16S/28S rRNA genes yielded higher specificity and 

sensitivity than conventional markers like serum CRP and PMN.18 Additionally, Two recent 

papers have reported significant correlation with culture methods in culture positive samples. 

In addition, these groups have identified potential pathogens in culture negative synovial 

fluid raising the prospect that nucleic acid testing may be a significant advance in treatment 

of these culture negative cases in particular. 19,92

Implant-based Markers for PJI Diagnosis

Microbiological culture from periprosthetic tissue is a necessary step for correct 

identification of an infecting organism in PJIs. Despite modern diagnostic methods, isolation 

of the infecting organism in the setting of PJI can be challenging, and approximately 15% 

are reported as culture negative.75,93-96 One method to improve upon our current culture 

techniques includes implant sonication.

Implant sonication describes the process of subjecting an implant material to ultrasonic 

waves through a buffer fluid to mechanically disrupt intercellular connections. This 

disruption releases bacterial cells from the implant surface into the fluid medium, while 
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dissociating large cell aggregates.97 Following sonication, the fluid can be cultured to 

diagnose the infecting organism. Since the introduction of implant sonication there have 

been mixed opinions on the ability for sonicate fluid culture to diagnose infection with more 

accuracy than periprosthetic tissue culture. Several studies have concluded that sonication 

alone is superior to periprosthetic tissue culture and especially when culturing in optimal 

conditions such as blood culture.98-100 Other studies have shown that tissue culture may be 

more sensitive than sonicate culture for the diagnosis of PJI.97,101-103 Ultimately, studies 

agree that the addition of sonicate culture to classic tissue culture methods may improve the 

likelihood of identifying the causative organism.101 Recently, Erivan et al. demonstrated that 

sonicate fluid recovered the causative organism in 10 patients with PJI, where periprosthetic 

tissue culture was negative.97 From these results, the authors suggested that if implant 

sonication is feasible in a particular clinic, it should be included in the diagnosis workflow 

as it has superior ability to recover the infecting organism. Alternatively, sonicate fluid can 

be analyzed using multiplex PCR methods in order to determine the infecting organisms 

without the need for culture.104 The addition of molecular diagnosis by PCR may improve 

the accuracy of sonicate fluid because it has the ability to identify viable and non-viable 

bacteria as well as decreasing the overall time to diagnose from days to hours.105 Ultimately, 

future studies are warranted to achieve consensus on the use of sonication in the clinic.

New Advancements in the Treatment of Musculoskeletal Infection

The failure rate of PJI treatment remains high despite surgical debridement, prosthetic 

exchange, and targeted systemic antimicrobial agents. Emerging antibiotic resistance, 

formation of biofilm, and migration of bacteria to immune privileged locations such as the 

osteocyte lacuna-canalicular network all contribute to the challenge of treating these 

infections.106-108 A summary of promising treatment strategies in PJI are shown in Table 3.

Novel Antibiotic Strategies

Systemic antibiotic therapy is a critical aspect to treating PJI, however, increasing bacterial 

resistance to conventional antimicrobial agents creates significant treatment challenges.
109,110 Over the past decade, novel antibiotics with broad spectrum activity against gram-

positive organisms such as daptomycin, which is a cyclic lipopeptide, and linezolid, an 

oxazolidinone, have been developed to expand treatment options for resistant infections.
111-113 For instance, daptomycin had greater than an 80% treatment success rate for a mix of 

chronic and acute PJIs in the setting of resistant Staphylococcal infection when alternative 

antibiotics such as vancomycin could not be used due to resistance or patient intolerance.111 

Next generation oxadolidinones or semisynthetic glycopeptides have shown excellent in 
vitro activity against resistant gram-positive infections, while improving upon the oral 

bioavailability (tedizolid) or half-life (oritavancin, dalbavancin) relative to previous agents, 

allowing for less frequent dosing periods or use of oral regimens.20

The addition of biofilm active agents and antibiotics that target metabolically quiescent 

bacterial colonies, termed small colony variants are also an important component of treating 

