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The value of what’s to come: Neural mechanisms 
coupling prediction error and the utility of anticipation
Kiyohito Iigaya1,2,3*, Tobias U. Hauser1,4, Zeb Kurth-Nelson1,5, John P. O’Doherty3,  
Peter Dayan1,2,6,7†, Raymond J. Dolan1,4†

Having something to look forward to is a keystone of well-being. Anticipation of future reward, such as an 
upcoming vacation, can often be more gratifying than the experience itself. Theories suggest the utility of 
anticipation underpins various behaviors, ranging from beneficial information-seeking to harmful addiction. 
However, how neural systems compute anticipatory utility remains unclear. We analyzed the brain activity of 
human participants as they performed a task involving choosing whether to receive information predictive of 
future pleasant outcomes. Using a computational model, we show three brain regions orchestrate anticipatory 
utility. Specifically, ventromedial prefrontal cortex tracks the value of anticipatory utility, dopaminergic mid-
brain correlates with information that enhances anticipation, while sustained hippocampal activity mediates 
a functional coupling between these regions. Our findings suggest a previously unidentified neural underpinning 
for anticipation’s influence over decision-making and unify a range of phenomena associated with risk and 
time-delay preference.

INTRODUCTION

“Pleasure not known beforehand is half-wasted; to anticipate it is to 
double it.”

– Thomas Hardy, The Return of the Native

Standard economic theory suggests that a reward is more attractive 
when it is imminent (e.g., eating now) than when it is delayed (e.g., 
eating tomorrow), predicting that people will always consume a re-
ward immediately. This so-called temporal discounting has been 
adapted with great success, for instance, in the design of artificial 
intelligence systems that can plan their future effectively through to 
understanding aspects of the human mind.

However, real-life behavior is more complex (1–3). Humans and 
other animals will sometimes prefer to deliberately postpone a pleas-
ant experience [e.g., saving a piece of cake for tomorrow or delaying 
a one-time opportunity to kiss a celebrity (1)], contradicting predic-
tions of simple temporal discounting.

An influential alternative idea in behavioral economics is that 
people enjoy, or savor, the moments leading up to reward (1, 2, 4–7). 
That is, people experience a positive utility, referred to as the utility 
of anticipation, which endows with value the time spent waiting for 
a reward. Anticipatory utility is different from the well-studied ex-
pected value of the future reward (i.e., a discounted value of the 
reward) in standard decision and reinforcement learning theory, 
where the latter’s utility arises solely from reward and not from its 

anticipation. Crucially, in the theory of anticipatory utility (1), the 
two separate utilities (i.e., anticipation and reward) are added to-
gether to construct the total value. The added value of anticipatory 
utility naturally explains why people occasionally prefer to delay 
reward (e.g., because we can enjoy the anticipation of eating a cake 
until tomorrow by saving it now) (1), as well as a host of other hu-
man behaviors such as information-seeking and addiction (4, 8).

Despite the theory’s clear mathematical formulation and its ex-
planatory power for behavior, we know little about how the utility 
of anticipation arises in the brain. Although previous studies have 
described neural activity in relation to the expectation of future re-
ward (5, 9–14), it is not clear if or how such activity relates to the 
utility of anticipation. One major reason for this knowledge vacuum 
is the challenge in establishing behavior that is driven by the utility 
of anticipation in a laboratory setting [please also see (5)]. Notably, 
recent studies (6–8) have established a strong link between the utility 
of anticipation and information-seeking behavior, and this now has 
allowed us to formally test how the brain dynamically constructs 
anticipatory utility.

Here, we investigated the neurobiological underpinnings of value 
computation arising from the utility of reward anticipation and how 
acquired information modulates this anticipatory utility. In doing so, 
we combine a behavioral task, computational modeling, and func-
tional magnetic resonance imaging (fMRI). We fit our computa-
tional model (8) of anticipation utility (1) to task behavior, and for 
each participant used the best model to make predictions about the 
time course of anticipatory utility in the brain. We then compared 
this predicted signal with actual fMRI data, finding that the ventro-
medial prefrontal cortex (vmPFC) encoded the temporal dynamics 
of an anticipatory utility signal, while dopaminergic midbrain en-
coded a signal reporting changes in reward expectation. This reward 
prediction error (RPE) is widely interpreted as a teaching signal in 
reinforcement learning theory (15), but our model predicts that it 
can act also to enhance an anticipatory utility, which, in turn, drives 
behavior. We show that hippocampus mediates this enhancement of 
utility and is a substrate for a functional coupling between the vmPFC 
and the dopaminergic midbrain (16, 17). We suggest that these 
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regions link reward information to the utility of anticipation, while 
a strong conceptual tie between the hippocampus, memory, and fu-
ture imagination supports a suggestion from behavioral economics 
that the utility of anticipation relates to a vivid imagination of fu-
ture reward (18–20).

RESULTS
Participants prefer to receive advanced information about 
upcoming reward
We used a variant of the behavioral task that has previously been 
linked to the utility of anticipation (Fig. 1A). In brief, our task exam-
ines how participants change their preference for resolving uncer-

tainty about future pleasurable outcomes, based on reward proba-
bility and delay duration until an outcome (please also see Materials 
and Methods). Participants made decisions with full knowledge re-
garding conditions (probability, and delay, of reward outcomes), which 
were signaled with simple visual stimuli on each trial. The condi-
tions were randomly selected for each trial—the probability was 
sampled uniformly at random from 0.05, 0.25, 0.5, 0.75, and 0.95, 
and the duration of a waiting period until reward or no-reward de-
livery was sampled uniformly at random from 1, 5, 10, 20, and 40 s.

On each trial, participants chose between an immediate-information 
target (labeled “Find out now”) and a no-information target (“Keep 
it secret”). If the immediate-information target was chosen, one of 
two cues, each of which uniquely signaled if reward would or would 
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Fig. 1. The utility of anticipation drives a preference for advanced information. (A) Task. Participants were presented with an immediate-information target (“Find 
out now”) and a no-information target (“Keep it secret”), as well as two central stimuli signaling the probability of reward and the duration of a waiting period until reward 
or no-reward delivery. A symbolic image cue was presented for the entire waiting period until a rewarding image or an image signaling no reward appeared. (B) The 
immediate-information target was followed by cues that predict upcoming reward or no reward (reward predictive cue or no-reward predictive cue). The no-information 
target was followed by a cue that implied nothing about the reward outcome (no-information cue). (C) Average behavior. Participants showed a stronger preference for 
advanced information under longer delay conditions [two-way analysis of variance (ANOVA), F4,950 = 10.0]. The effect of reward probability (F4,950 = 0.35, P > 0.05) showed 
heterogeneous dependencies (fig. S4). (D to G) Computational model (8). (D) Following (1), the value of each cue is determined by the sum of (i) the utility of anticipation 
that can be consumed while waiting for reward (red) and (ii) the value of reward consumption itself (green). (E and F) If a reward predictive cue is presented, then the 
anticipation is boosted throughout the delay period (orange upward arrows). The boosting is quantified by surprise, proportional to the absolute value of aRPE Eq. 
1. (G) The model predicts that the value difference between the two targets is larger under longer delay conditions (8). (H) The average of modeled preferences, using a 
hierarchical Bayesian fitting procedure (8). (I) The model (blue) captures the effect of delay conditions in data (black). The error bars indicate the mean and SEs of partici-
pants (n = 39). See fig. S2 for the effect of probability conditions, and fig. S1 for how other classical models fail to explain behavior. 
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not arrive, was shown during the waiting period (Fig. 1B, left). If the 
no-information target was chosen, then a separate nonpredictive cue 
that carries no information about an upcoming outcome was shown 
on the screen during the waiting period (Fig. 1B, right), eventually 
followed by either reward or no reward. The reward image was ran-
domly drawn from previously validated rewarding pictures (8, 21) and 
consequently subject to immediate consumption (by viewing) upon 
delivery. The no-reward outcome was signaled by a neutral image.

In this design, participants’ choices did not affect either the final 
reward outcome or the duration of delay (Fig. 1B). Both reward 
probability and delay duration were predetermined and signaled to 
participants at the beginning of each trial. Participants could only 
choose if they want to gain knowledge about whether they would 
receive a reward or not before a delay. Therefore, standard decision 
theories that aim to maximize the chance of receiving rewards would 
predict no preference over these two choices, because the probabil-
ity of obtaining a reward (hence, the expected value) is the same 
across the two choices (please see fig. S1, A to C). Thus, models with 
conventional temporal discounting predict no choice preference.

Contrary to the predictions of conventional theory, we found 
that participants exhibited a preference for advanced information. 
Further, consistent with previous findings (22–24), the preference 
for immediate information increased with the duration of a delay 
(Fig. 1, C and I) (8, 25).

