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Abstract

Background: Older surgical patients with Alzheimer’s disease (AD) dementia and delirium are 

at increased risk for accelerated long-term cognitive decline.

Objective: Investigate associations between a probabilistic marker of preclinical AD, delirium, 

and long-term cognitive decline.

Methods: The Successful Aging after Elective Surgery cohort includes older adults (≥70yrs) 

without dementia who underwent elective surgery. 140 patients underwent preoperative magnetic 

Corresponding author: Bradford C. Dickerson, brad.dickerson@mgh.harvard.edu, phone: 617-726-5571, fax: 617-726-5760, address: 
MGH Frontotemporal Disorders Unit & ADRC, 149 13th St., Suite 2691, Charlestown MA 02129.
*Drs. Inouye and Dickerson contributed equally as co-senior authors.

Present address of author(s), if different from affiliation: Annie Racine, Biogen, Cambridge, MA.

Conflicts of Interest: The authors have no conflict of interest to report.

HHS Public Access
Author manuscript
J Alzheimers Dis. Author manuscript; available in PMC 2021 January 01.

Published in final edited form as:
J Alzheimers Dis. 2020 ; 75(1): 187–199. doi:10.3233/JAD-190380.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



resonance imaging and had ≥ 6 months cognitive follow-up. Cortical thickness was measured in 

‘AD-Signature’ regions. Delirium was evaluated each postoperative day by the Confusion 

Assessment Method. Cognitive performance was assessed using a detailed neuropsychological 

battery at baseline; months 1, 2, and 6; and every 6 months thereafter until 36 months. Using either 

a General Cognitive Performance composite (GCP) or individual test scores as outcomes, we 

performed linear mixed effects models to examine main effects of AD-signature atrophy and the 

interaction of AD-signature atrophy and delirium on slopes of cognitive change from post-

operative months 2-36.

Results: Reduced baseline AD-signature cortical thickness was associated with greater 36-month 

cognitive decline in GCP (standardized beta coefficient, β = −0.030, 95% confidence interval 

[−0.060, −0.001]). Patients who developed delirium who also had thinner AD signature cortex 

showed greater decline on a verbal learning test (β = −0.100 [−0.192, −0.007]).

Conclusion: Patients with the greatest baseline AD-related cortical atrophy who develop 

delirium after elective surgery appear to experience the greatest long-term cognitive decline. Thus, 

atrophy suggestive of preclinical AD and the development of delirium may be high-risk indicators 

for long-term cognitive decline following surgery.
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INTRODUCTION

Patients with dementia due to Alzheimer’s disease (AD) who develop delirium are at 

increased risk for poor post-operative outcomes, including accelerated cognitive decline[1, 

2]. Increasing evidence suggests that an interrelationship between delirium and AD occurs 

even before the onset of dementia[1, 3–5]. The associations between delirium and preclinical 

or prodromal AD, and implications for cognitive function following surgery, are still being 

investigated.

Preclinical AD refers to the stage of the disease where pathological changes are present prior 

to the onset of cognitive or functional impairment; therefore, biomarkers sensitive to early 

preclinical changes are required for probing this phase of the disease. The AD signature, a 

specific set of brain regions that show reduction of cortical thickness due to AD, has 

previously been shown to be associated with cognitive decline and progression to 

dementia[6–11], as well as with cerebrospinal fluid (CSF) biomarkers of AD[9]. Thus, the 

AD signature is a good surrogate marker for preclinical AD in the absence of available 

molecular markers for amyloid-beta (Aβ) and tau, and provides a window into associations 

between delirium and preclinical AD. Indeed, we have previously shown that patients with 

thinner cortex in the AD-signature experience delirium with greater severity[3]. This study 

uses this magnetic resonance imaging (MRI)-based AD biomarker to investigate 

associations between a preclinical AD risk marker, delirium, and long-term cognitive decline 

following surgery.
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We hypothesized that patients with the thinnest cortex in the AD-signature regions, 

suggestive of preclinical AD, would have the steepest rates of cognitive decline after surgery. 

We additionally hypothesized that development of delirium would hasten such decline, such 

that patients with the most AD-related atrophy and delirium would have the fastest rates of 

post-operative cognitive decline. To determine if our findings were AD-specific, we also 

examined associations with the ‘Aging-Only signature,’ which is another set of regions of 

interest (ROIs) that is associated with reduction of cortical thickness due to aging but is 

relatively spared in AD[10].

MATERIALS AND METHODS

Participants

Participants were selected from the Successful Aging after Elective Surgery (SAGES) study. 

The SAGES study design and methods have been described in detail previously.[12, 13] In 

brief, eligible participants were age 70 years and older, English speaking, scheduled to 

undergo elective surgery at one of two Harvard-affiliated academic medical centers, with an 

anticipated length of stay of at least 3 days. Eligible surgical procedures included: total hip 

or knee replacement; lumbar, cervical, or sacral laminectomy; lower extremity arterial 

bypass; open abdominal aortic aneurysm repair; and open or laparoscopic colectomy. 

Exclusion criteria were evidence of dementia, delirium, or hospitalization within 3 months, 

terminal condition, legal blindness, severe deafness, history of schizophrenia or psychosis, 

and history of alcohol abuse or withdrawal. A total of 560 patients met all eligibility criteria 

and were enrolled between June 18, 2010 and August 8, 2013. Written informed consent for 

study participation was obtained from all participants according to procedures approved by 

the institutional review boards of Beth Israel Deaconess Medical Center (BIDMC) and 

Brigham and Women’s Hospital (BWH), the two study hospitals, and Hebrew SeniorLife, 

the coordinating center. Additional exclusion criteria included contraindications to 3T MRI. 

Because the primary outcome for this analysis is cognitive decline after surgery, we only 

included patients (N = 140) with MRI who completed at least 6 months of post-operative 

follow-up (Supplementary Figure 1).