PJI. The minimum inhibitory concentrations (MIC) that are used as susceptibility tests for 

cultured bacteria do not reflect the susceptibility of the bacteria within a biofilm, which can 
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require many fold higher concentrations to achieve the minimum biofilm eradication 

concentration (MBEC). In vitro studies from clinical isolates of S. aureus isolated from PJI 

suggest that rifampin and doxycycline, are among the few common antibiotics with 

measurable biofilm bactericidal concentrations (90% of S. aureus biofilms tested could be 

killed by rifampin and 50% by doxycycline).114 These findings are supported by clinical 

studies that show rifamycin-based antibiotics such as rifampin improve treatment of PJI, 

however, as a monotherapy, rapid resistance develops, emphasizing the importance of 

combination antimicrobial therapy in S. aureus PJI.21,115

The development of novel antibiotic or small molecule delivery systems may be a successful 

strategy to target biofilm formation and improve infection eradication. Both resorbable and 

non-resorbable antibiotic carriers such as polymethylmethacrylate (PMMA) or calcium 

sulfate respectively have been shown to increase local antibiotic concentrations well above 

MIC values for many different antibiotic combinations in vitro. 116,117 These local delivery 

systems are frequently used in the setting of PJI; however, there is no strong evidence to 

support their ability to improve eradication of clinical infection. For example, the use of 

gentamicin impregnated beads and/or sponges resulted in increased failure after debridement 

and implant retention for acute PJI with failure rates 40% in the local gentamicin group 

versus 26% in the control group after propensity matching.118 Additionally, antibiotic-

impregnated calcium sulfate beads did not improve outcomes after debridement and implant 

retention in acute PJI.119 Another method of local antibiotic delivery by an intra-articular 

catheter showed some success in a limited number of patients.120 Well-controlled studies are 

still needed to justify the added cost, risk of resistant organisms, and morbidity of additional 

local antibiotic therapy to treat PJI.

Immunotherapy

Immunotherapy is another major area of interest to improve both the prevention and 

treatment of PJI. Both active and passive immunization strategies have been attempted in the 

past to target common PJI associated bacteria. Unfortunately, active immunization strategies 

focusing on prevention strategies utilizing vaccines to common sources of PJI such as S. 
aureus have not been successful beyond Phase I clinical trials.121-123 Vaccine strategies 

targeting components of the cell wall not universally expressed across strains such as poly-

N-acetyl glucosamine, LTA acid and capsular polysaccharides have failed to reduce 

infection in the clinical setting.121,124 Another vaccine targeting iron-regulated surface 

determinant system (Isd) B, which is a cell wall-anchored protein that allows iron 

scavenging from hemoglobin in S. aureus, from Merck (V710) showed preclinical promise. 

However, it failed to reduce infection rates or mortality in a phase 2b/3 trial focused on 

prevention of S. aureus infection after cardiothoracic surgery.122 Additionally, increased 

rates of mortality due to sepsis was found in patients who did get infected, suggesting that 

this vaccine may have been detrimental to host immunity to S. aureus.122 Given these 

previous failures, newer strategies are utilizing a multi-agent vaccine with three or four S. 
aureus surface/capsular antigens, and these vaccines have shown improved immunogenicity 

in preclinical and early stage clinical trials in healthy volunteers.125 Further clinical trials in 

the setting of infection are needed to assess the efficacy of these approaches. Other 

approaches for active immunization against S. aureus have included targeting other virulence 
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factors such as alpha-toxin, Panton-Valentine Leukocidin, surface protein A (SpA), and 

secretory proteins, however, these have not progressed beyond preclinical or early stage 

healthy human trials.126,128

Passive immunization strategies may show more promise than vaccine-based approaches as 

a complement to systemic antimicrobial therapy in both the treatment and prevention setting, 

however, these are mostly in preclinical stages of development. For example, monoclonal 

antibodies (mAb) of the IgG3 class against SpA derived from human hosts are able to bind 

with high affinity to wild type S. aureus SpA even in the presence of other host antibodies, 

promote opsonization and associated phagocytic clearance, and reduced the rate of septic 

death in a mouse model of (methicillin resistant S. aureus) MRSA bacteremia in 

combination with vancomycin.129 Passive immunization can also be used to target 

components of biofilm, and a mAb against DNA binding proteins from the DNABII family, 

which have conserved homologs across many bacterial species, reduced both planktonic and 

adherent biofilm bacteria in a murine implant-associated infection model relative to 

daptomycin monotherapy alone.130 A combination of mAb to multiple S. aureus antigens 

has also shown promise in targeting biofilm formation, and mAb to α-toxin and clumping 

factor A (ClfA) resulted in decreased bacterial load in the periprosthetic tissue, reduced 

propensity for infection, and less biofilm aggregates in a murine model of hematogenous 

