Skip to main content
. 2020 Jun 19;15(6):e0234908. doi: 10.1371/journal.pone.0234908

Table 2. Performance metrics for natural language processing and classification on the derivation cohort.

A) Average AUC metric across all five splits of the data. B) Sensitivity, Specificity, Accuracy and Precision for GloVe Models combined with RNN.

a)
Stroke
Average AUC (95% CI) Logistic Regression k-NN CART OCT OCT-H RF RNN
BOW 0.951 (0.943:0.959) 0.808 (0.767:0.848) 0.889 (0.868:0.91) 0.805 (0.774:0.836) 0.915 (0.899:0.92) 0.922 (0.902:0.942) 0.838 (0.811:0.866)
tf-idf 0.939 (0.933:0.945) 0.857 (0.825:0.889) 0.883 (0.859:0.907) 0.813 (0.801:0.825) 0.894 (0.853:0.906) 0.929 (0.909:0.948) 0.843 (0.816:0.869)
GloVe 0.904 (0.889:0.918) 0.867 (0.836:0.898) 0.734 (0.703:0.765) 0.722 (0.69:0.753) 0.767 (0.775:0.834) 0.892 (0.868:0.916) 0.961 (0.955:0.967)
Location
Average AUC (95% CI) Logistic Regression k-NN CART OCT OCT-H RF RNN
BOW 0.959 (0.944:0.974) 0.841 (0.816:0.867) 0.949 (0.93:0.969) 0.867 (0.838:0.896) 0.937 (0.919:0.955) 0.96 (0.943:0.978) 0.896 (0.873:0.926)
tf-idf 0.962 (0.943:0.981) 0.903 (0.873:0.933) 0.944 (0.918:0.97) 0.862 (0.828:0.896) 0.934 (0.917:0.951) 0.965 (0.947:0.983) 0.956 (0.936:0.977)
GloVe 0.906 (0.884:0.927) 0.843 (0.819:0.868) 0.734 (0.677:0.791) 0.699 (0.662:0.722) 0.809 (0.787:0.83) 0.873 (0.854:0.892) 0.976 (0.968:0.983)
Acuity
Average AUC (95% CI) Logistic Regression k-NN CART OCT OCT-H RF RNN
BOW 0.898 (0.874:0.922) 0.815 (0.775:0.854) 0.797 (0.748:0.846) 0.735 (0.705:0.764) 0.797 (0.742:0.852) 0.901 (0.883:0.919) 0.754 (0.733:0.779)
tf-idf 0.893 (0.865:0.921) 0.857 (0.826:0.888) 0.801 (0.762:0.839) 0.733 (0.703:0.764) 0.807 (0.764:0.843) 0.902 (0.876:0.923) 0.899 (0.875:0.922)
GloVe 0.881 (0.842:0.92) 0.842 (0.805:0.879) 0.73 (0.684:0.776) 0.719 (0.66:0.778) 0.82 (0.766:0.873) 0.866 (0.824:0.908) 0.925 (0.894:0.955)
b)
Sensitivity Specificity Accuracy Precision Threshold
Stroke 0.902 0.872 0.892 0.935 0.69
MCA Location 0.902 0.911 0.908 0.766 0.42
Acuity 0.911 0.689 0.772 0.935 0.33

k-Nearest Neighbors (k-NN); Classification and Regression Trees (CART); Optimal Classification Trees (OCT); Random Forests (RF); Recurrent Networks (RNN).