Neuroimaging protocol and analysis

We analyzed the magnetization-prepared fast gradient-echo (MPRAGE) 3D anatomical T1-

weighted images (TR 7.9 ms, TE 3.2 ms, 15° flip angle, 32 kHz bandwidth, 24×19 cm field 

of view, 0.94 mm in-coronal-plane resolution, 1.4 mm slices, preparation time of 1100 ms 

with repeated saturation at the beginning of the saturation period, and an adiabatic inversion 

pulse 500 ms before imaging) collected at the BIDMC Radiology Department on a 3T HDxt 

MRI (General Electric Medical Systems) scanner using an 8-channel head coil[14].

T1 image volumes were examined quantitatively by FreeSurfer (http://

surfer.nmr.mgh.harvard.edu) cortical surface-based reconstruction and analysis of cortical 

thickness, using a hypothesis-driven approach[3, 6, 7, 11]. Briefly, we followed standard 

procedures for motion-correction, tissue segmentation, visual inspection for potential errors 

in reconstruction, and cortical thickness calculation.
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Nine bilateral AD-signature ROIs (Supplementary Figure 2) identified from prior analysis 

were mapped onto the individual participants[6, 7]. For each subject, mean cortical thickness 

within each ROI was calculated, averaged across the hemispheres, and averaged to obtain a 

single measure, the “AD signature”, which was used for further statistical analysis as the 

primary diagnostic biomarker. The AD signature was scaled by a factor of 10 so that the 

resultant regression coefficients refer to the change in outcome associated with a 0.10 mm 

(slightly less than 1.5 SD) increase in AD signature cortical thickness. The AD signature 

was reverse-scored so that smaller values indicate less atrophy (thicker cortex) and larger 

values indicate greater atrophy (thinner cortex). The term “atrophy” is used throughout this 

manuscript to refer to lower cortical thickness (i.e. thinner cortex) in a cross-sectional 

framework and does not refer to longitudinal cortical thinning. We hypothesized greater AD-

signature atrophy would be associated with steeper, more negative slopes of cognitive 

decline.

Our primary models analyzed the AD signature as a continuous variable, but for descriptive 

or graphical presentation as well as effect size calculation, we created a categorical variable 

based on tertiles of distribution by AD signature thickness. Tertile 3 refers to those with the 

thinnest cortex (i.e. most AD-related cortical atrophy), tertile 2 includes those with average 

thickness, and tertile 1 refers to those with the thickest cortex in these ROIs and serves as the 

reference group in stratified models.

Additionally, we calculated the ‘Aging-Only signature’ in a similar fashion based on brain 

regions where atrophy is seen primarily in normal aging with minimal additional effects of 

AD, and which do not overlap with the AD signature ROIs[10, 15]. Using the same methods 

as above, we calculated a single summary “Aging-Only signature” measure as the average 

thickness of the eight bilateral ROIs described in Supplementary Figure 2. Similar to the AD 

signature, the Aging-Only signature was scaled by a factor of 10 and reverse-scored.

Assessment of delirium and cognitive function

Delirium incidence and severity were assessed on each postoperative day. Cognitive function 

was assessed at baseline prior to surgery, and at post-operative months 1, 2, 6, and every 6 

months thereafter until 36 months.

Delirium Assessment—The Confusion Assessment Method (CAM)[16] diagnostic 

algorithm, supplemented with a validated chart review method[17], was used to detect 

delirium presence or absence for each patient. The CAM was rated based on information 

from patient interviews performed once daily in the late morning or early afternoon at 

approximately the same time each day; these included a brief cognitive screen (orientation, 

short-term recall, sustained attention), the questions from the Delirium Symptom Interview, 

and information related to acute changes in mental status noted by nurses or family 

members[13]. Both the CAM and the chart-based method have high sensitivity and 

specificity[17]. The CAM plus chart combined approach is the preferred method for 

detecting delirium since it maximizes sensitivity; while the CAM detects the majority of 

delirium cases, the additional chart review increases sensitivity by identifying delirium 

throughout the 24-hour period[18].
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Cognitive function—A complete neuropsychological test battery was completed 

preoperatively and at postoperative months 1, 2, 6, and every 6 months thereafter until 36 

months. The battery included the following tests: Trail Making Tests A and B, Phonemic (F-

A-S) Fluency, Category Fluency, Visual Search and Attention Test, Hopkins Verbal Learning 

Test-Revised (HVLT-R), Digit Span Forward/Backward, Boston Naming Test, and 

Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) Digit 

Symbol Substitution. For consistency, Trail Making Tests A and B were reverse-scored so 

that for all tests, higher scores correspond to better performance and lower scores to worse 

performance.

From this battery, we created a composite summary measure, the General Cognitive 

Performance (GCP), which was used as our primary outcome measure of longitudinal 

cognitive decline. GCP is a weighted composite measure that is calibrated to a nationally 

representative sample of adults ≥70 years, in order to yield a mean score of 50 and standard 

deviation (SD) of 10[19, 20] at the U.S. population level. The GCP is sensitive to change, 

has minimal floor and ceiling effects, and has been utilized in many prior studies to date[14, 

21].

We corrected for retest or practice effects using methods previously published [21, 22]. 

Briefly, this method involves subtracting a correction derived from repeated administrations 

in an age-matched non-surgical comparison sample that received the same testing protocol. 

Thus, the cognitive scores are corrected for retest effect before being entered into the 

statistical models.

