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Adipose tissue morphology, 
imaging and metabolomics 
predicting cardiometabolic risk and 
family history of type 2 diabetes in 
non-obese men
Aidin Rawshani1,5, Björn Eliasson1,5, Araz Rawshani1, Josefin Henninger1, Adil Mardinoglu   2,3, 
Åsa Carlsson4, Maja Sohlin4, Maria Ljungberg   4, Ann Hammarstedt1, Annika Rosengren1 & 
Ulf Smith   1 ✉

We evaluated the importance of body composition, amount of subcutaneous and visceral fat, liver and 
heart ectopic fat, adipose tissue distribution and cell size as predictors of cardio-metabolic risk in 53 
non-obese male individuals. Known family history of type 2 diabetes was identified in 25 individuals. 
The participants also underwent extensive phenotyping together with measuring different biomarkers 
and non-targeted serum metabolomics. We used ensemble learning and other machine learning 
approaches to identify predictors with considerable relative importance and their intricate interactions. 
Visceral fat and age were strong individual predictors of ectopic fat accumulation in liver and heart 
along with markers of lipid oxidation and reduced glucose tolerance. Subcutaneous adipose cell size 
was the strongest individual predictor of whole-body insulin sensitivity and also a marker of visceral 
and ectopic fat accumulation. The metabolite 3-MOB along with related branched-chain amino acids 
demonstrated strong predictability for family history of type 2 diabetes.

Overweight, obesity and a sedentary life style are major causes of the current global Type 2 diabetes epidemic. 
Excess body weight promotes insulin resistance and the expanded adipose tissue plays a critical role for this. 
The subcutaneous adipose tissue is the largest and preferred site to accumulate excess fat but it is limited in its 
ability to recruit new cells in adults and, thus, cell expansion is the major way of accommodating excess lipids1,2. 
Expanded subcutaneous adipose cells tend to become proinflammatory, insulin resistant and to have increased 
lipolysis. In addition, visceral fat is increasingly used for lipid storage while ectopic fat accumulates in the liver, 
heart and other tissues, which also enhances insulin resistance and the dysmetabolic state2,3.

Ability to differentiate new subcutaneous adipose cells is reduced in adults with expanded cells, not because 
of reduced number of precursor cells but as a consequence of increased cell senescence4. Importantly, individ-
uals with type 2 diabetes (T2D)5, and also non-diabetic individuals with family history for T2D (First-Degree 
Relatives), have inappropriately expanded adipose cells in relation to their BMI6,7 due to the reduced subcutane-
ous adipogenesis in the presence of increased senescent progenitor cells4. Conceptually, there should be a close 
interaction between ability to store excess lipids in subcutaneous fat and the accumulation of visceral fat, ectopic 
fat and development of a dysmetabolic state. The associations and potential regulation exercised by subcutaneous 
adipose tissue lipid accumulation and cellular morphology on overall metabolic risk profile with imaging and 
metabolomics data and relation to family history have, to our knowledge, never been examined before in man.
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Several large clinical studies have shown that individuals with known genetic markers of insulin resistance 
are characterized by reduced subcutaneous adipose tissue8,9, which is consistent with our findings of reduced 
adipogenesis in first-degree relatives and T2D4,10. A further level of complexity is that there is considerable heter-
ogeneity among different adipose tissue depots in regards to their metabolic regulation and endocrine secretion.

In the present study, we sought to identify novel predictors and pathways that can improve the characteriza-
tion of patho-physiological alterations associated with metabolic risk. Extensive identification of biomarkers and 
their intricate interactions should allow new insight into the patho-physiological progression and risk of devel-
oping T2D and its consequences.

For this purpose, we used unbiased machine learning approaches to analyze this comprehensive database 
consisting of extensive phenotyping combined with radiological imaging and body composition analysis, subcu-
taneous adipose tissue mass and morphology, and non-targeted serum metabolomics in healthy lean/overweight 
individuals. Approximately half of our cohort consisted of individuals with a family history of T2D (FDR) and 
these were compared to subjects without known heredity.

Results
Study population.  We included 53 men; 25 with a known family history of T2D (First-Degree Relatives; 
FDR) and 28 without. Mean age was 42 ± 8 years but FDR were significantly younger (39.3 vs 45.6 yrs, p < 0.004). 
The groups had similar body mass index and other basal phenotypic data with only minor differences as demon-
strated in Table 1. Thus, the cohort exhibited no metabolic abnormalities and was comprised of middle-aged, 
healthy, lean or mildly overweight non-diabetic individuals with normal liver function and blood pressure levels 
and without any ongoing pharmacological therapy. The complete variable list of baseline characteristics for pre-
dictors used in the statistical models are presented in Supplementary Table 1.

In a next step, we compared imaging and metabolomics data between FDR and study participants without 
heredity for T2D, henceforth referred to as control subjects. We observed no significant differences in distribution 
of total body fat, abdominal subcutaneous fat, visceral fat, and ectopic fat in liver or heart. In addition, we con-
structed a generalized linear model, adjusted for age, body mass index and group (i.e. FDR or control subjects), 
which showed no significant differences between baseline characteristics, with the exception of age and 3-MOB, 
where a p-value of less than 0.05 was considered to indicate statistical significance (see Supplementary Table 2 for 
more information).

These findings, in conjunction the machine learning models, justified our decision in pooling the imaging 
and metabolomics data between FDR and control subjects. Nonetheless, we performed sensitivity analyses by 
constructing separate prediction models for FDR and control subjects, as reported later.