Our computational model that links advanced information 
to the utility of anticipation accounts for behavioral data
Previous studies (6, 8) have shown that the preference for obtaining 
advanced information can be accounted for by an economic notion 
of the utility of anticipation (1, 2, 4, 5, 26). While standard value- 
based decision theories assign values to the consumption of the re-
ward itself, theories of the utility of anticipation also assign utility 
values to the moments that lead up to the receipt of reward (Fig. 1D; 
see Eq. 1 in Materials and Methods). One possible psychological root 
for the utility arising from reward anticipation is the pleasant sub-
jective feeling while waiting for pleasant outcomes (1), although the 
mathematical framework of the anticipatory utility is open to wider 
interpretations [e.g., see (4)]. Here, our goal was to fill a current gap 
in our understanding by identifying neural processes that mediate a 
utility of anticipation.

Although the utility of anticipation naturally accounts for why 
people will delay the receipt of a reward (because they can consume 
anticipatory utility while waiting), the original formulation does not 
necessarily explain a preference for obtaining advanced information 
regarding a probabilistic outcome. The model still predicts indifference 
between the two choices in the task, because the utility of anticipation 
is linearly scaled with the probability of reward (as is the case for the 
expected value of the actual outcome), leading to the same average 
values for two choices (8) (illustrated in fig. S1, D to F). This is expected 
because information plays little role in the original formulation.

To better account for anticipatory utility, we recently proposed, 
and validated, a slight modification to this original formulation (8). 
Consider a case in which a future reward may or may not be deliv-
ered, but an early signal resolves the uncertainty, telling participants 
that a reward will be provided with certainty. The modification to 
the theory is that the utility of anticipation of a future reward is en-
hanced by the (in this case, positive) prediction error associated 
with the information signal. This surprise-based enhancement of anti-
cipatory utility is inspired by experimental observations that such 

unexpected information can lead animals to become excited and will 
remain so until a reward arrives (25). Animals waiting for a certain 
reward with no such information do not show a similar level of ex-
citement (25). The outcome of this can entail animals paradoxically 
preferring a less rewarding (on average), but more surprising, choice 
[e.g., (3, 25)].

We mathematically formulated the surprise that relates to the en-
hancement of anticipatory utility by using a notion of RPE. Every time 
participants received advanced information about future reward (or 
no reward), participants experienced an RPE, defined by the differ-
ence between (i) the value of future that is just updated on the basis 
of the arrival of new information and (ii) the value of future that was 
expected before the arrival of new information. In standard theory, 
RPE is computed from the value of reward; in our model, it is com-
puted from the utility of anticipation and reward (Eq. 5). Therefore, 
we refer to our model’s prediction error signal as an anticipation + 
reward prediction error (aRPE) signal. In our computational model, 
this aRPE quantifies a surprise that links to an enhancement (boost-
ing) of anti cipatory utility. Following the conventional mapping 
of prediction error to surprise (27), the model quantifies surprise 
by the absolute value of the aRPE, because unexpected negative out-
comes (negative aRPE) can be just as surprising as unexpected 
positive outcomes (positive aRPE). This also avoids unreason-
able effects such as turning negative anticipation to positive 
anticipation by multiplying with a negative aRPE. Thus, one of the 
simplest expressions for boosting is to assume that anticipatory 
utility is linearly enhanced by the absolute value of aRPE (please 
see Eqs. 1 and 2 in Materials and Methods).

It is important to note that an aRPE (or a standard RPE) is ex-
pected to be a phasic signal that lasts only for a short period. How-
ever, animals can remain excited throughout a whole anticipatory 
period (25), and so in the model, the enhancement of anticipation is 
sustained throughout a waiting period (8) (Eqs. 1 and 2). Therefore, 
the model predicts that a signal that is associated with boosting anti-
cipatory utility will be a prolonged representation of the absolute value 
of aRPE (or a prolonged signal that is proportional to the amount of 
surprise). Such a signal is likely to be encoded in regions other than 
those encoding phasic aRPEs. We return to this question later.

In our task, the cue predictive of a future outcome that follows 
the immediate-information target creates a dopaminergic aRPE, and 
it triggers a boosting of the utility of anticipation. On the other hand, 
the nonpredictive cue following the no-information target does not 
generate aRPE and consequently does not trigger any boosting (fig. S1, 
G to I). Therefore, the model predicts that participants experience 
enhanced anticipatory utility after receiving a reward predictive cue 
following the immediate-information target, while they experience 
a default amount of anticipatory utility weighted by the probability 
of reward after receiving a no-information cue following the no- 
information target. Because of the sustained boosting, the model 
predicts that the difference in the values between the immediate- 
information target and the no-information target is larger under 
longer delay conditions (at least in the absence of strong discount-
ing), causing an enhanced preference for the immediate informa-
tion target at longer delay conditions (Fig. 1G) (8).

We fit this model to participants’ trial-by-trial behavioral data 
using a hierarchical Bayesian scheme (8) (see Materials and Methods). 
This method estimates group-level distribution over all participants, 
allowing us to have reliable estimates of each individual’s parame-
ters without overfitting and to make fair model comparisons using 
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sampling. As before (8), the model captured participants’ preferences 
for advanced information (Fig. 1, H and I). In particular, the model 
quantitatively captured the key feature of the data, which is an in-
crease in preference for immediate information under longer delay 
conditions (Fig. 1I), as well as the preference over probability con-
ditions (fig. S2). We also found that in addition to positive value to 
reward, participants assigned a negative value to the no-reward out-
come, which creates a negative anticipatory utility associated with 
the no outcome (8). This allows the model to avoid advanced infor-
mation if a participant assigns a large negative value [please see (8) 
for further evidence].

Other standard models do not capture this preference for advanced 
information. For example, models with discounted reward but with 
no anticipatory utility, or models with both discounted reward 
and anticipation utility but no enhancement of anticipation, cannot 
capture the observed behavior (please see fig. S1 for illustration). 
We formally tested this by fitting other possible models to the 
behavioral data using a hierarchical Bayesian method and com-
pared the models’ integrated Bayesian information criterion (iBIC) 
scores through sampling from group-level distributions (8) (please 
see Materials and Methods). These analyses strongly favored our 
full model over other standard computational models (fig. S3).

In addition to the task behavior outlined here, our model also 
captures a wide range of existing findings related to information- 
seeking behavior (3, 6, 25, 28), with potential links to addiction and 
gambling (8) (also see Discussion). However, an impressively rich 
and sophisticated literature describing neural correlates for an ex-
pectation of future reward (5, 9–14) has, with only a few notable 
exceptions [see (5)], focused mainly on standard issues of temporal 
discounting. Consequently, this literature does not address a sepa-
rate and additional boosted anticipatory utility term (see Materials 
and Methods for details) that, as described above, is necessary to ex-
plain a wide range of reward-related behavior.

Therefore, we next sought to elucidate the neurobiological basis 
of value arising from anticipation, using our computational model 
that captures participants’ behavior. In particular, three key compo-
nents of our model were of interest: the representation of anticipatory 
utility during waiting periods, the aRPE signal at advanced informa-
tion cue presentation, and a sustained boosting signal of anticipa-
tion during waiting periods following surprise. To identify a unique 
signal for anticipatory utility, we regressed out other related signals, 
such as the expected value of a future reward. Last, we examined how 
brain regions encoding these computational components are cou-
pled together to dynamically orchestrate the utility of anticipation, 
including how the brain links the arrival of reward information to 
the utility of anticipation.

It is important to note that our computational model is a general 
mathematical formulation that does not specify the psychological 
roots of anticipatory utility. This is analogous to standard reinforce-
ment learning models encompassing very complex psychological roots 
of reward value (29). Our goal was to elucidate the neural correlates 
of our computational model’s mathematical predictions about how 
advanced information links to the values arising during anticipatory 
periods, which, in turn, drive behavior. We discuss the possible psycho-
logical roots of anticipatory utility in Discussion.

The vmPFC encodes the utility of anticipation
Our model predicts that the signal of anticipatory signal dynami-
cally changes throughout a delay period (Eq. 11 in Materials and 

Methods). Regardless of boosting, the signal ramps up as the out-
come approaches, but the value is also subject to conventional dis-
counting. This implies a tilted inverted-U shape over time under 
typical parameter settings (Fig. 2A).

On the basis of our hierarchical model fit to choice behavior, we 
calculated each participant’s maximum a posteriori (MAP) param-
eters within the computational model. Using these parameters, we 
estimated subject-specific time courses of several variables that we 
tested on neural data. The predictions include (i) anticipatory utili-
ty value during waiting periods (Eq. 11 in Materials and Methods), 
(ii) discounted outcome value (standard expected value) during the 
same waiting periods (Eq. 13 in Materials and Methods), and (iii) 
prediction errors at cue presentation (Eq. 17 in Materials and Methods). 
These signals were convolved with SPM’s (statistical parametric 
mapping) default canonical HRF (hemodynamic response function) 
(Fig. 2B; see fig. S5 for an example). As illustrated in Materials and Methods, 
we separated predictive anticipatory signals for positive reward and 
no reward, because we found that participants assigned a negative value 
to no-reward outcome (8). SPM’s directional orthogonalization for 
parametric regressors was turned off throughout data analysis here.