Statistical Analysis

Linear mixed effects (LME) models were used to model baseline levels and longitudinal 

changes in cognitive test scores, and to assess short- and long-term differences based on the 

degree of cortical atrophy present at the pre-operative baseline MRI. A linear model was 

selected based on our prior work modeling cognitive trajectories from 2 to 36 months in 

SAGES [21]. Specifically, we used LME models with maximum likelihood parameter 

estimation and an unstructured covariance. All conditional models included a random 

intercept, random time-slope from 2-36 months, fixed time indicator variables for months 1 

and 2, and a fixed time-slope from 2-36 months, and fixed effects for covariates (mean-

centered age, female sex, and years of education), main effect of atrophy, and interactions 

between time indicator variables and atrophy (1m × atrophy and 2m × atrophy) and time-

slope and atrophy (2-36m slope × atrophy). Data were assessed for outliers, and models 

assumed that incomplete data were missing at random (Supplementary Table 1). A formal 
test for a missing data mechanism is not possible; however, we have previously shown 

through sensitivity analyses (1. imputation of extreme GCP values for those subjects who 
died or dropped out; 2. exclusion of all the subjects who would later die or drop out; 3. 
imputation of all GCP observations not observed through 36 months) that the maximum 

likelihood parameter estimation reported in this study is robust to multiple different 

assumptions about missing data, and presents a conservative estimate[21; see Supplemental 

Technical Appendix, “Sensitivity analyses: Missing data” (Page 9) of the cited manuscript 

for details]. To facilitate comparison across models, GCP score and individual 
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neuropsychological tests scores were transformed into z-scores before being entered into the 

model and standardized β coefficients are reported.

Model 1 is as described above, with the AD signature modeled as a continuous variable 

(main effect and interactions with time variables).

Model 2 is the same as Model 1 but additionally adds a main effect of delirium and the 

interaction of delirium with the AD signature and time variables (i.e. delirium × time; AD 

signature × time; and delirium × AD signature x time).

Cohen’s d effect sizes were calculated by comparing groups defined using the baseline AD 

signature measure and/or the presence of delirium with regard to slopes of cognitive 

outcomes. Slope was calculated as the predicted random slope from a linear mixed effects 

model with the same parameters as described above, but omitting delirium, the AD 

signature, and the delirium × AD signature interaction. Predicted slopes used for Cohen’s d 
analyses are provided in Supplementary Table 2.

For effect size calculations, we divided the sample into tertiles using the baseline AD 

signature measure. Thus, to estimate effect sizes for Model 1, tertile 3 (greatest atrophy) and 

tertile 2 were compared to tertile 1. To estimate effect sizes for Model 2, groups were 

categorized based on both AD signature tertiles and presence/absence of delirium, yielding 

six groups: 1) AD signature tertile 1, no delirium, 2) AD signature tertile 2, no delirium, 3) 

AD signature tertile 3, no delirium, 4) AD signature tertile 1, delirium, 5) AD signature 

tertile 2, delirium, 6) AD signature tertile 3, delirium. The last group—AD signature tertile 3 

(greatest AD-related atrophy) who also developed delirium—is hypothesized to be the 

highest risk group. The first group—AD signature tertile 1 who did not develop delirium—is 

hypothesized to be the lowest risk group and thus is the reference group against which other 

groups are compared.

Specificity Analyses—In addition to the primary models (1 and 2 above), we performed 

the following analyses to probe the specificity of the anatomical findings, and of the 

cognitive outcomes.

First, we repeated Models 1 and 2, using the Aging-Only signature instead of the AD 

signature. The purpose of these analyses was to examine the specificity of the effects of 

atrophy on outcomes, with the hypothesis that baseline cortical thickness in these brain 

regions would not demonstrate a relationship to long-term cognitive decline. For 

comparative purposes, we also illustrated GCP slope effects by dividing the sample into 

tertiles using the baseline Aging-Only signature measure and the presence/absence of 

delirium.

Based on a priori hypotheses[23] we also examined individual tests of verbal memory 

(HVLT-R total learning and delayed recall) and executive function (Trails B). For individual 

tests that showed significantly different Cohen’s d compared to the reference group (AD 

signature tertile 1 or AD signature tertile 1 and delirium negative), linear mixed effects 

models were conducted using the methods described above for Model 2 to test for effects of 
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AD signature, delirium, and AD signature × delirium on cognitive decline, with the 

individual test z-score as the outcome.

All statistical analyses were performed using Stata software (StataCorp. 2017. Stata 

Statistical Software: Release 15. College Station, TX: StataCorp LLC) with α = 0.05.

RESULTS

Of the 140 SAGES participants with MRIs and at least six months of cognitive follow-up 

(mean age 76.1 years, 61% women), thirty participants (21%) developed delirium. Other 

baseline characteristics are described in Table 1. Sample characteristics by the six AD 

signature tertile/delirium groups are also available in Supplementary Table 3 and baseline 

test scores are reported in Supplementary Table 4. Covariate model coefficients for 

standardized cognitive outcomes (z-scores) are reported in Supplementary Table 6.

To facilitate comparison across models, the following results are presented using 

standardized beta coefficients (β), which refer to the standard deviation change in cognitive 

score (or slope) per standard deviation increase in AD signature. Because we reverse-scored 

the AD signature, a negative β indicates that greater atrophy is associated with worse 

cognitive performance.

Although effect sizes were estimated using cortical signature tertiles, statistical inference 

was based on analysis of the cortical signatures as continuous variables. Therefore, graphical 

representations of our models (Figures 1 and 2) visually depict the model estimates from the 

analyses of the cortical signatures as continuous variables, but are displayed using 

categorical groups (i.e., tertiles) for descriptive purposes only. Below, effect sizes (Cohen’s 

d) are reported from the effect size analysis utilizing tertiles and β-coefficients with 95% 

confidence intervals are reported from the analysis of the cortical signature as a continuous 

variable.

Model 1: Effect of AD signature on cognitive decline

Small to medium effect sizes were observed for the difference between the tertile with the 

most AD signature atrophy (tertile 3 Cohen’s d = −0.40, Table 3) and with average atrophy 

(tertile 2 Cohen’s d = −0.26) compared to the tertile with the least atrophy (tertile 1). Greater 

baseline AD-signature cortical atrophy was associated with a steeper slope of cognitive 

decline (β = −0.030, 95% confidence interval, CI [−0.060, −0.001]; Table 2). 