MRSA infection.22 Other novel strategies include targeting intracellular reservoirs of S. 
aureus. For example, an antibody-antibiotic conjugate (AAC) that consists of a monoclonal 

antibody recognizing specific sugars on wall teichoic acids (WTAs) bound to rifamycin class 

derivative antibiotic has been shown to bind to the surface of S. aureus, and then upon 

opsonization, the proteolytic environment of the phagolysosome of the host cell causes 

release of the active antibiotic form (Figure 1).23 This approach was effective in a wide 

range of host cells including murine and human macrophages, osteoblasts, endothelial and 

epithelial lining cells.23 In a murine model of hematogenous MRSA infection, use of the 

AAC reduced S. aureus bacteremia relative to systemic vancomycin alone in both wild type 

and severe combined immune deficiency spontaneous mutation (SCID) mice.23 A similar 

approach showed no toxicity in human phase I clinical trials.131

Bacteriophages

Bacteriophages (phage) are naturally occurring viruses that target bacterial cells with high 

specificity while causing minimal damage to host cells making them promising preclinical 

agents for treatment of PJI.132 Phages are able to adhere to the bacterial cell surface, insert 

its genomic material into the bacterial cell, replicate within the host cell, and lyse the 

bacterial cell wall resulting in cell death.132 Importantly, decreased cellular metabolic 

activity such as seen in small colony variants and biofilm can effectively be targeted and 

killed by phages in contrast to systemic antimicrobial agents.133 In vivo studies have shown 

synergism between the use of systemic antimicrobial agents and phage to treat biofilm 

associated infection in a rat model.134 Limited early clinical studies have shown that 

topically applied phages are safe in the setting otitis media and venous leg ulcers, however, 

no clinical data exists on its use in PJI.135,136
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Local Implant Treatments

Improving the biofilm resistance of existing implant materials would serve both as primary 

prevention of PJI and reduce rates of treatment failure. One promising strategy that is used 

clinically for infection prevention in limited cases are silver-based implant coatings. Silver is 

one of the oldest antimicrobial agents known, exhibiting anti-bacterial effects to multiple 

intracellular and cell wall targets resulting in cell death, however, historical concerns about 

toxicity have limited its clinical use.137 Recently, silver coated implants have shown 

promising results in preclinical and limited clinical studies in orthopedic trauma and limb 

reconstruction.138-140 A silver coated megaprosthesis reduced rates of postoperative 

infection (11.8% versus 22.4%), and had improved success after debridement and implant 

retention relative to titanium implants in a small study.139 Alternative approaches involving 

the use of nanoparticle-based delivery systems have attempted to reduce off target effects to 

surrounding tissues while retaining the antimicrobial activity of the silver ions, and this may 

be a promising strategy in the future.141 Chemotherapeutic agents such as cisplatin have 

shown antibiofilm activity, however, research is limited to the preclinical setting.142

Other modifications to the implant surface have not progressed beyond preclinical studies, 

however, there are some promising strategies. Covalent bonding of an antibiotic to titanium 

may allow local antibiotic delivery without impairing host cell function or prosthetic 

osseointegration for both prevention and treatment strategies.143 Surface modifications that 

enhance osseointegration of titanium in combination with antibiotic coatings may be another 

strategy to increase biofilm resistance of existing implants while promoting host cell 

adhesion in favor of bacterial cell adhesion.144 Use of antibiotic carriers such as hydrogels 

or phosphatidylcholine-based materials may allow point of care application of antibiotic 

eluting implant coatings from the implant surface for both PJI prevention and treatment.
145-147

Dispersal Agents

Another strategy that targets biofilm directly is the use of dispersal agents. Converting 

biofilm bacteria to their planktonic form may increase bacterial cell susceptibility to 

commonly used systemic antibiotics. Some examples that target the matrix components of 

biofilm include enzymatic treatments such as trypsin, Dispersin B, Lysostaphin, and 