Note that previous studies into value computation (including of 
temporal difference learning) have focused on the current value of 
the expected future reward. This quantity is usually closely correlated 
with the quantity that is the focus of our current study, namely, the 
additional anticipatory utility associated with future reward (fig. S5). 
Thus, a brain signal correlated with the anticipatory utility might 
conventionally be classified as a correlate of the expected value of a 
future reward. Here, by including these regressors together in the same 
general linear model (GLM), we could identify unique correlates for 
the utility of anticipation. We excluded trials with a short waiting 
time (1 s) from the analysis to separate effects of responses to cues.

We found that the model’s anticipatory utility signal for positive 
reward correlated significantly with blood oxygen-level dependent sig-
nal (BOLD) in vmPFC {P < 0.05, whole-brain familywise error (FWE) 
correction; peak Montreal Neurological Institute (MNI) coordinates 
[10,50,16], t = 6.02; Fig. 2C} and in caudate (P < 0.05, whole-brain 
FWE correction; peak coordinates [−20, −2,18], t = 5.81; fig. S6). These 
results are consistent with a representation of the value of imagined 
reward reported previously in vmPFC (30, 31) and of reported anti-
cipatory activity in vmPFC (5, 13, 32) and in caudate (9). Across 
the brain, we found no significant effect of anticipatory utility arising 
from no-reward outcome that survived a stringent whole-brain cor-
rection (see fig. S7). Thus, we focus on the anticipatory utility of future 
reward referred to henceforth as anticipation utility.

Given the importance of avoiding potential false positives from 
autocorrelations in slowly changing signals (33), we conducted non-
parametric, phase-randomization tests where we scrambled the phases 
of signals in a Fourier decomposition (fig. S8A) (34, 35). This test 
can be applied to neuroimaging and electrophysiology studies, so as 
to avoid false-positive discoveries, particularly when analyzing cor-
relations between slow signals such as values (33, 35). To do so, we 
transformed our model’s predicted anticipatory utility signal for 
each participant into Fourier space, randomized the phase of each 
frequency component, and transformed the signal back to the orig-
inal space. Only the regressor being tested was randomized, while 
others were kept the same in the full GLM. We then performed a 
standard analysis on this full GLM for each participant with the 
scrambled signal and then conducted a second-level analysis. By re-
peating this procedure many times, we created a null distribution. 
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To protect this test against family-wise error, we constructed the null 
distribution by taking a maximum value of correlation score across 
a region of interest (ROI), or across the whole brain, from each of 
our second-level analyses, comparing against the correlation value in 
the original analysis. We found that the effects in vmPFC (P < 0.001, 
randomization whole-brain FWE-corrected) and caudate (P < 0.01, 
randomization whole-brain FWE-corrected) survived this Fourier 
phase-randomization test (fig. S8B; please also see fig. S9).

A more detailed inspection of these signals, during the waiting 
period, showed that the time course of vmPFC activity closely re-

sembled our model’s predictions. In Fig. 2D, we plot the time course 
of average fMRI signals in the vmPFC cluster shown in Fig. 2C 
during the waiting period separately for two conditions, namely, 
when participants received a reward predictive cue (red) and when 
participants received a no-information cue (magenta). The time 
courses track the model’s predictions in each condition (black).

We note that a standard expected value of future reward signal 
was also included in the same GLM so that we can evaluate unique 
correlations for the utility of anticipation. Both signals showed similar 
ramping toward reward (please see fig. S5 for an example participant); 
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the SEM over participants. (E) A confirmatory analysis shows that activity in vmPFC is more strongly correlated with our model’s anticipatory utility signal than an expected 
reward value signal. The average regression weights in the vmPFC for the anticipatory utility signal were significantly greater than the expected reward signal (***P < 0.001, 
permutation test). The former was also significantly larger than zero (***P < 0.001, t test, t38 = 4.07), but the latter was not. The error bars indicate the mean and SEM. 
A.U., arbitrary units; N.S., not significant.
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therefore, anticipatory utility signals may have previously been classi-
fied as the expected value of future reward signal. As a confirmatory 
analysis, we compared the correlation of the vmPFC with our mod-
el’s anticipatory utility signal and to that with a standard expected 
reward signal. In Fig. 2E, we plotted average  values in the vmPFC 
cluster for the anticipatory utility and for the standard expected re-
ward (note that both regressors are present in the same GLM) and 
confirmed that the difference between the coefficients was significant 
(P < 0.001, permutation test). We stress that this is a confirmatory 
analysis, because we already know that vmPFC is significantly 
correlated with the anticipatory utility and not with the expected 
value signal. The model’s expected reward signal was instead cor-
related significantly with regions, including the superior temporal 
gyrus (P < 0.05, whole-brain FWE correction; [−48, −48,16], 
t = 5.28; fig. S10A). This also survived a phase-randomization test 
(P < 0.001).

We also tested whether our found signal is distinct from a more 
generic ramping signal, such as a linear ramping signal. To test this, 
we added a regressor that ramps up linearly in each anticipatory 
period to the original GLM and compared the average  coefficients of 
this regressor against that of the utility of anticipation. We confirmed 
that the coefficients of the utility of anticipation are significantly 
larger than those of the linear ramping signal (fig. S11), supporting 
that our results show neural correlates of the utility of anticipation, 
instead of other types of ramping signals.

We further asked whether BOLD in the vmPFC during the wait-
ing period correlated with a simpler signal, such as constant expected 
outcome value. When the immediate-information cue is presented, 
this is the same as the value of reward or no reward without dis-
counting or anticipatory modulation; otherwise, it is an average of 
the values of reward and no reward weighted by their respective 
probabilities. We examined the singular contribution of this signal 
by adding it as another parametric boxcar regressor during waiting 
periods to the original GLM and then comparing the average  values 
of the vmPFC cluster between the anticipation utility and the ex-
pected value, regressor. In this way, we estimated the partial cor-
relation of each regressor. As shown in fig. S12, vmPFC BOLD was 
more strongly correlated with the model’s anticipatory utility signal 
than with the constant expected value signal (P < 0.001, permutation 
test). BOLD was still positively correlated with the model’s anticipatory 
utility signal (P < 0.001, t test, t38 = 3.93), and the effect of an expected 
value signal was not significant. We again note that this is a confir-
matory analysis.

For completeness, we report descriptively that an anticipatory 
urgency signal, which is an anticipation signal before integration 
(Eq. 15 in Materials and Methods), correlated with anterior insular 
cortex (11) ([34,30,2], phase-randomization test, P < 0.01; fig. S10B).

The dopaminergic midbrain encodes our computational 
model’s aRPEs at the time of advanced information cues
The aRPE arising at advanced information cues is a unique and criti-
cal signal in our model. First, unlike conventional models relying on 
reward, our model’s aRPE is computed from the value arising from 
both reward anticipation and reward itself (Eq. 5 in Materials and 
Methods). Second, while in a standard reinforcement learning model, 
an RPE serves as a learning signal; in our model, it triggers a sur-
prise that is associated with enhancement (boosting) of anticipatory 
utility (Eq. 2 in Materials and Methods). In this regard, aRPE also 
differs from a conventional temporal difference prediction error 

signal (15), which considers conventionally discounted outcomes 
alone and does not involve boosting. Rather, our computational 
model’s aRPE signal encompasses both a standard RPE and the 
so-called information prediction error (IPE) (23, 24, 36, 37), both of 
which have been shown to be represented in the activity of dopa-
mine neurons (23). Dopamine has also been implicated in enhanced 
motivation [e.g., (38)]. Therefore, on the basis of extensive prior 
studies, we hypothesized that an aRPE signal arising at the time of 
advanced information cues would be encoded in the midbrain 
dopaminergic regions and ventral striatum [e.g., (10, 23, 39)].

For this, using each participant’s MAP parameter estimates 
obtained from fitting our model to choice behavior, we calculated a 
full, signed, aRPE signal, at the onset of advanced information cues 
(reward predictive, no-reward predictive, and no-information cues), 
based on the discounted utility of anticipation (including both posi-
tive and negative cases) and that of outcomes (Eq. 17).

We assumed that participants fully learned the task in the training 
period. Therefore, the size of aRPE was determined entirely by each 
trial’s experimental conditions (probability and delay of the reward) 
as well as the model’s fitted parameters, meaning that an aRPE was 
not affected by recent trials’ outcomes. Therefore, we analyzed the 
fully self-consistent aRPE (please see Materials and Methods, Eq. 17).

We found that the model’s signal correlated significantly with 
BOLD in a midbrain dopaminergic region, encompassing the ven-
tral tegmental area and substantia nigra (VTA/SN) [Fig. 3A; P < 0.05, 
small volume FWE correction with an anatomical ROI; (39) [4, −26, 20], 
t = 3.78]. We analyzed VTA/SN with an anatomical ROI following 
previous literature (39). We note that this correlation at VTA/SN 
also survives FWE correction over the extended ROI that covers 
two regions: VTA/SN and ventral striatum (39) (P < 0.05, FWE small 
volume correction). In addition, we also found that BOLD in the 
medial posterior parietal cortex (mPPC) (40) correlated significantly 
with the model’s predicted signal (Fig. 3A; P < 0.05, cluster-level 
whole-brain FWE correction with the height threshold P < 0.001; 
k = 166, peak at [0, −42, 50]). We did not find significant associa-
tions in ventral striatum, perhaps because cue and reward onsets 
were unusually temporally distant (up to 40 s), a finding consistent 
with a previous report that ventral striatum is not relevant for learning 
when feedback is delayed (although hippocampus is) (41). Further, 
we explored whether locus coeruleus (LC) is correlated with this 
signal; however, we did not find a significant effect.