Unstandardized results for our primary analysis with GCP are available in Supplementary 

Table 5.

Model 2: Effect of AD signature x delirium on cognitive decline

A large effect size (Cohen’s d = 1.10, Table 3) was observed for the difference between the 

most vulnerable group (AD signature tertile 3, delirium) and the least vulnerable group (AD 

signature tertile 1, no delirium), as illustrated in Figure 1A. Although the interaction of AD 

signature x delirium on cognitive outcomes was not statistically significant (β = −0.053, 

95% CI [−0.123, 0.016]; Table 2), the direction of the effect indicates that greater cortical 

atrophy was associated with greater cognitive decline, which was further accelerated by the 
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presence of delirium. However, given the lack of statistical significance of the effect, the 

observed association may well be due to chance or sampling variation. Additionally, 

delirium was associated with lower baseline GCP scores (β = −0.387, 95% CI [−0.728, 

−0.045]).

Specificity Analyses

Aging-Only signature—No statistically significant associations were observed for the 

Aging-Only signature at baseline, months 1 or 2, or 2-36 month slope in models with or 

without delirium (Table 2, Figure 1B). Similar to the AD-signature analysis, delirium was 

associated with lower baseline GCP scores (β = −0.431, 95% CI [−0.768, −0.095]).

Individual cognitive tests—Large effects were observed for HVLT-R total learning 

score, HVLT-R delayed recall score, and Trail Making Test B (Table 3), and LME models 

were conducted for all three individual tests (Table 2). Delirium was associated with steeper 

slopes on HVLT-R delayed recall (β = −0.117, 95% CI [−0.222, −0.012] and AD signature 

was associated with steeper slopes on Trails B (β = −0.068, 95% CI [−0.125, −0.012], 

Figure 2B), but there were no significant interactions between AD signature and delirium for 

either of these outcomes. In contrast, the interaction of AD signature and delirium was 

associated with greater decline in HVLT-R total learning score (β = −0.100, 95% CI 

[−0.192, −0.007], Figure 2A). Delirium was associated with lower baseline scores for 

HVLT-R total learning and delayed recall (Table 2).

DISCUSSION

AD signature cortical atrophy and delirium have previously been shown to independently 

predict cognitive decline and progression to dementia in people who at baseline are 

cognitively normal or have mild cognitive impairment[1, 6–8, 11, 21]. This study builds on 

this prior work by showing that greater baseline AD signature atrophy – an MRI biomarker 

probabilistically associated with AD-related neurodegeneration[9, 11] – was associated with 

greater long-term cognitive decline following surgery over the ensuing 3 years. We also 

found evidence that delirium and AD signature atrophy interact to influence the post-

operative cognitive trajectory. Specifically, declining performance in HVLT, a test of 

learning and memory, was accelerated in patients with greater AD signature atrophy who 

also developed delirium. These results indicate that older adults with a cortical signature 

suggestive of preclinical AD who develop delirium during hospitalization for elective 

surgery may be at higher risk for long-term post-operative cognitive decline. However, these 

findings are largely hypothesis-generating, and future studies with larger sample sizes are 

needed in order to make stronger conclusions.

Although the effect size for the interaction of AD signature and delirium on GCP slope was 

large when examined using group comparisons (Table 3 and Figure 1A), it was not 

statistically significant in a LME model. By examining two of the most sensitive tests to 

early AD cognitive changes[23], HVLT-R and Trails B, we were able to gain insight into this 

apparent discrepancy. For the HVLT-R total learning score, we found consistent effects using 

both group comparison analyses and the LME model. That is, participants with the greatest 

baseline AD-signature atrophy who developed delirium showed consistent long-term decline 
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on this measure with a very large Cohen’s d effect size. The HVLT-R is a commonly used 

clinical neuropsychological test of verbal learning and episodic memory. Our results are 

consistent with prior studies showing that list learning scores are predictive of dementia[23, 

24], decline in preclinical AD [25, 26], and are associated with atrophy in regions that are 

vulnerable to AD-related neurodegeneration[27] and that are captured by AD-signature 

ROIs. Interestingly, we observed an association of steeper slopes on HVLT delayed recall 

with delirium, but not with the AD signature as we would have expected. For Trails B, the 

AD signature – but neither delirium nor the interaction of delirium and the AD signature – 

was associated with steeper slopes of decline. These findings suggest domain-specific 

interactions between AD and delirium, which may not always be captured by global 

neuropsychological composite scores. However, there are also limitations to using individual 

tests, including potential floor and ceiling effects, or differing sensitivity to practice effects. 

Indeed, despite adjusting for retest effects, marginal gains were observed over time on the 

HVLT-R total learning score (but not on Trails B or GCP) in the lowest risk patients (those 

without delirium and those with delirium but who had the least AD signature atrophy; Figure 

2A). These observations point to the value of examining both general cognitive scores like 

the GCP, as well as individual tests or domain-specific tests or composites.

Lower baseline cognitive performance was consistently associated with higher risk of 

delirium across most of our models. Low cognitive ability is a known risk factor for 

delirium, and in fact has previously been shown to dominate risk in the SAGES cohort [19]. 

The one exception in the current study was that worse pre-operative performance on Trails B 

was not a statistically significant predictor of delirium. Although this could be a 

consequence of the small sample size, it could also indicate some cognitive specificity in 

terms of delirium risk. Future studies may wish to further examine this finding and its 

implications for delirium prediction further.