DNases.148-150 Additionally, fibrinolytics like streptokinase or nattokinase break down the 

fibrin matrix within biofilm and decrease the MBEC of available systemic antibiotics.149,150 

Another strategy for triggering biofilm dispersal includes targeting the quorum sensing 

system.For example, treatment in vitro with autoinducing peptide type I (AIP-1), a critical 

component of the quorum sensing system, was able to trigger dispersal of MRSA on 

titanium discs.150 RNAIII-Inhibiting peptide (RIP) is another peptide that targets the quorum 

sensing system in S. aureus by competing with RNAIII-activating peptide (RAP) which 

results in decreased cell adhesion and agr activation and has been investigated to reduce S. 
aureus adhesion to foreign materials.152 This also remains in the preclinical stages. Other 

possible local treatments to improve biofilm dispersal include the use of pulsed laser therapy 

and gold nanoparticles.153 One major concern about dispersal agents is that planktonic 

bacteria cells disassembled from their biofilms may be capable of exacerbating systemic 

infection. Therefore, dispersal agents must be used in combination with systemic therapies 
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such as antibiotics.149-151 These treatments remain in the preclinical stages in the treatment 

of musculoskeletal infection.

Conclusion

In summary, promising prevention strategies include identifying high-risk patients for PJI 

and the use of the perioperative surgical home to optimize these risks before surgery. 

Alternative antibiotic strategies such as dual antibiotic therapy for preoperative 

administration, single versus multiple doses of preoperative antibiotics, the use of local 

antibiotic treatment such as vancomycin powder are promising, but need to be investigated 

further especially in high risk patient populations. Diagnostic strategies should focus on 

increasing the accuracy of synovial fluid- and serum-based tests and providing accurate, 

organism-specific diagnoses. Promising strategies include α-defensin and nucleic acid-based 

tests such as rRNA PCR or NGS. Further expansion of existing antibiotic classes such as the 

next generation oxadolidinones and improving the development of biofilm active agents 

such as rifampin to target biofilm more effectively is necessary for systemic antibiotic 

therapy improvements. Novel treatment strategies including immunotherapy, implant-based 

coatings, and dispersal agents may all improve biofilm treatment and eradication in PJI.
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Figure 1. DSTA4637S mechanism for killing intracellular S. aureus.
Step 1, DSTA4637S binds S. aureus. Step 2, host cells internalize DSTA4637S-bound S. 
aureus. Step 3, fusion occurs with the phagolysosome where lysosomal cathepsins cleave the 

VC linker, releasing dmDNA31. Step 4, unconjugated dmDNA31 kills the intracellular 

bacteria. Reproduced with permission from: Peck M, Rothenberg ME, Deng R et al. A Phase 

1, Randomized, Single-Ascending-Dose Study To Investigate the Safety, Tolerability, and 

Pharmacokinetics of DSTA4637S, an Anti-Staphylococcusaureus Thiomab Antibody-

Antibiotic Conjugate, in Healthy Volunteers. Antimicrob Agents Chemother. 2019; 63(6). 

pii: e02588-18.
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Table 1.

Summary of recent modifiable risk factors independently correlated with PJI development.

Risk Factor Risk of Infection
(Odds 
Ratio)5,6,25-27

Proposed Interventions Controversies

Obesity 1.7 – 6.4 BMI cutoffs (>35-40)5,6,25-27,43

Weight loss/nutrition counseling39

Bariatric surgery37,38

Anthropometric indices of adiposity at 
site of surgery28

Weight loss counseling has not been reliably shown to lead 
to appropriate weight reduction in most patients.
Outcomes of bariatric surgery to reduce post-operative 
complications remains controversial and has not consistently 
shown decreased perioperative risk.
Thickness of subcutaneous fat at surgical site as opposed to 
body mass index may be more indicative of complication 
risk.
May increase health disparities in TJA.
Obesity alone may not be as strong a risk factor as other 
issues and patients benefit significantly from surgery.