Previous studies suggest that significant correlations reported 
between fMRI signals and prediction errors might be attributable to 
strong correlations with actual cue value alone, regardless of the pres-
ence of negative correlations with expected cue value (42). To rule 
out this possibility, we performed a confirmatory analysis by con-
structing a GLM with separate regressors for the model’s values of 
presented cue values and the model’s expected cue values, both of 
which were computed from the utility of anticipation and reward 
(Eq. 5). The average regression coefficients correlated positively with 
the model’s (actually presented) cue value and correlated negatively 
with the model’s expected (average) cue value (Fig. 3B in both the 
VTA/SN and in the mPPC clusters shown in Fig. 3A). Thus, responses 
in these regions had the characteristic of canonical prediction error 
signals (42).

Because our model’s aRPE signal, with the values of anticipation 
and reward, is more complex than a standard RPE signal with reward 
value alone, we performed a further confirmatory analysis. Here, we 
constructed a GLM that included the model’s full aRPE signal (Eq. 8) 
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and a standard RPE error signal based exclusively on reward values 
(Eq. 19). We then compared the partial correlations associated with 
these regressors. We found in both VTA/SN (39) and the mPPC 
cluster that the average partial correlation is greater for our model’s 
full aRPE signal than for the standard RPE signal with discounted 
reward value alone (Fig. 3C).

Last, BOLD in the mPPC has previously been reported to covary 
with a simpler prediction error signal, the state prediction error (SPE) 
signal (43). In our experiment, this SPE signal is the absolute value 
of the difference between outcome (1 or 0) and expectation (the 
presented probability of reward; Eq. 18). To rule out SPE as a driver 
of our results, we performed a confirmatory analysis, by constructing 
a GLM that included the model’s full aRPE signal and its SPE signal 
and then compared the  values of partial correlations associated 
with these regressors. For both the VTA/SN (39) and the mPPC 
cluster, the average partial correlation weights for the model’s full 
RPE were greater than those for the SPE signal (fig. S13).

The hippocampus correlates with our computational 
model’s surprise that can enhance the utility of anticipation
Our computational model predicts an enhanced anticipation utility 
following a surprise that is coincident with advanced information 
cues. The magnitude of this enhancement is proportional to the 
surprise, which is defined simply by the absolute value (27) of aRPE 
(Eq. 2 in Materials and Methods). Our model also predicts that any boost-
ing should be sustained over the entire duration of a waiting period 
(Fig. 4A), unlike the phasic (a)RPE signals that we just examined (23, 44).

Previous research suggests that the hippocampus is an ideal sub-
strate for this effect. First, in the context of recognition tasks, the 
hippocampus encodes surprise (mismatch, novelty) signals [e.g., (17)]. 
In addition, the hippocampus is associated with learning for an 
association between cues and delayed feedback. Further, extensive 

studies implicate a coupling of the hippocampus with the VTA/SN 
and with the PFC [e.g., (16, 17, 20, 45)], the two regions that we 
show are linked most to our model’s computation. Also, although 
we do not specify the psychological roots of our computational 
model’s enhancement of anticipation utility, we note that in the 
original study of anticipatory utility, the magnitude of anticipa-
tion utility is suggested to relate to the strength of imagination 
for future reward (1). Many studies link hippocampal activity to 
the imagination of future prospects [e.g., (18)], where prefrontal- 
medial temporal interactions influence the effects of imagination 
on valuation (19), as well as support the mental construction of 
future events (20).

Therefore, we first examined the phasic response of the hippo-
campus to a surprise at the onset of the advanced information cue 
presentation, quantified by the absolute value of the model’s aRPE. 
As predicted, we found that hippocampal activity was significantly 
correlated with the magnitude of a surprise {P < 0.05, FWE small 
volume correction by an anatomical mask of hippocampus; [32, −24, 
−12], t = 3.60; Fig. 4B (46)}. The phasic response to surprise is an 
important feature for the model’s boosting anticipation utility, but 
as outlined, the model predicts that activity associated with boost-
ing should be sustained until ultimate reward delivery (Fig. 4A). We 
found that hippocampal activity in the cluster that responded pha-
sically to surprise at cue (the cluster is taken at P < 0.05, FWE small 
volume correction from the analysis in Fig. 4B) was greater throughout 
the waiting period after a reward predictive cue was presented (in 
which case, a surprise was induced), compared to that following 
presentation of a no-information cue (in which case no surprise was 
induced), as seen in Fig. 4C (see also fig. S14 for responses to a 
no-reward predictive cue). This was quantified in fig. S15 (P < 0.05, 
permutation test). Thus, in addition to expressing the magnitude of 
a surprise at advanced information cues, hippocampal BOLD during 
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the wait suggests features associated with our model’s signal that 
relates to boosting anticipation utility.

We also explored the possibility that amygdala correlates with 
the surprise at the cues. However, we found no voxel in amygdala 
showing significant correlations with this.

The midbrain-hippocampus-vmPFC circuit implicates our 
model’s predicted coupling of prediction error (at advanced 
information) to the utility of anticipation
So far, we have shown that distinct regions encode our model’s 
computational signals. The vmPFC encodes our model’s utility 
value of anticipation; the VTA/SN (as well as the mPPC) encodes 
an aRPE signal that is associated with a trigger for boosting of 
the utility of anticipation, and the hippocampus encodes a 
sustained signal associated with our model’s boosting of the utility 
of anticipation. In our computational model, these three signals are 
functionally coupled (please see Figs. 1, E and F, and 4A for 
schematic illustrations and Eqs. 1 and 2 in Materials and Methods 
for a more precise mathematical description). Specifically, as 
illustrated in Fig. 4A, our model expects that a region that encodes 
a signal associated with a sustained effect of boosting should be 
functionally coupled both to a region encoding aRPE and to a 
region encoding the utility of anticipation. The hippocampal BOLD 
signal in Fig. 4C suggests that it encodes both phasic (related 
to aRPE) and sustained (related to anticipation utility) signals 
(fig. S15). Furthermore, extensive studies implicate functional 
couplings of hippocampus with the VTA/SN as well as with the 
PFC (16, 17, 45).

We hypothesized that sustained hippocampal activity mediates 
our model’s anticipation utility computation. In essence, to boost 
anticipation utility, the hippocampus links computations in the 
VTA/SN (aRPE) and the vmPFC (anticipation utility). If the hippo-
campus is coupled to both the VTA/SN and the vmPFC, then it 
should correlate with mixed variables (interaction) from the VTA/SN 
and the vmPFC. To formally test this idea, we analyzed functional 
connectivity using dual psychophysiological interaction (PPI) 

regressors based on two a priori seed regions: (i) the vmPFC (which 
encodes anticipation utility) and the model’s aRPE signal at advanced 
information cues (which is encoded at the VTA/SN) as a psychological 
variable, and (ii) the VTA/SN (which encodes aRPE) as a seed and 
the model’s anticipation utility signal (which is encoded at the vmPFC) 
as a psychological variable. The PPI was constructed in this manner 
because we wanted to test whether the hippocampus couples to 
both the VTA/SN and the vmPFC. Each of these two PPI regressors 
includes variables relating to both the vmPFC (anticipation) and 
the VTA/SN (aRPE), and these variables are coupled in our compu-
tational model through the notion of boosting; therefore, each 
regressor tests our hypothesis that the hippocampus links the VTA/SN 
(aRPE) and the vmPFC (anticipation) as a potential substrate of 
boosting. Thus, we included these two sets of regressors into the 
single GLM we used so far (see Materials and Methods) and tested 
whether hippocampal activity significantly correlated with these 
PPI regressors. We also explored the possibility that amygdala con-
tributes to this interactive computation. However, we found no 
voxel in amygdala, showing significant correlations with either of 
the PPI regressors.

We found significant correlations in the hippocampus for both 
PPI regressors. Thus, the functional coupling between the VTA/SN 
(the area encoding aRPE) and the hippocampus was significantly 
modulated by our model’s anticipation utility signal {P < 0.05, FWE 
small volume correction; [22, −32, −6], t = 3.89; Fig. 5A (46)}. In 
addition, the functional coupling between the vmPFC and the hip-
pocampus (47) was significantly modulated by our model’s aRPE 
signal {P < 0.05, FWE small volume correction; [−30, −34, −6], 
t = 3.70; Fig. 5B (46)}. We also performed a conjunction analysis to 
see whether the two regions that are correlated with two PPI regres-
sors overlapped. However, we found null results, suggesting that 
coupling to the VTA/SN and to the vmPFC may be mediated by 
different subregions in the hippocampus.