Unlike the AD signature, the Aging-Only signature was not associated with cognitive 

outcomes and did not interact with delirium. This observation supports the specificity of our 

findings to likely AD-related neurodegeneration, rather than reflecting an effect that is more 

diffuse due to global aging effects or pathological processes not due to AD. Thus, the 

previously reported observation in SAGES that lower baseline performance on certain 

neuropsychological tests—including HVLT-R total learning and Trails B—is associated with 

increased risk of delirium[28] is possibly referable to preclinical AD-related 

neurodegeneration of brain networks subserving learning/memory and executive function, 

rather than advanced brain aging, in at least a subset of individuals. However, AD-related 

and aging-related neurodegeneration are not mutually exclusive, and patients may 

experience both to varying degrees simultaneously. The unique and overlapping 

contributions of these two brain signatures to cognitive decline is an important area for 

continued investigation.

Our results align with previous work showing that delirium and neurodegenerative 

pathologies are independently and synergistically associated with cognitive decline[29], and 

highlight the need to further investigate the pathophysiologic mechanisms of these complex 

interactions. Neuroinflammation is the predominant theoretical pathophysiological basis of 

postoperative delirium and related post-operative cognitive decline[30–33]. There is also 
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extensive evidence that neuroinflammation is involved in AD[34, 35] and that 

neuroinflammation and AD pathology may interact to accelerate disease worsening[35–38]. 

Since delirium may be seen as the end result of neuroinflammation, our findings are 

consistent with the notion that AD pathology and neuroinflammation interact to accelerate 

cognitive decline. Because the pathophysiology of delirium is still being investigated, it is 

also possible that the present results are due to interactions between AD pathology and other 

mechanisms involved in the pathogenesis of delirium, including oxidative stress, 

neurotransmitter deficiency, blood-brain barrier dysfunction, and network disconnectivity, 

among others[31, 32]. This an important area for continued research.

This study has several limitations. Although SAGES is one of the largest cohort studies of its 

kind including detailed pre-operative MRI and cognitive assessment with long-term follow-

up, the sample for this study was relatively small since it was limited to only those with both 

pre-operative MRI and at least six months of cognitive follow-up. Thus, this study was likely 

underpowered to detect some effects, which is further supported by the lack of statistical 

significance despite large effect sizes. Statistical inference was based on the mixed effects 

models which analyzed the cortical signatures as continuous variables; in contrast, the effect 

size analysis utilized tertiles, which further exacerbated concerns about small sample sizes. 

We used the tertile approach since the use of ordered categories is a commonly selected 

methodology in clinical research, which helps to enhance clinical relevance and 

interpretability. However, due to the small sample size, the effect is estimated with low 

precision and we cannot rule out chance as a possible explanation for the observed effects. 

Practice/retest effects are a known challenge in longitudinal cognitive research; although we 

attempted to control for these effects using a non-surgical cohort, which is a robust, 

recommended approach [39] and one which we have specifically validated in this cohort 

[22], we acknowledge that there is no perfect method. To further probe the possible 

influence of retest correction on our interpretations, we performed a supplementary analysis 

using retest-uncorrected cognitive scores (Supplementary Figure 3; Supplementary Table 7); 

although absolute scores showed increases at months 1 and 2 (as expected) the cognitive 

slopes were identical and the relationships between the cortical signatures and/or delirium at 

other timepoints were minimally affected. Additionally, we attempted to control for relevant 

confounding without overfitting. To further probe potential confounding, we performed a 

sensitivity analysis testing the effect of three health-related variables (vascular comorbidity, 

medical comorbidity, and depression) as additional covariates; they did not notably change 

the results (Supplementary Table 8). While the AD signature has been shown to be 

associated with preclinical AD, molecular markers of amyloid or tau were not collected in 

SAGES, so the AD signature can only be considered as a probabilistic marker. Finally, 

generalizability may be limited, since SAGES is largely a white and well-educated sample 

of adults undergoing select surgical procedures. Indeed, future studies are needed to 

investigate other populations including but not limited to adults hospitalized for reasons 

other than surgery (or different surgeries than those studied herein) and adults who develop 

delirium unrelated to hospitalization or surgery. It will also be important to study these 

various populations across different geographical, racial, and socioeconomic contexts.

In conclusion, we found that AD-related cortical atrophy was associated with cognitive 

decline after surgery. Our results also suggest that development of post-operative delirium 
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may further accelerate this decline. However, this latter finding was not statistically 

significant, and thus must be interpreted with caution as only preliminary evidence for an 

early association between AD, delirium, and post-operative cognitive decline during the 

preclinical/prodromal timeframe. Future studies with larger sample sizes are needed to 

further probe this possible, but as yet unsubstantiated, interaction.

As additional follow-up is collected in the SAGES cohort, we intend to investigate 

longitudinally measured atrophy as well as progression to mild cognitive impairment and/or 

dementia, which will provide greater insights into the clinical applicability of these findings. 

It will be important to replicate the results of the current study and to determine if they 

generalize to other populations and other causes of delirium outside of the setting of elective 

surgery. If they do, then it will also be important to consider optimal methods to risk-stratify 

patients undergoing elective surgery for expensive or invasive pre-operative assessments, 

such as MRI, and for intensive post-operative monitoring and brain health programs aiming 

to slow or prevent long-term cognitive decline.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Group effects of cortical atrophy due to AD (A) or aging (B) and post-operative 
delirium on short- and long-term change in general cognitive performance after surgery.
The cortical signatures were analyzed as continuous variables, but for illustration purposes, 

results are displayed by groups based on cortical signature tertiles (tertile 1 has the thickest 

cortex, tertile 3 has the thinnest cortex, interpreted as the greatest atrophy) and delirium 

(present [+] or absent [−]). Tertiles are generated separately for AD signature and for Aging-

Only signature measures, leading to slight differences in group size. Estimated slopes are 

reported based on model coefficients and average cortical thickness in the respective tertile.
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Figure 2. Group effects of cortical atrophy due to AD and post-operative delirium on short- and 
long-term change on selected individual neuropsychological tests.
The cortical signatures were analyzed as continuous variables, but for illustration purposes, 

results are displayed by groups based on cortical signature tertiles (see Figure 1 for details) 

and delirium (present [+] or absent [−]). Estimated slopes are reported based on model 

coefficients and average cortical thickness in the respective tertile. (A) HVLT = Hopkins 

Verbal Learning Test – Revised total score. (B) Trails B = Trail Making Test B (reverse-

scored so that lower numbers indicate worse performance). Neuropsychological tests were 

transformed into z-scores before being entered into the models.
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Table 1.

