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ABSTRACT: Photoinduced bimolecular charge transfer processes involving the iron(III) N-heterocyclic carbene (FeNHC)
photosensitizer [Fe(phtmeimb)2]

+ (phtmeimb = phenyltris(3-methyl-imidazolin-2-ylidene)borate) and triethylamine as well as N,N-
dimethylaniline donors have been studied using optical spectroscopy. The full photocycle of charge separation and recombination
down to ultrashort time scales was studied by investigating the excited-state dynamics up to high quencher concentrations. The
unconventional doublet ligand-to-metal charge transfer (2LMCT) photoactive excited state exhibits donor-dependent charge
separation rates of up to 1.25 ps−1 that exceed the rates found for typical ruthenium-based systems and are instead more similar to
results reported for organic sensitizers. The ultrafast charge transfer probed at high electron donor concentrations outpaces the
solvent dynamics and goes beyond the classical Marcus electron transfer regime. Poor photoproduct yields are explained by donor-
independent, fast charge recombination with rates of ∼0.2 ps−1, thus inhibiting cage escape and photoproduct formation. This study
thus shows that the ultimate bottlenecks for bimolecular photoredox processes involving these FeNHC photosensitizers can only be
determined from the ultrafast dynamics of the full photocycle, which is of particular importance when the bimolecular charge transfer
processes are not limited by the intrinsic excited-state lifetime of the photosensitizer.

There have been long-standing efforts to replace rare and
expensive transition metals like ruthenium1−3 by Earth-

abundant metals such as iron in photosensitizers for molecular-
based technologies such as dye-sensitized solar cells and
photocatalysis.4,5 Iron is of particular interest in this regard
because it is the most abundant transition metal on earth.
Recent studies on Fe light-harvesting complexes6 have
demonstrated significant progress in terms of efficient
interfacial electron transfer,7,8 photoluminescence,9,10 and
record excited-state lifetimes into the nanosecond regime.10,11

The Fe(III) N-heterocyclic carbene (NHC) complex
[Fe(phtmeimb)2]PF6 (1) (phtmeimb = phenyltris(3-methyl-
imidazolin-2-ylidene)borate) (see Scheme 1A), with a lifetime
of ∼2 ns, was furthermore found to be capable of driving
bimolecular photoredox reactions.10 Despite efficient bimo-
lecular quenching of 1, the formation of long-lived photo-
products was limited to yields of about 5%. A Stern−Volmer
analysis suggested typical diffusion-limited kinetics, raising
significant questions about what limits the product forma-
tion.10 Furthermore, the Fe(III) hexacarbene complexes
exhibit a rare type of photophysics involving a low-spin
(doublet) 3d5 ground state and a doublet ligand-to-metal
charge transfer (2LMCT) excited state. This contributes to a
broader current interest to develop earth-abundant photoactive
complexes featuring LMCT excited states.1,3,12

A typical bimolecular photocycle is presented in Scheme 1B.
Upon irradiation the Fe(III) sensitizer is excited to the
2LMCT state. Subsequent charge separation (CS) reduces the
sensitizer while oxidizing the quencher. From there the
constituents can separate, resulting in photoproduct (PP)

formation, or the photocycle can be completed by charge
recombination (CR). Experimentally, the photocycle is
typically traced by (i) quenching of the photoluminescence
(PL) intensity of the excited sensitizer and (ii) emerging
absorption or emission features from the PP. However, a
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Scheme 1. (A) Structures of [Fe(phtmeimb)2]
+, N,N-

Dimethylaniline (DMA), and Triethylamine (TEA)
(Hydrogen Atoms Omitted for Clarity); (B) Schematic
Bimolecular Photocycle Involving the FeIII Sensitizer,
Quencher (Q), and Photoproduct (PP) Undergoing Charge
Separation (CS) and Charge Recombination (CR)
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comprehensive elucidation of all of the elementary steps in the
full photocycle can be achieved only by studying the ultrafast
photoinduced dynamics at the pico- or femtosecond time
scale.13−16

As a first step for the present type of Fe(III) photosensitizer,
we investigate the dynamics using two types of quencher
molecules: (I) aliphatic triethylamine (TEA) and (II) aromatic
N,N-dimethylaniline (DMA). The oxidation potentials of these
electron donors differ slightly, i.e. 0.960 and 0.756 V vs SCE in
acetonitrile for TEA and DMA, respectively.17 This yields free
energies of −0.396 and −0.600 eV for the reduction of 1 and
oxidation of TEA and DMA, respectively, based on the excited-
state redox potential of 1.10