If the hippocampal-vmPFC coupling mediates our computational 
model’s boosting of anticipation, then the coupling strength that we 
estimated in our PPI analysis should relate to the model’s magnitude 
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of boosting that we estimated from choice behavior. Our model 
predicts that the magnitude of boosting is linearly correlated with a 
parameter C, the linear boosting coefficient (Eq. 3, Fig. 5C), which 
we had already fit to each participant. Therefore, we tested whether the 
linear boosting coefficient (that we estimated from our behavioral 
model-fitting) and the hippocampal-vmPFC coupling strength (that 
we estimated from our fMRI PPI analysis) are correlated with each 
other. As seen in Fig. 5C, we found that these two variables estimated 
separately from imaging and behavioral data are positively correlated 
across participants. This provides further evidence supporting the 
idea that this three-region network is involved in our model’s anticipa-
tory utility computation. We note that we z-scored aRPE so that the 
size of aRPE is not directly correlated with a preference of advanced 
information.

We also note a recent study suggesting cautious attitudes when 
interpreting between-subjects correlation using model-based neuro-
imaging analysis (48). Although our analysis involves an interaction 
term (a PPI regressor), which itself includes a BOLD sequence, 
here, we aimed to test the proportional coding, whether the magni-
tude of functional coupling is correlated with the model’s parame-
ter. To ensure that our correlation is not trivial, following (48), we 
tested whether there is a correlation between the model’s parameter 
C and the variance of the PPI regressor. Unlike the example given 
previously (48), we found no significant correlation between these 
two variables (fig. S16).

These functional connectivity results support our hypothesis that 
the hippocampus plays a key coordinating role in our model’s com-
putation, that is, potentially boosting the utility of anticipation and 
linking the vmPFC’s encoding of the utility of anticipation with the 
VTA/SN’s encoding of prediction errors at advanced information. 
The findings point to these regions functioning as a large-scale neural 
network for linking advanced information to the utility of anticipa-
tion (Fig. 5D), driving a preference for advanced information in 
our task.

DISCUSSION
The utility of anticipation has long been recognized as a critical 
notion in behavioral economics and the cognitive sciences. While it 
has been linked to a wide range of human behavior that standard 
reward value–based decision theories struggle to account for (e.g., a 
preference for advanced information, risk-seeking, and addiction), 
the neural basis of the theory is unknown. It is a different notion 
from the standard expected value of future reward (and we duly 
controlled for this standard value throughout our analyses). Here, 
we took advantage of a new link between computational theory and 
behavior and applied this perspective to fMRI data to uncover how 
the utility of anticipation arises in the brain and how advanced in-
formation links to the utility of anticipation (please see fig. S17 for a 
visual summary of Discussion).
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Crucially, we show a network for computing the utility of anticipa-
tion and liking of advanced information, consisting of three specific 
brain regions. First, we show that vmPFC represents the time course 
of an anticipation utility signal that evolved separately from a stan-
dard reward expectation signal during a waiting period. Second, 
dopaminergic midbrain regions, encompassing VTA/SN, encoded 
the model’s aRPE that signals changes in expected utility of anticipa-
tion and reward at advanced information cues. Third, the hippo-
campus, whose activity indexed our model’s surprise signal, was 
functionally coupled both to vmPFC and to the VTA/SN, in a sus-
tained manner consistent with our model’s predicted boosting of 
anticipation utility. While the three-region functional coupling has 
been previously implicated in other settings (16, 17, 45), our study 
provides evidence for an explicit, mathematically defined, computa-
tional role. We suggest that its role in the context of our study is to 
link advanced information to a utility of anticipation that works as a 
reinforcement for behavior.

Our study provides insights into neural processes underlying 
human decision-making that standard decision theories struggle to 
explain. A case in point, in our current study, concerns a preference 
for early resolution of uncertainty (4), also known as information- 
seeking (22–24, 49), or observing (50, 51). Humans and other ani-
mals are willing to incur costs to find out their true fate, even if this 
knowledge does not change actual outcome. An alternative idea, as 
opposed to that of boosted anticipatory utility, is the notion that people 
derive value from information itself (23). However, this so-called in-
trinsic value of information cannot explain why a preference for ad-
vanced information is valence dependent (24), that it depends on the 
reward probability in a way that does not covary with information- 
theoretic surprise (52), and manifests a sensitivity to delay until re-
ward (as we also demonstrated here) (8, 25). All of these findings are 
a natural consequence of the coupling of information to the utility of 
anticipation (but not of information per se).

Consequently, our results account for previous neural findings 
of the intrinsic value of information. This so-called IPE signal is 
presumed to arise from the value of information (22–24, 36, 37) and 
has been reported in the same midbrain dopaminergic regions as 
standard RPEs (22, 23), implying that the two signals might be strongly 
related. Our model accounts for IPEs as a side effect of anticipation- 
dependent aRPE. We found that an aRPE signal correlates positively 
with BOLD signal in dopaminergic midbrain regions (22, 23) and in 
the mPPC (40). We found that clusters in these regions are more 
strongly correlated with our model’s aRPE signal than with a stan-
dard RPE signal with no utility of anticipation. This implicates that 
these regions encode our aRPE signal that unifies standard RPE 
signals and IPE signals.

More broadly, our results offer alternative accounts for addic-
tion and the possibility of individually tailored psychiatric interven-
tions (fig. S17). While initial phases of addiction (53) involve excessive 
dopamine release at the time of drug consumption (54), later phases 
involve intense craving. Our model implies that people boost antici-
pation utility when a likelihood of drug administration increases 
(e.g., when purchasing drugs). People may feel greater value from 
obtaining drugs (which can act as a kind of conditioned stimuli) 
than from administering them, because the former includes utilities 
associated with an anticipation of future administration. Our model 
predicts that people with certain parameter values (e.g., large boosting 
coefficients) could repeatedly overboost the value of anticipating 
drugs, resulting in excessive, pathological, drug-seeking (see Eq. 10). 

Although the learning process leading to pathological behavior may 
be very slow in a natural world, by fitting our model to participants 
performing the task used here, we can, in principle, link an individual’s 
tendency toward addiction with a unique cause of this disorder 
(e.g., excessive boosting or imbalance between anticipation and dis-
counting). This, in turn, can suggest interventions tailored to indi-
vidual patients, such as cognitive behavioral therapy focusing on 
controlling anxiety and craving (55), as well as possible dopaminergic 
antagonists to control boosting.

Our study is relevant also for unifying separate notions concern-
ing gambling: preference for risk and time delay (the latter is called 
time preference in behavioral economics). While these two economic 
phenomena have often been treated separately, there is increasing 
evidence in favor of an interactive relationship [e.g., (56)]. Our com-
putational model of anticipation explicitly offers an interaction between 
risk (prediction error) and delay (anticipation) because the former 
can enhance the value of the latter. This interaction creates well- 
documented effects, such as nonlinear coding of probabilities of 
anticipated rewards (57). It would be interesting to test our model’s 
predictions as to how pharmacological manipulations (e.g., on dopa-
mine) affect risk and time (delay) preference, where dopamine is 
likely to be heavily involved in computing aRPE. Further studies may 
allow us to design a behavioral task for psychiatric interventions, in 
which patients can lessen their preference for addictive substances, 
or even their risk preference in general, because our model can find 
the optimal task parameters for each individual to achieve this goal.

We found that the hippocampus was involved in value computa-
tion arising from reward anticipation, through its coupling with 
the VTA/SN and the vmPFC. Both hippocampus-VTA/SN and 
hippocampus-(v)mPFC couplings have been extensively reported 
previously in animal studies as well as in some human studies [e.g., 
(16, 17, 20, 45)]. In rodents, hippocampus-PFC coupling has been 
shown to be gated by neurons in the VTA (16). Oscillatory synchro-
nization has also been reported in the PFC-VTA-hippocampus axis 
in rodents performing a working memory task. Our finding is con-
sistent with a previous observation in humans showing that activity 
in VTA influences the baseline activity in posterior hippocampus 
(45). The posterior hippocampus, which we report in our PPI analysis, 
has also been linked to future simulation that we think likely relates 
to our model’s anticipation utility computation. Our functional 
connectivity analyses suggest that an aRPE signal encoded in the 
VTA/SN affects a functional coupling between the hippocampus 
and the vmPFC, which encode the enhancement of the utility of 
anticipation; this can be tested in future studies involving pharma-
cological manipulations (e.g., on dopamine). Because the hippocampus 
has a rich anatomical structure, further studies will illuminate how 
different parts of the hippocampus contribute to value computation 
arising from reward anticipation.

Neuroeconomic studies show that people make decisions between 
goods in different categories, by expressing the value of those goods 
in a so-called common currency primarily encoded in the vmPFC. 
Here, we found that the utility of anticipation is expressed in the 
vmPFC [please also see (7)]. This invites an alternative interpreta-
tion of previously reported ramping activity in the vmPFC while 
waiting for rewards [e.g., (58)] in terms of an anticipation-sensitive 
value signal, which has been interpreted as a reward-timing signal.