Sample characteristics of SAGES neuroimaging sub-cohort

All No Delirium Delirium

N 140 110 30

Female Sex, n (%) 85 (60.7%) 64 (58.2%) 21 (70.0%)

Non-White or Hispanic, n (%) 12 (8.6%) 10 (9.1%) 2 (6.7%)

Age at Baseline Assessment, years, mean (SD) 76.1 (4.5) 75.9 (4.6) 76.6 (4.4)

Education, years, median (IQR) 14 (13, 18) 15 (13, 18) 14 (12, 16)

Charlson Comorbidity Index, mean (SD) 0.85 (1.02) 0.82 (1.00) 0.97 (1.13)

Baseline GCP, mean (SD) 58.7 (6.6) 59.4 (6.7) 56.2 (6.0)

Geriatric Depression Scale, median (IQR) 2 (.5, 3) 2 (1, 3) 2 (0, 3)

3MS Score, median (IQR) 95 (91, 98) 95 (92, 98) 93 (88, 96)

Proxy IQCODE, mean (SD) 3.14 (0.24) 3.12 (0.19) 3.19 (0.37)

Any ADL Impairment, n (%) 10 (7.1%) 7 (6.4%) 3 (10.0%)

To compare the delirium group to the no delirium group, chi square tests were used for dichotomous variables, t-tests for continuous variables with 
normal distributions, and Wilcoxon rank-sum tests for continuous variables with a skewed distribution.

3MS = Modified Mini Mental State Exam (range 0-100, higher scores refer to better performance); ADL = Activities of Daily Living; GCP = 
General Cognitive Performance; IQCODE = Informant Questionnaire on Cognitive. Decline in the Elderly; SAGES = Successful Aging after 
Elective Surgery

J Alzheimers Dis. Author manuscript; available in PMC 2021 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Racine et al. Page 20

Ta
b

le
 2

.

St
an

da
rd

iz
ed

 c
oe

ff
ic

ie
nt

s 
fr

om
 li

ne
ar

 m
ix

ed
 e

ff
ec

ts
 m

od
el

s 
fo

r 
as

so
ci

at
io

ns
 b

et
w

ee
n 

A
D

 (
or

 A
gi

ng
-O

nl
y)

 s
ig

na
tu

re
 c

or
tic

al
 a

tr
op

hy
 a

nd
/o

r 
de

lir
iu

m
 o

n 

po
st

-o
pe

ra
tiv

e 
sh

or
t-

te
rm

 a
nd

 lo
ng

-t
er

m
 c

og
ni

tiv
e 

ch
an

ge

St
an

da
rd

iz
ed

 C
oe

ff
ic

ie
nt

s 
(9

5%
 C

on
fi

de
nc

e 
In

te
rv

al
s)

B
as

el
in

e
M

on
th

 1
M

on
th

 2
M

on
th

s 
2-

36
 s

lo
pe

G
C

P
 (

M
od

el
 1

)

 
A

D
 s

ig
na

tu
re

−
0.

03
5 

(−
0.

17
9,

 0
.1

09
)

−
0.

04
8 

(−
0.

11
9,

 0
.0

24
)

0.
04

1 
(−

0.
02

0,
 0

.1
01

)
−

0.
03

0 
(−

0.
06

0,
 −

0.
00

1)

G
C

P
 (

M
od

el
 2

)

 
A

D
 s

ig
na

tu
re

−
0.

04
4 

(−
0.

20
2,

 0
.1

15
)

−
0.

04
0 

(−
0.

12
1,

 0
.0

40
)

0.
02

4 
(−

0.
04

4,
 0

.0
92

)
−

0.
02

0 
(−

0.
05

3,
 0

.0
13

)

 
D

el
ir

iu
m

−
0.

38
7 

(−
0.

72
8,

 −
0.

04
5)

−
0.

04
2 

(−
0.

21
5,

 0
.1

32
)

0.
04

8 
(−

0.
10

0,
 0

.1
95

)
−

0.
03

5 
(−

0.
10

5,
 0

.0
35

)

 
A

D
 s

ig
na

tu
re

 x
 d

el
ir

iu
m

−
0.

03
3 

(−
0.

38
1,

 0
.3

14
)

−
0.

04
4 

(−
0.

22
1,

 0
.1

34
)

0.
08

8 
(−

0.
06

2,
 0

.2
39

)
−

0.
05

3 
(−

0.
12

3,
 0

.0
16

)

H
V

LT
 T

ot
al

 L
ea

rn
in

g

 
A

D
 s

ig
na

tu
re

0.
12

7 
(−

0.
03

3,
 0

.2
86

)
−

0.
03

4 
(−

0.
15

6,
 0

.0
88

)
−

0.
05

9 
(−

0.
16

2,
 0

.0
44

)
0.

03
2 

(−
0.

01
3,

 0
.0

76
)

 
D

el
ir

iu
m

−
0.

58
2 

(−
0.

92
7,

 −
0.

23
7)

0.
09

4 
(−

0.
17

0,
 0

.3
59

)
0.

13
3 

(−
0.

09
1,

 0
.3

57
)

−
0.

11
0 

(−
0.

20
3,

 −
0.

01
7)

 
A

D
 s

ig
na

tu
re

 x
 d

el
ir

iu
m

−
0.

10
6 

(−
0.

45
7,

 0
.2

45
)

−
0.

12
0 

(−
0.