Diabetes 
Mellitus

1.6 – 6.1 Hemoglobin A1C cutoffs (7.0, 7.5, 
8.0) 29-31

Serum fructosamine cut offs (> 
292μmol/L)32

Perioperative serum glucose 
measurement (> 150-200mg/dl)33

Improved perioperative glucose control does seem to 
improve postoperative outcomes.
Low cutoffs < 7.0 may be difficult for patients to achieve.
Hemoglobin A1C may not correlate as strongly as other 
markers of glycemic control.

Active 
Smoking

1.4 – 3.7 Smoking cessation counseling34-36

Nicotine replacement products34-36

Serum cotinine testing34

Smoking cessation does improve outcomes after TJA.
Hard to monitor compliance.
Serum cotinine testing may be useful to improve compliance 
with smoking cessation recommendations.

Malnutrition 5.0 – 7.0 Laboratory cut off values (albumin 
cutoffs <3.5 g/dL; total lymphocyte 
count <1,500 cells/mm3 ; transferrin 
level <200 mg/dL)40-42

Nutritional modification

Need more data on whether this is modifiable or indicative 
of underlying poor host.
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Table 2.

Summary of New Developments in Diagnostic Strategies in PJI.

Tissue
Source

Proposed Diagnostic
Markers

Limitations

Serum Interleukin 669,70,73

Procalcitonin71-73

D-dimer12,13

Tumor necrosis factor – α69

Intracellular adhesion molecule-1 70

Lipopolysaccharide-binding 
protein70

Blood Antibodies76-78

May not improve diagnostic accuracy of existing combination of ESR/CRP and 
clinical criteria and adds expense.
Markers except organism-specific antibody production are not pathogen specific 
so need further tissue sampling for microbial culture.
Serum antibodies may be confounded by pre-exposure to previous infection.

Synovial Fluid α-defensins14-16,80-85

Synovial CRP12,13,81,82

Synovial D-dimer12,13,82

Leukocyte esterase12,81

Lipocalin86

Calprotectin87

High sensitivity and specificity as single agents or in combination ranging from 
75% - 100% depending on the marker and study.
Some available as point-of-care test (Synovasure lateral flow immunoassay kit 
for α-defensins)
False positives can occur such as in the setting of metallosis, and a combination 
of markers may be better than any single agent alone.
False negatives may occur in the setting of low virulence organisms.
Not as useful to diagnose persistent infection in the setting of reimplantation 
surgery.

Periprosthetic 
Tissue and 
Implant

RT-PCR of RNA18,91

NGS19,92,93

Implant sonication97-100

May improve upon tissue or synovial fluid culture in identification of organisms 
especially in culture-negative settings.
May be confounded by contamination from skin or non-infecting 
microorganisms.
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Table 3.

Summary of New Developments in Treatment Strategies.

Treatment
Category

Promising Strategies Examples

Antibiotics Novel agents with activity against 
resistant bacteria.
Biofilm active agents.
Local antibiotic delivery systems

New cyclic lipopeptides (daptomycin), oxazolidinones (tedizolid), or synthetic 
glycopeptides (oritavancin)20,111-113.
Rifampin, doxycycline21,114,115.
Calcium sulfate beads119, intra-articular catheter120, PMMA116,117

Immunotherapy Active Immunization (prevention)
Passive Immunization (prevention 
and treatment)

Vaccines targeting cell wall components of S. aureus (LTA acid, capsular 
polysaccharides), cell wall anchored proteins (IsdB), toxins (α-toxin, Panton-
Valentine Leukicidin, SpA).121-128

Monoclonal antibodies to SpA, DNA binding proteins, α-toxin, ClfA.22,129,130

Antibody-antibiotic conjugates23,131

Bacteriophages Phages targeting biofilm. Synergism between systemic antibiotics and phages, use against low metabolic 
persister cells132-135

Local Implant 
Treatments

Silver
Antibiotic coatings
Chemotherapeutic Agents

Silver coating, nanoparticle-based delivery systems138-141

Covalent bonding of antibiotic to titanium, antibiotic carriers such as hydrogels 
or phosphatidylcholine 143-147

Cisplatin, mitomycin C have anti-biofilm activity even in low metabolic cell 
states142

Dispersal Enzymatic Treatments
Fibrinolytics
Targeting quorum sensing

Dispersin B, lysostaphin, DNases148,149

Streptokinase149,150

Autoinducing peptide type I, RNAIII-inhibiting peptide149,150,152
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