An alternative interpretation of our behavioral results is that 
participants do not like uncertainty. However, a previous study 
using the same task with aversive outcomes has shown that people 
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avoid advanced information when the outcomes are aversive (49), 
while another study has also shown that a preference for advanced 
information is valence dependent (24). These findings are consist-
ent with our model’s predictions but contradict simple uncertainty 
avoidance. In our model, advanced information can boost negative 
anticipation for an aversive outcome [i.e., dread (2, 26)], leading to 
an avoidance of (negative) advanced information. Further studies 
will illuminate how advanced information modulates dread in the 
brain, possibly through hippocampal coding of a sustained signal 
during a waiting period for no reward (fig. S14; note: people assigned 
negative value to no reward in our task, confirmed by our model 
fitting and self-reports), and may suggest that a similar circuit pre-
sented here is involved in this computation.

As is the case for value of a reward [whose psychological roots 
have been shown to be very complex (29)], the psychological roots 
of anticipation utility are likely to be complex. While we acknowl-
edge that we had no control over what participants were thinking 
while waiting for outcomes in the scanner, participants’ informal 
self-reports were largely consistent with the idea that reward predictive 
cues made participants more excited while waiting for the reward. 
We acknowledge that other psychological interpretations of our 
computational model are possible, as is the case for the roots of 
reward in a standard reinforcement learning model (29). For example, 
we note an influential suggestion (4) that future uncertainty drives 
other forms of anticipatory utility, such as anxiety. We did not con-
sider this notion directly in our computational model, but in our 
model, an agent can experience a mixture of positive and negative 
utilities of anticipation according to the probabilities of these 
outcomes (please see Materials and Methods). It would be interesting 
to study how this mixed anticipatory utility of our model relates to 
the notion of anxiety (4), which may help the design of more effec-
tive psychiatric interventions for anxiety disorders. Also, in this 
current study, we used a primary reward (image) instead of a sec-
ondary reward (money); it would be interesting to administer our 
task using a secondary reward. We used primary reward inspired by 
the classic study of the utility of anticipation (1); however, recent 
studies implicate that similar results will be obtained with monetary 
reward (6, 24).

Last, our study offers an alternative view to a long-standing 
problem in neuroscience and machine learning. We refer here to 
the so-called temporal credit assignment problem, which raises the 
issue of how neurons operating on a time scale of milliseconds learn 
relationships on a behaviorally relevant timescale (such as actions 
and rewards in our task). Designing a machine learning algorithm 
that overcomes this problem remains a challenge. Cognitively, our 
computational model suggests that the anticipation of future reward 
could serve as an aid to solve this problem, because a sustained 
anticipation signal can bridge the temporal gap between a reward 
predictive cue and an actual reward. A recent physiological study 
demonstrated that synaptic plasticity in hippocampal pyramidal 
neurons (e.g., place cells) can learn associations on a behaviorally 
relevant time scale, with the aid of ramping-like, slow, external inputs 
in a realistic setting (59). This has been shown to arise out of a slow 
input that can trigger a slow ramp-like depolarization of synaptic 
potential, which, in turn, unblocks N-methyl-d-aspartate (NMDA) 
receptors, leading to synaptic learning that spans a duration of sec-
onds (59). Thus, our results suggest that a slow anticipatory utility 
signal in the vmPFC that is sustained throughout long delay periods 
(or the sustained, coupled, activity in the hippocampus) could serve 

as such input to neurons in the hippocampus, bridging the temporal 
gap over behavioral time scales. A dopaminergic input from the VTA/
SN to the hippocampus may facilitate this type of learning (17).

In summary, we identify a novel neural substrate for computing 
the utility value arising from anticipation. Our results implicate that a 
functional coupling of three distinctive brain regions links the arrival 
of advanced information to resolve future uncertainty to the boosted 
utility of anticipation. We suggest that this boosted anticipatory 
utility drives a range of behaviors, including information-seeking, ad-
diction, and gambling. Our study may also provide seed for designing 
individually tailored interventions for psychiatric disorders.

MATERIALS AND METHODS
Participants
Thirty-nine self-declared heterosexual male participants (21) were 
recruited from the University College London (UCL) community. 
Participants provided informed consent for their participation in 
the study, which was approved by the UCL ethics committee.

Experimental task
The task was a variant of that in (8), which itself was inspired by a 
series of animal experiments into information-seeking or observing 
behavior [e.g., (22, 25)]. At the beginning of each trial, a pair of 
task-information stimuli (hourglass and partially covered human 
silhouette) were shown, along with two choice targets. The number 
on the hourglass indicated how long the participants had to wait 
until seeing a reward or no reward, where 1/2, 1, 2, 4, and 8 hour-
glass meant 1, 5, 10, 20, and 40 s of waiting time, respectively. The 
other stimulus, a partially covered human silhouette, indicated the 
probability of seeing a reward, specified by the area of the uncovered 
semicircle (5, 25, 50, 75, and 95% chance of rewards). Two lateral rectan-
gular targets were presented as choices: the immediate-information 
target marked as “Find out now” and the no-information target 
marked as “Keep it secret.” The positions of the hourglass and the 
covered silhouette were kept the same every trial, but the locations 
of choice targets were randomly alternated between left and right 
on each trial.

The participants were required to choose between left and right 
targets by pressing a button within 3 s. Once the participants chose 
a target, one of the three cues appeared in the center of the screen. If 
the participants chose the immediate-information target, then a cue 
that signaled upcoming reward or no reward appeared on the screen 
until the onset of reward or no reward. If the participant chose the 
no-information target, then a cue that signaled no information about 
reward appeared on the screen. The meaning of the cues was fully 
instructed to participants beforehand. The meanings of the cues 
were counterbalanced across participants. To ensure immediate 
consumption, rewards were images of attractive female models from 
a set that had previously been validated as being suitably appetitive 
to heterosexual male participants (8, 21); reward images were pre-
sented for 1 s. Images were chosen randomly from the top 100 highest- 
rated pictures that were introduced in (21). No image was presented 
more than twice to the same participants. In case of no reward, an 
image signaling absence of a reward was presented for 1 s. In either 
case, a blank screen was presented for 1 s before starting a new trial. 
These timings were set to reduce the timing uncertainty, which may 
cause prediction error that can interfere with our model’s value 
computation.
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Participants were fully instructed about the task structure, in-
cluding the meaning of stimuli about the probability and delay con-
ditions, as well as the advanced information cues. Then, participants 
underwent extensive training that consisted of three tasks: a variable- 
delay but fixed-probability task, a fixed-delay but variable-probability 
task, and a variable-delay and variable-probability task. This ensured 
that participants had fully learned the task and had adequately de-
veloped preferences before being scanned. Scanning was split into 
three separate runs, each of which consisted of 25 trials that covered 
all conditions once. Trial orders were randomized across participants. 
Participants had a break of approximately 30 s between runs.

Computational model
We used the model described in (8). Briefly, following Loewenstein’s 
suggestion that the anticipation of rewards itself has hedonic value 
(1, 2) (e.g., participants enjoy thinking about rewards while waiting 
for them), we extended a standard reinforcement learning frame-
work to include explicit reward anticipation, which is often referred 
to as savoring (1). The model’s innovation is to suggest that the utility 
of anticipation can be boosted by RPEs associated with advanced 
information about upcoming rewards (8). We note that savoring 
here is a mathematically defined economics term and is different 
from (although may be related to) savoring in positive psychology 
(the acts of enhancing positive emotions).

To describe the model formally, consider a task in which if a 
participant chooses the immediate-information target, then they 
receive at t = 0 a reward predictive cue S+ with a probability of q, or 
a no-reward predictive cue S− with a probability of 1 − q. Subse-
quently, the subject receives a reward or no reward at t = T( = Tdelay), 
with a value of R+ or R−, respectively. In our recent experiment, we 
found that participants assigned a negative value to an absence of 
reward (8), but this is not necessary to account for preference for 
advanced information that has been observed in animals (3, 25).

On the basis of the observation that participants prefer to delay 
consumption of certain types of rewards, Loewenstein proposed 
that participants extract utility while waiting for reward (1, 2, 26). 
Formally, the anticipation of a future reward R+ at time t is worth 
a(t) = R+e−+(T − t), where + governs its rate. Including R itself, and 
taking temporal discounting into account, the total value of the 
reward predictive cue, QS

+, is

    

 Q   S   +    = η  V   [anticipation]  +  V   [reward] 

                 = η ∫0  
T
     e   − γ   + t′  a(t′) dt′+  R   +   e   − γ   + T      

                        = η    R   +  ─ 
 ν   +  −  γ   + 

  ( e   − γ   + T  −  e   − ν   + T  ) +  R   +   e   − γ   + T 

   (1)

where  is the relative weight of anticipation, + is the discounting 
rate, and T is the duration of delay until the reward is delivered. In 
a prior work,  had been treated as a constant that relates to sub-
jects’ ability to imagine future outcomes (1); however, we proposed 
that it can vary. The size of modulation is determined by the aRPE at 
the time of the predicting cue (8). Our proposal was inspired by 
findings of the dramatically enhanced excitement that follows such 
cues (25). A simple form of boosting arises from the relationship

   =    0   + C∣   aRPE  ∣  (2)

where 0 specifies the base anticipation and C determines the gain. 
That anticipation is boosted by the absolute value of aRPE is im-
portant in applying our model to comparatively unpleasant outcomes 
(8). The boosting is sustained throughout a waiting period.