For comparative purposes, we performed UV/vis, steady-
state emission, and time-resolved absorption spectroscopy on
solutions of 1 in acetonitrile (MeCN) with added quenchers.
Both the absorption and emission spectra (see Figure 1)

exhibit virtually unchanged characteristics of 1, and additional
absorbance of the quenchers is observed only for wavelengths
below 400 nm (see the Supporting Information). For both

quenchers, the slopes of the intensity and the pseudo-first-
order lifetime curves as a function of quencher concentration
match well, indicating that for low to intermediate quencher
concentrations (<800 mM) pure dynamic quenching is
observed (see Figure 1). These measurements also indicate
that quenching by DMA is more efficient than quenching by
TEA, as reflected in the dynamic quenching rates for TEA and
DMA, respectively (for details of the underlying Stern−Volmer
analysis, see the Supporting Information). This agrees with the
free energy values given above. In particular, the dynamic
quenching rate of 1 in DMA is more than 2 orders of
magnitude higher than in the prototype case of tris-
(bipyridine)ruthenium(II)18,19 ([Ru(bpy)3]

2+), indicating fun-
damental differences from the processes found for 1.
Next, we investigate the time-resolved dynamics with a

particular focus on high quencher concentrations. When the
average distance between quencher molecules becomes smaller
than the size of the sensitizer, it is reasonable to assume that
the sensitizer and quencher are always in close contact. In this
static quenching regime, intrinsic charge transfer rates become
accessible, as previously applied in ultrafast dynamics studies of
organic sensitizers.17,20−22 Transient absorption (TA) spec-
troscopy with ∼100 fs resolution was employed for these
measurements (see the Supporting Information).
First we summarize the TA signature in pure MeCN (Figure

2 inset).10 In general, a positive photoinduced absorption
(PIA) reflects absorption of a multitude of excited states
(ESA) and may include contributions of photoproducts, e.g.,
oxidized donor. A negative signal corresponds to either
ground-state bleach (GSB) or stimulated emission (SE). In
the case of 1 we observe several features: A negative SE band at
∼680 nm and several ESA bands. The latter are separated into
(i) a band rising toward the long-wavelength part of the visible
spectrum, (ii) a band at ∼575 nm, and (iii) a band rising
toward the near-ultraviolet. The dip between the last two ESA
bands corresponds to the GSB, which is expected to peak at
∼505 nm but is overwhelmed by the stronger ESA. These
features all decay single-exponentially with a lifetime ∼2 ns.10

This is also reflected in two isosbestic points at zero differential
absorption, between ESA and SE. An isosbestic point
corresponds to a state-to-state transition. Here, this is the
transition from the excited state to the ground state. This

Figure 1. Normalized luminescence intensities (solid symbols) and
excited-state lifetimes (open symbols) of 1 in MeCN upon addition of
TEA (orange) or DMA (blue) on a double logarithmic scale vs
normalized quencher concentration. The inset shows the normalized
absorbance and emission spectra of 1 in MeCN (black dashed) with
added TEA (orange) or DMA (blue).

Figure 2. (A) Normalized differential absorption spectra at 1 ps time delay in pure MeCN (blue) and with 4200 mM TEA (orange). (B)
Normalized differential absorption transients in the stimulated emission (SE) region (700 nm) of 1 in MeCN for various concentrations of TEA
from 0 mM (blue) to 5040 mM (yellow). (C) Differential absorption transients of 1 with TEA at a concentration of 4254 mM. Each transient has
been divided by the stimulated emission intensity at the respective step. The GSB region was fit by a double-exponential function (blue line).
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underlines that the ESA and SE correspond to the same excited
state.
Next we focus on the influence of TEA on the dynamics.

The differential absorption spectrum and transients in the SE
region are given in Figure 2 (for a set of full differential
absorption spectra, see the Supporting Information). Even for
very high TEA concentrations the spectral shape does not
change. In agreement with the observed steady-state emission
quenching, the lifetime of ESA and SE shortens by 2 orders of
magnitude to ∼20 ps (see Figure 2) at the maximum TEA
concentration (5040 mM). We associate this shortening of
excited-state lifetime with the photoinduced CS, corresponding
to a rate constant of 0.05 ps−1. This is consistent with the
substantial negative free energy for reduction of the excited
complex 1 by TEA. As we do not expect any significant TEA
cation signal (see the Supporting Information), the CS process
should also be observable in either reduced species of 1 or a
stoichiometric amount of GSB that persists until the CR
process occurs. The signature of reduced 1 in the short-
wavelength spectral region is, however, not covered by our
experiment. Additionally, we do not observe any long-lived
GSB. The absence of both TEA cation and a long-lived GSB
signal suggests that either the CR quickly follows the CS and
no long-lived product is formed or, contrary to our
expectation, the presence of TEA facilitates 1 to undergo
internal conversion to the ground state without CS occurring
at all. To unambiguously verify CS, we have divided the signals
at all times by the corresponding amplitude of the SE signal
(see the Supporting Information). In the case of internal
conversion, these normalized transients should become time-
independent constants in all wavelength regions. At high TEA
concentration, we obtain a nonconstant time dependence in
the GSB spectral region (see Figure 2). This deviation directly
reflects the relation of the CS and CR rates. Fitting of the
obtained dynamics reveals a rate of 0.25 ps−1 for CR (see the
Supporting Information).
Next we study the dynamics with DMA. At low DMA