39
1,

 0
.1

50
)

0.
01

2 
(−

0.
21

7,
 0

.2
40

)
−

0.
10

0 
(−

0.
19

2,
 −

0.
00

7)

H
V

LT
 D

el
ay

ed
 R

ec
al

l

 
A

D
 s

ig
na

tu
re

0.
11

8 
(−

0.
05

0,
 0

.2
86

)
−

0.
06

0 
(−

0.
18

8,
 0

.0
68

)
0.

05
2 

(−
0.

05
6,

 0
.1

61
)

−
0.

02
7 

(−
0.

07
7,

 0
.0

22
)

 
D

el
ir

iu
m

−
0.

47
5 

(−
0.

83
8,

 −
0.

11
2)

0.
15

1 
(−

0.
12

6,
 0

.4
28

)
0.

14
5 

(−
0.

09
0,

 0
.3

80
)

−
0.

11
7 

(−
0.

22
2,

 −
0.

01
2)

 
A

D
 s

ig
na

tu
re

 x
 d

el
ir

iu
m

−
0.

05
4 

(−
0.

42
3,

 0
.3

16
)

−
0.

11
3 

(−
0.

39
7,

 0
.1

70
)

−
0.

16
5 

(−
0.

40
5,

 0
.0

75
)

0.
01

4 
(−

0.
09

1,
 0

.1
18

)

T
ra

ils
 B

 
A

D
 s

ig
na

tu
re

−
0.

07
9 

(−
0.

24
4,

 0
.0

86
)

0.
02

3 
(−

0.
11

4,
 0

.1
61

)
0.

01
5 

(−
0.

10
1,

 0
.1

32
)

−
0.

06
8 

(−
0.

12
5,

 −
0.

01
2)

 
D

el
ir

iu
m

−
0.

28
1 

(−
0.

63
7,

 0
.0

74
)

−
0.

14
2 

(−
0.

43
9,

 0
.1

55
)

0.
13

4 
(−

0.
11

9,
 0

.3
86

)
−

0.
02

7 
(−

0.
14

6,
 0

.0
93

)

 
A

D
 s

ig
na

tu
re

 x
 d

el
ir

iu
m

−
0.

00
8 

(−
0.

37
0,

 0
.3

54
)

−
0.

19
2 

(−
0.

49
6,

 0
.1

11
)

0.
21

9 
(−

0.
03

9,
 0

.4
76

)
−

0.
03

1 
(−

0.
15

0,
 0

.0
89

)

G
C

P
 (

M
od

el
 1

) 
– 

A
gi

ng
-O

nl
y

 
A

gi
ng

-O
nl

y 
si

gn
at

ur
e

−
0.

12
4 

(−
0.

26
7,

 0
.0

18
)

−
0.

05
6 

(−
0.

12
8,

 0
.0

16
)

0.
04

2 
(−

0.
01

9,
 0

.1
03

)
−

0.
02

3 
(−

0.
05

2,
 0

.0
06

)

G
C

P
 (

M
od

el
 2

) 
– 

A
gi

ng
-O

nl
y

 
A

gi
ng

-O
nl

y 
si

gn
at

ur
e

−
0.

12
1 

(−
0.

27
4,

 0
.0

32
)

−
0.

05
3 

(−
0.

13
3,

 0
.0

26
)

0.
05

2 
(−

0.
01

5,
 0

.1
19

)
−

0.
02

9 
(−

0.
06

2,
 0

.0
04

)

 
D

el
ir

iu
m

−
0.

43
1 

(−
0.

76
8,

 −
0.

09
5)

−
0.

04
3 

(−
0.

21
8,

 0
.1

32
)

0.
02

7 
(−

0.
12

1,
 0

.1
76

)
−

0.
02

0 
(−

0.
09

1,
 0

.0
51

)

 
A

gi
ng

-O
nl

y 
si

gn
at

ur
e 

x 
de

lir
iu

m
−

0.
13

9 
(−

0.
50

8,
 0

.2
29

)
−

0.
02

6 
(−

0.
21

9,
 0

.1
67

)
−

0.
04

8 
(−

0.
21

1,
 0

.1
16

)
0.

02
8 

(−
0.

05
0,

 0
.1

05
)

A
ll 

m
od

el
s 

in
cl

ud
ed

 m
ea

n-
ce

nt
er

ed
 c

ov
ar

ia
te

s 
fo

r 
ag

e 
(y

ea
rs

),
 f

em
al

e 
se

x,
 a

nd
 y

ea
rs

 o
f 

ed
uc

at
io

n

J Alzheimers Dis. Author manuscript; available in PMC 2021 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Racine et al. Page 21
B

as
el

in
e 

re
fe

rs
 to

 th
e 

pr
e-

op
er

at
iv

e 
co

gn
iti

ve
 a

ss
es

sm
en

t a
nd

 th
us

 p
ro

vi
de

s 
a 

re
fe

re
nc

e 
le

ve
l o

f 
co

gn
iti

ve
 f

un
ct

io
n 

pr
io

r 
to

 th
e 

on
se

t o
f 

de
lir

iu
m

. T
he

 c
oe

ff
ic

ie
nt

s 
an

d 
co

nf
id

en
ce

 in
te

rv
al

s 
fo

r 
th

e 
“B

as
el

in
e”