The total value of the no-reward predictive cue, QS−, is then

    
 Q   S   −    = η  ∫0  

T
     e   − γ   − t′ a(t′) dt′+  R   −   e   − γ   − T 

    
                    = η    R   −  ─  ν   −  −  γ   −   ( e   − γ   − T  −  e   − ν   − T  ) +  R   −   e   − γ   − T 

   (3)

Following our previous work, we assumed that  = + = −.
An aRPE affects the total cue values QS

+ and QS−, which, in turn, 
affect subsequent aRPEs. Therefore, the linear ansatz for the boost-
ing of anticipation by aRPE (Eq. 2) could lead to instability due to 
unbounded boosting. This instability could account for maladaptive 
behavior such as addiction and gambling. However, in a wide range 
of parameters, this ansatz has a stable, self-consistent, solution. In 
our experiment, the aRPE for the reward and no-reward predictive 
cues can be expressed as

    aRPE   S   +    =  Q   S   +    − (q  Q   S   +    + (1 − q )  Q   S   −   )  (4)

    aRPE   S   −    =  Q   S   −    − (q  Q   S   +    + (1 − q )  Q   S   −   )  (5)

which are, assuming the linear ansatz

    

⎧

 
⎪

 ⎨ 

⎪
 

⎩

   

  aRPE   S   +   

  

 =  (  1 − q )   (   (      0   + C∣  aRPE   S   +   ∣ )    A   +  +  B   +  

     
 
  

 −  (   (      0   + C∣  aRPE   S   −   ∣ )    A   −  +  B   −  )   
    

  aRPE   S   −   
  

 = − q (   (      0   + C∣  aRPE   S   +   ∣ )    A   +  +  B   + − 
    

 

  

  (   (      0   + C ∣   aRPE   S   −    ∣  )    A   −  +  B   −  )   

     (6)

where

    

⎧

 
⎪

 ⎨ 

⎪
 

⎩

   

 A   + 

  

 =    R   +  ─ 
    +  − 

   (    e   −T  −  e   −    + T  )   

     A   −    =    R   −  ─     −  −    (    e   −T  −  e   −    − T  )       

 B   + 

  

=  R   +   e   −T 

   

 B   − 

  

=  R   −   e   −T 

     (7)

Assuming that R− ≤ 0 and 0 ≤ R+, Eq. 6 implies that    aRPE   S   +    > 0  
and    aRPE   S   −    < 0 . With this, Eq. 6 can be reduced to

    

⎧

 
⎪

 ⎨ 
⎪

 

⎩

   
 δ aRPE   S   +   

  
=   

(1 − q) ( η  0  ( A   +  −  A   − ) +  B   +  −  B   − )
   ──────────────────   

1 − C((1 − q)  A   +  − q  A   − )
  

    
 δ aRPE   S   −   

  
 =   
− q( η  0  ( A   +  −  A   − ) +  B   +  −  B   − )

  ────────────────  
1 − C((1 − q )  A   +  − q  A   − )

  
     (8)

Because (0(A+ − A−) + B+ − B−) > 0, in order that    aRPE   S   +    > 0  and   
 aRPE   S   −    < 0  hold for all q and T, the denominators must be positive for 
all 0 ≤ q ≤ 1 and 0 ≤ T. In other words

  1 − C((1 − q)  A   +  − q  A   − ) > 0  (9)

for 0 ≤ q ≤ 1 and 0 ≤ T, or  C <   1 ___________ 
((1 − q)  A   +  − q  A   − )

  , for 0 ≤ q ≤ 1 and 0 ≤ T. 

This means that  C <   1 ___________ 
max( A   + , ∣ A   − ∣)

   for 0 ≤ T. It is straightforward to 
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show that A+ takes its maximum at  T =   
ln (      _ 

    + 
  )  
 _ 

 −     + 
  , and ∣A−∣ at  T =   

ln (      _     −   )  
 _  −     −   . 

Thus, the condition that the linear ansatz gives a stable self-consistent 
solution is

   C < min 
(

      ─ 
 R   + 

     
(

      ─ 
    + 

   
)

     
      +  _ 
−    + 

 
 ,   −  ─  R   −      (

      ─     −    )
     
      −  _ −    −  

  
)

     (10)

In our model fitting, we imposed this stability condition. Violating 
it could account for maladaptive behavior such as addiction and 
pathological risk-seeking. We generated choice probability from our 
model by taking a difference between the expected value of imme-
diate information target and that of no-information target and taking 
it through sigmoid with a noise parameter  (8).

An alternative to imposing such a stability condition would be to 
assume that boosting saturates in a nonlinear manner (8)

   =    0   +  c  1   tanh ( c  2  ∣   aRPE  ∣)  

However, the model’s qualitative behavior does not depend strongly 
on the details of the aRPE dependence of anticipation (8). Hence, 
we only used the linear ansatz in our analysis in the current study.

For our model comparison, we also fit a model with no anticipa-
tion  = 0 and a model with anticipation but that is not boosted by 
aRPE, i.e., C = 0.

Model’s fMRI predictions (parametric and  
time-varying regressors)
Our computational model makes specific predictions about tempo-
ral dynamics of anticipatory, reward, value signals during waiting 
periods, and unique aRPE signals at predictive cue onsets. Using the 
parameters (MAP estimates) for each participant, we generated the 
following variables for each participant as parametric regressors for 
the fMRI analysis.

The temporal dynamics of anticipatory utility signal for positive 
domain at time t during waiting period until reward onsets t = T are

   V  Ant.,+  (t ) =    
 R   +  (      0   + C∣  pe  [ S   + ,q,T] ∣ )  

  ───────────────  
    +  − 

   ( e   −(T−t)  −  e   −    + (T−t) )  (11)

For the negative domain, they are

   V  Ant.,−  (t ) =   
 R   −  (      0   + C∣  pe  [ S   − ,q,T] ∣ )  

  ───────────────      −  −    ( e   −(T−t)  −  e   −    − (T−t) )  (12)

We expressed these as two separate regressors. When the out-
come was uncertain, i.e., after receiving a no-information cue, but 
would be given with a probability q (or 1 − q), the anticipatory util-
ity values (Eqs. 11 and 12) were multiplied with q (or 1 − q).

Because aRPEs explicitly enter the value function of the immedi-
ate information via boosting, aRPE and the value of the immediate 
information target that influence each other needed to be computed 
in a self-consistent manner (Eq. 5). We assumed that the consistency 
was achieved for participants through their extensive training sessions. 
The aRPE    pe  [+/−,q,T]   are determined for each delay T and reward prob-
ability q condition self-consistently (see below). After a no- information 
choice, these signals are scaled by the probability of reward q or no 
reward 1 − q (and no prediction errors). Note that we set R+ = 1 
without loss of generality.

The discounted reward signal at t during the waiting period is 
expressed as

   V  Reward,+  (t ) =  R   +   e   −(T−t)   (13)

while the discounted no-reward signal at t is

   V  Reward,−  (t ) =  R   −   e   −(T−t)   (14)

Note that the anticipation utility signal is an integral of (dis-
counted) anticipation urgency signal

    V  Ant.Urgency,+  (t ) =  R   +  (      0   + C∣  pe  [ S   + ,q,T] ∣ )    e   −    + (T−t)    (15)

and

    V  Ant.Urgency,−  (t ) =  R   −  (      0   + C∣  pe  [ S   − ,q,T] ∣ )    e   −    − (T−t)    (16)

which we also included to the GLM.
The aRPE at information cue onsets are computed for each con-

dition (q, T) self-consistently according to Eq. 8. That is

    

⎧

 
⎪

 ⎨ 
⎪

 

⎩

   
 δ pe  [ S   + ,q,T] 

  
=   

(1 − q ) ( η  0  ( A   +  −  A   −  ) +  B   +  −  B   − )
   ──────────────────   

1 − C((1 − q )  A   +  − q  A   − )
  

     
 δ pe  [ S   − ,q,T] 

  
 =   
− q( η  0  ( A   +  −  A   −  ) +  B   +  −  B   − )

  ────────────────  
1 − C((1 − q )  A   +  − q  A   − )

  
     (17)

where A+/− and B+/− are given by Eq. 7. In our analysis, we put pos-
itive and negative aRPE as a single parametric regressor at informa-
tion cue onsets. Because the aRPE is expressed as the difference between 
the model’s presented cue value and the model’s expected cue value 
in Eq. 5, we also tested a region that is positively correlated with the 
model’s presented cue value and negatively correlated with the model’s 
expected cue value in Eq. 5.