concentrations, the TA spectra resemble those of MeCN/TEA
mixtures. For higher DMA concentrations, the GSB becomes
clearly pronounced, the ESA decreases, and at ∼450 nm

another feature emerges (see Figure 3). The latter agrees with
the expected absorption of DMA cation.20 Analyzing the
transients in the selected spectral regions yields the decrease of
the SE as expected from the reported emission quenching.
More informative are the blue ESA and GSB regions. At low
DMA concentration, i.e., in the diffusion-limited regime, the
signal is dominated by the ESA dynamics. At high DMA
concentration, a subpicosecond buildup of additional signal
appears that is positive in the ESA region and negative in the
GSB region. We interpret this as a fast decay of the initially
dominating ESA of 1 without recovery of the ground-state
absorption, which thus reveals the negative GSB signal. With
the same dynamics, an additional but weak ESA component
assigned to DMA cation arises toward the blue spectral region.
Importantly, both the rise and decay dynamics of the negative
GSB do not change above a DMA concentration of ∼800 mM
but clearly differ from the SE and ESA decay at corresponding
DMA concentrations. SE and ESA continuously speed up with
increasing DMA concentration, but the GSB only changes its
amplitude. We associate this behavior with the vanishing
contribution of diffusion as the average distance between 1 and
the DMA molecules decreases with increasing concentration.
For the highest DMA concentration, the rise and decay of the
GSB have negligible diffusion contributions and thus reflect the
CS and CR processes between 1 and DMA molecules in close
contact. Consequently, by fitting the GSB observed for the
highest DMA concentration with a double-exponential
function, we extract a CS rate of 1.25 ps−1 and a CR rate of
0.17 ps−1.
In summary, we have investigated the full bimolecular

photocycle between the excited state of the Fe(III)−NHC
complex [Fe(phtmeimb)2]

+ and common sacrificial donor
molecules (TEA and DMA). The ultrafast dynamics at high
DMA concentration is assigned to charge separation and
recombination due to faster separation than recombination.
This is in clear contrast to the case of TEA, where charge
recombination is significantly faster than charge separation.
Although the CR rate is ∼0.2 ps−1 for both quenchers, the CS
rate differs drastically: 0.05 ps−1 in TEA and 1.25 ps−1 in DMA.
This trend agrees with, but is too large to be dominated by,

Figure 3. (A) Differential absorption spectra of 1 in MeCN at time delay of 1 ps for DMA concentrations from 9 mM (blue) to 5000 mM (yellow).
For comparison, the absorbances of DMA+ (green) and 1 (light blue) are shown with the stimulated emission of 1 (red) calculated from the
steady-state emission spectrum (sign reversed), all on an arbitrary scale. (B−D) Differential absorption transients around 450 nm (ESA), 520 nm
(GSB), and 660 nm (SE), with quencher concentrations as for the spectra above.
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differences in the driving force. Similar to studies of coumarins,
we assign this difference to enhanced coupling of the sensitizer
to aromatic DMA compared with aliphatic TEA.17 Further-
more, the charge transfer in DMA appears to be independent
of the slower solvation dynamics.21 Following studies on
organic light harvesters and DMA, we associate the ultrafast
charge transfer with nuclear reorganization as described by the
Sumi−Marcus model.23,24 Additionally, the observed rates are
significantly higher than the reported values for standard Ru
sensitizers.18,25 Our observed CS rates put this iron-based
complex in the same category as organic molecules like
oxazines20 and coumarins.17 Despite very efficient charge
separation, formation of the photoproduct is not favored. This
is attributed to very fast spin-allowed charge recombination.
The spin-allowed CR rates in this study are comparable to
reported rates in Ru and Os sensitizers, where the formal spin-
forbidden nature of the transitions is largely lifted by strong
spin−orbit coupling.26 One strategy to explore further would
be to utilize the intrinsically smaller spin−orbit coupling in
Fe(III)−NHC complexes to achieve higher photoproduct
yields in photocycles where spin-forbidden CR is suppressed.
Overall, these results provide key insights to guide further

efforts to better utilize the full potential of the promising
excited-state properties of novel Fe(III)−NHC and other
2LMCT photosensitizers.
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