 
co

lu
m

n 
re

fe
r 

to
 th

e 
cr

os
s-

se
ct

io
na

l a
ss

oc
ia

tio
n 

of
 th

e 
A

D
/A

gi
ng

 O
nl

y 
si

gn
at

ur
e,

 d
el

ir
iu

m
, o

r 
th

ei
r 

in
te

ra
ct

io
n 

w
ith

 b
as

el
in

e 
co

gn
iti

ve
 p

er
fo

rm
an

ce
. T

he
 “

M
on

th
 1

” 
co

ef
fi

ci
en

ts
 a

nd
 c

on
fi

de
nc

e 
in

te
rv

al
s 

re
fe

r 
to

 th
e 

as
so

ci
at

io
n 

of
 th

es
e 

sa
m

e 
pr

ed
ic

to
rs

 a
nd

 c
og

ni
tiv

e 
ch

an
ge

 f
ro

m
 b

as
el

in
e 

to
 m

on
th

 1
; “

M
on

th
 2

” 
co

ef
fi

ci
en

ts
 a

nd
 c

on
fi

de
nc

e 
in

te
rv

al
s 

re
fe

r 
to

 th
e 

as
so

ci
at

io
n 

of
 th

es
e 

pr
ed

ic
to

rs
 a

nd
 c

og
ni

tiv
e 

ch
an

ge
 

fr
om

 m
on

th
 1

 to
 m

on
th

 2
; a

nd
, f

in
al

ly
, “

M
on

th
s 

2-
36

” 
co

ef
fi

ci
en

ts
 a

nd
 c

on
fi

de
nc

e 
in

te
rv

al
s 

re
fe

r 
to

 th
e 

as
so

ci
at

io
n 

of
 th

es
e 

pr
ed

ic
to

rs
 a

nd
 c

og
ni

tiv
e 

sl
op

e 
fr

om
 m

on
th

s 
2-

36
.

A
D

 =
 A

lz
he

im
er

’s
 d

is
ea

se
; G

C
P 

=
 G

en
er

al
 C

og
ni

tiv
e 

Pe
rf

or
m

an
ce

; H
V

LT
 =

 H
op

ki
ns

 V
er

ba
l L

ea
rn

in
g 

Te
st

 –
 R

ev
is

ed

J Alzheimers Dis. Author manuscript; available in PMC 2021 January 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Racine et al. Page 22

Ta
b

le
 3

.

C
oh

en
’s

 d
 e

ff
ec

t s
iz

es
 f

or
 g

ro
up

 c
om

pa
ri

so
ns

 o
f 

sl
op

e 
fr

om
 m

on
th

s 
2-

36
 f

or
 G

C
P 

an
d 

se
le

ct
ed

 in
di

vi
du

al
 n

eu
ro

ps
yc

ho
lo

gi
ca

l t
es

ts

E
ff

ec
t 

si
ze

: 
C

oh
en

’s
 d

G
ro

up
:

H
V

LT
 t

ot
al

 le
ar

ni
ng

H
V

LT
 d

el
ay

ed
 r

ec
al

l
T

ra
ils

 B
G

C
P

A
D

 s
ig

na
tu

re
 T

er
ti

le
s 

[r
ef

er
en

ce
 g

ro
up

: A
D

 s
ig

na
tu

re
 T

er
til

e 
1 

(n
=

45
)]

 
A

D
 s

ig
na

tu
re

 T
er

til
e 

2 
(n

=
47

)
−

0.
20

−
0.

05
−

0.
32

−
0.

26

 
A

D
 s

ig
na

tu
re

 T
er

til
e 

3 
(n

=
48

)
−

0.
13

−
0.

32
−

0.
66

−
0.

40

A
D

 s
ig

na
tu

re
 T

er
ti

le
s 

an
d 

D
el

ir
iu

m
 [

(r
ef

er
en

ce
 g

ro
up

: A
D

 s
ig

na
tu

re
 T

er
til

e 
1,

 n
o 

de
lir

iu
m

 (
n=

35
)]

 
A

D
 s

ig
na

tu
re

 T
er

til
e 

2,
 n

o 
de

lir
iu

m
 (

n=
38

)
−

0.
10

0.
02

−
0.

40
−

0.
31

 
A

D
 s

ig
na

tu
re

 T
er

til
e 

3,
 n

o 
de

lir
iu

m
 (

n=
37

)
0.

11
−

0.
23

−
0.

66
−

0.
25

 
A

D
 s

ig
na

tu
re

 T
er

til
e 

1,
 d

el
ir

iu
m

 (
n=

13
)

0.
08

−
0.

01
−

0.
16

−
0.

03

 
A

D
 s

ig
na

tu
re

 T
er

til
e 

2,
 d

el
ir

iu
m

 (
n=

9)
−

0.
44

−
0.

34
−

0.
09

−
0.

11

 
A

D
 s

ig
na

tu
re

 T
er

til
e 

3,
 d

el
ir

iu
m

 (
n=

8)
−

1.
13

−
0.

83
−

1.
16

−
1.

10

C
oh

en
’s

 d
 e

ff
ec

t s
iz

e 
in

te
rp

re
ta

tio
n:

 s
m

al
l (

d 
≥ 

0.
2)

, m
ed

iu
m

 (
d 

≥ 
0.

5)
, l

ar
ge

 (
d≥

0.
8)

; m
ed

iu
m

 to
 la

rg
e 

ef
fe

ct
 s

iz
es

 a
re

 b
ol

de
d.

G
C

P 
=

 G
en

er
al

 C
og

ni
tiv

e 
Pe

rf
or

m
an

ce
; H

V
LT

 =
 H

op
ki

ns
 V

er
ba

l L
ea

rn
in

g 
Te

st
–R

ev
is

ed
; T

ra
ils

 B
 =

 T
ra

il 
M

ak
in

g 
Te

st
 B

J Alzheimers Dis. Author manuscript; available in PMC 2021 January 01.


	Abstract
	INTRODUCTION
	MATERIALS AND METHODS
	Participants
	Neuroimaging protocol and analysis
	Assessment of delirium and cognitive function
	Delirium Assessment
	Cognitive function

	Statistical Analysis
	Specificity Analyses


	RESULTS
	Model 1: Effect of AD signature on cognitive decline
	Model 2: Effect of AD signature x delirium on cognitive decline
	Specificity Analyses
	Aging-Only signature
	Individual cognitive tests


	DISCUSSION
	Sages Study Group
	References
	Figure 1.
	Figure 2.
	Table 1.
	Table 2.
	Table 3.