Note that the aRPE signal is different from other conventional 
prediction error signals, including the so-called SPEs (43)

    
{

   
  spe   S   +   

  
= ∣1 − q∣

   
  spe   S   −   

  
= ∣0 − q∣

    (18)

and a standard RPE signal with reward value alone (we can obtain 
this by setting C = 0 = 0 in Eq. 17)

    
{

   
  pe−standard  [ S   + ,q,T]  

  
= (1 − q ) ( B   +  −  B   − )

    
  pe−standard  [ S   − ,q,T]  

  
= − q( B   +  −  B   − )

     (19)

which we used for a confirmatory analysis.

Behavioral model fitting
We used a hierarchical Bayesian, random effects analysis (8). In 
this, the (suitably transformed) parameters hi of participant i are 
treated as a random sample from a Gaussian distribution with means 
and variance  = {, Σ} characterizing the whole population of 
participants, and we find the maximum likelihood values of .

The prior distribution  can be set as the maximum likelihood 
estimate

   
    ML  ≈  argmax     { p(D∣ ) }

   
 =  argmax     {   ∏ 

i=1
  

N
   ∫ d  h  i   p( D  i  ∣ h  i   ) p( h  i  ∣ )  }   

   (20)
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We optimized  using an approximate expectation-maximization 
procedure. For the E step of the kth iteration, a Laplace approximation 
gives us

   m i  
k  ≈ argma  x  h   { p( D  i   ∣ h) p(h ∣     k−1  ) }  (21)

  p( h i  
k  ∣  D  i   ) ≈ N( m i  

k ,  𝚺 i  
k )  (22)

where  N( m i  
k ,  𝚺 i  

k )  is a normal distribution with mean   m i  
k   and covari-

ance   𝚺 i  
k   that is obtained from the inverse Hessian around   m i  

k  . For 
the M step

      
k+1  =   1 ─ N     ∑ 

i=1
  

N
     m i  

k   (23)

   𝚺   
k+1  =   1 ─ N     ∑ 

i=1
  

N
   ( m i  

k   m i  
kT  +  𝚺 i  

k  ) −     
k+1      

k+1T   (24)

For simplicity, we assumed that the covariance   Σ   
k    had zero 

off-diagonal terms, assuming that the effects were independent.

Model comparison
We compared the goodness of fit for different computational models 
according to their iBIC scores (8). Briefly, in this method, we sam-
pled parameters randomly from the estimated distributions and 
tested how these randomly sampled models can predict the individual 
subject’s choice. We analyzed log-likelihood of data D given a model 
M, log p(D∣M)

  log p(D ∣ M ) = ∫ d p(D ∣  ) p( ∣ M)  (25)

  ≈ −   1 ─ 2   iBIC = log p(D ∣     ML  ) −   1 ─ 2   ∣ M ∣ log ∣ D ∣  (26)

where iBIC is the integrated Bayesian information criterion, ∣M∣ is the 
number of fitted prior parameters, and ∣D∣ is the number of data points 
(total number of choice made by all subjects). Here, log p(D∣ML) can 
be computed by integrating out individual parameters

  log p(D ∣     ML  ) =  ∑ 
i
    log ∫ dhp( D  i   ∣ h ) p(h ∣     ML )  (27)

  ≈  ∑ 
i
    log   1 ─ K     ∑ 

j=1
  

K
   p( D  i   ∣  h   j )  (28)

where we approximated the integral as the average over K samples 
hj’s generated from the prior p(h∣ML).

fMRI data acquisition
We acquired MRI data using a Siemens Trio 3-T scanner with a 
32-channel head coil. The Echo planar imaging (EPI) sequence was 
optimized for minimal signal dropout in striatal, medial prefrontal, 
and brainstem regions: 48 slices with 3-mm isotropic voxels with a 
repetition time of 3.36 s, an echo time of 30 ms, and a slice tilt of 30°. 
In addition, field maps (3-mm isotropic, whole brain) were acquired 
to correct the EPIs for field-strength inhomogeneity.

fMRI data preprocessing
We used SPM12 (Wellcome Trust Centre for Neuroimaging, UCL, 
London) for standard preprocessing and image analysis. The stan-
dard preprocessing includes the following: slice-timing correction; 
realigned and unwarped with the field maps that were obtained 

before the task; coregistration of structural T1-weighted images to 
the sixth functional image of each subject; segmenting structural 
images into gray matter, white matter, and cerebrospinal fluid; nor-
malizing structural and functional images spatially to the MNI space; 
and spatially smoothing with a Gaussian kernel with full width at 
half maximum of 8 mm. The motion correction parameters were 
estimated from the realignment procedure and were included to the 
first-level GLM analysis.

fMRI GLM analysis
We performed a standard GLM analysis with SPM, with high-pass 
filter at 128 s. We regressed fMRI time series with GLMs that consist 
of onset regressors (the presentations of the initial screen, the pre-
sentations of cues, and the presentation of outcomes), our model’s 
signals that we described in Materials and Methods (parametric 
regressors: model’s aRPE at cues and reward or no reward at outcome; 
model’s time-varying regressors: anticipatory utility signals for pos-
itive and negative outcomes, expected value signals for positive and 
negative outcomes, anticipatory urgency signals for positive and 
negative outcomes), and nuisance regressors. The onsets of cues 
preceding the shortest delay (1 s) was separately modeled so that the 
prediction errors at the cues were not affected by reward. The model’s 
predictive signals were generated for each of the anticipatory periods, 
using the model that was fit to each participant, which were then 
convolved with the canonical HRF function. We added nuisance 
parameters that consist of movement estimated from preprocessing, 
large derivatives of movement between volumes that were larger 
than 1 mm, boxcar function during the anticipatory periods, and 
boxcar function for each experimental run. In our confirmatory 
analysis, we also added boxcar function during the anticipatory 
periods that was parametrically modulated by constant expectation 
of reward, parametrically modulated cue presentation with SPEs. 
Please see Model’s fMRI predictions (parametric and time-varying 
regressors) for the full equations.

When we illustrated the time course of BOLD signals, we used 
the data that were high-pass–filtered (128 s), and nuisance regressors 
were also regressed out.

Fourier phase-randomization test
A recent study has reported potentially widespread false-positive 
correlations between slowly varying signals in neuroscience, such as 
value signals in the ventral striatum (33). To address this potential 
concern, we introduced a Fourier phase-randomization test. In this, 
we first transformed our model’s predicted signal (e.g., the utility of 
anticipation signal which continuously changes over time) into the 
Fourier space. Then, we randomized the phase of each frequency 
without disturbing the power. Randomization was performed by 
taking a random value from the uniform distribution between − 
and  for each frequency component. It is also possible to permute 
the phase across frequency components. The signal was then trans-
formed back to the original space. By replacing the original (preran-
domized) regressor in the GLM by this phase-randomizing regressor, 
we ran the standard GLM analysis. This procedure was repeated for 
each participant over 100 times. We then performed a second-level 
analysis for the randomized regressor, where the group was con-
structed by selecting one GLM result randomly from each participant 
across all participants. To correct family-wise error, we selected the 
maximum correlation score across the whole family of voxels (e.g., 
the whole brain) from this second-level analysis, instead of the voxels 
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that show the peak in our original analysis. We repeated this second- 
level analysis 1000 times to create a null distribution, consisting of 
the maximum correlation value in the family of voxels. This allows 
us to ask whether the observed correlation score is significantly 
great across the family of voxels (in our case, the whole brain). There-
fore, our test is corrected for the family-wise error.

Another possibility is to take an average value in a given cluster 
and use it as a statistic. Please see figs. S8 and S9.

Regions of interests
The anatomical masks for the ROIs for the VTA/SN and the hippo-
campus were taken from (39) and (46), respectively. The anatomical ROIs 
for control analyses were taken as follows: LC from (60), amygdala from 
automated anatomical labeling (AAL) atlas (amygdala-L + amygdala- 
L-aal) and vmPFC from AAL atlas (Frontal-Inf-Orb-L + Frontal-Inf- 
Orb-R + Rectus-L + Rectus-R). Functional masks were used for 
illustrative purposes in our confirmatory analyses, which are described 
in the main text.

PPI analysis
We performed PPI analysis with a single GLM, which contained (i) 
the BOLD signal of VTA/SN, (ii) a PPI regressor that is an interac-
tion between the BOLD signal of VTA/SN and model’s anticipation 
utility signal, (iii) the BOLD signal of vmPFC, and (iv) a PPI regres-
sor that is an interaction between the BOLD signal of vmPFC and 
the model’s aRPE signal, as well as other onset/movement regressors 
that we included in our original analysis.

The vmPFC’s seed activity was defined as the first eigenvalue of the 
BOLD signal in the cluster that correlated with our model’s anticipa-
tion utility (P < 0.05, whole-brain FWE-corrected), and VTA/SN’s 
seed activity was defined as the eigenvalue of the BOLD signal in the 
cluster that was significantly correlated with our model’s aRPE at 
cues [P < 0.05, FWE small volume–corrected (39)]. Note that both aRPE 
and anticipation utility signals were controlled in our PPI analysis.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/25/eaba3828/DC1

View/request a protocol for this paper from Bio-protocol.
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