Magnetic resonance spectroscopy – Liver lipids.  The data for liver lipid accumulation was first ana-
lyzed with conditional random forest, a machine learning model that included all phenotype-, imaging-, protein 

Characteristics Control subjects
First-degree 
relatives P-value Overall

Number 28 25 53

Age – yr 39.29 (7.95)* 45.60 (7.34) 0.004 42.26 (8.23)

Blood pressure – mm hg

Diastolic blood pressure 79.54 (9.34) 82.20 (10.70) 0.338 80.79 (9.99)

Systolic blood pressure 125.86 (12.51) 128.92 (11.98) 0.368 127.30 (12.24)

Body mass index, kg/m2 25.26 (3.88) 25.93 (3.12) 0.492 25.57 (3.52)

Glycated hemoglobin (mmol/mol)† 32.50 (2.42) 33.31 (2.16) 0.207 32.88 (2.31)

Waist to height (mean) 88.77 (10.89) 92.00 (7.83) 0.226 90.29 (9.62)

Serum creatinine, μmol/L 90.46 (11.37) 86.12 (9.09) 0.134 88.42 (10.49)

Waist to hip ratio 0.87 (0.06) 0.90 (0.05) 0.090 0.89 (0.06)

Oral glucose tolerance test (OGTT)

Fasting plasma glucose, mmol/L 4.86 (0.43) 5.01 (0.39) 0.211 4.93 (0.41)

Fasting serum insulin, pmol/L 47.82 (25.49) 42.64 (18.11) 0.403 45.38 (22.26)

Plasma glucose levels after 60 min 7.71 (2.32) 7.72 (1.87) 0.983 7.71 (2.10)

Plasma glucose levels after 2h 5.12 (1.82) 5.72 (1.61) 0.209 5.41 (1.73)

Serum insulin levels after 60 min 492.85 (391.23) 474.48 (350.54) 0.859 484.19 (369.15)

Homa (mean) 12.02 (6.53) 9.48 (4.20) 0.103 10.82 (5.65)

Abdominal subcutaneous adipocyte size (mean), μm 96.16 (12.78) 94.92 (10.44) 0.702 95.57 (11.64)

Table 1.  Baseline characteristics for clinical variables and radiological examinations in first-degree relatives and 
control subjects without diabetes. *Plus-minus values are means ± SD. †Concentrations of glycated hemoglobin 
were based on values from the international federation of clinical chemistry and laboratory medicine. The table 
presents baseline characteristics for clinical variables and radiological examinations in first-degree relatives and 
control subjects without diabetes. The complete baseline characteristics table is presented in Supplementary 
Table 1.
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and serum metabolomics data. As shown in Fig. 1 Panel A, the strongest predictor of liver lipids was amount of 
visceral fat followed by markers of degree of glucose tolerance, two of the metabolomics markers and insulin 
response despite the fact that all subjects were non-diabetic/IGT.

Gradient boosting model demonstrated similar results as conditional random forest; i.e.; that visceral fat is the 
strongest predictor followed by the metabolomics markers 2-hydroxypalmitate and 2-hydroxystearate, as mark-
ers of lipid oxidation. Also, the marker of glucose tolerance, expressed as glucose levels at 60 min was a strong 
predictor, see Fig. 1 Panel A.

Liver fat according to computer tomography also revealed that 2-hydroxybutyrate/2-hydroxyisobutyrate as 
markers of lipid oxidation were the most important predictors, followed by visceral fat and imidazole propionate, 
see Fig. 1 Panel C.

Partial dependence analysis (Fig. 2 Panel A) showed that increasing levels of visceral fat and marker of glu-
cose tolerance were strong interacting factors. The partial dependence plot revealed that the interaction between 
markers of insulin sensitivity/resistance and visceral fat took place first at higher levels.

Figure 1.  Conditional random forest and gradient boosting for radiological examinations of the lipid 
accumulation in liver, heart and visceral fat – Relative variable importance by mean decrease accuracy and 
relative influence These figures (Panels A–C) display the relative importance of phenotype-, imaging- and 
metabolomic markers for distribution of visceral and ectopic fat according to magnetic resonance spectroscopy- 
and imaging, using predictive machine learning models. Predictors that display a pronounced increase in 
relative importance (MDA or relative influence) compared to other predictors are strong predictors for the 
outcome. The strongest predictors identified from the machine learning models were included in generalized 
linear regression (Panel D) to demonstrate the risk for each unit increase for the most important predictors.

https://doi.org/10.1038/s41598-020-66199-z


4Scientific Reports |         (2020) 10:9973  | https://doi.org/10.1038/s41598-020-66199-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

Linear regression validated that increasing levels for visceral fat (RR 1.03; 95% CI, 1.007 to 1.05) and OGTT 
glucose t-60 (RR 2.38; 95% CI, 1.42 to 3.99) were associated with stronger predictability for liver lipids, see Fig. 1 
Panel D.

Magnetic resonance spectroscopy – Cardiac lipids.  MR spectroscopy of the heart (Fig. 1 Panel B) 
showed for the amount of cardiac lipids that age was the strongest individual predictor followed by intensity of 
physical activity. The conditional random forest model and gradient boosting analysis showed relatively diverse 
results. However, the gradient boosting model had lowest RSME score at 1.67. Age was a strong predictor in the 
gradient boosting model followed by 3-methyl-2-oxobutyrate (3-MOB) as the strongest metabolomic predictor, 
and heredity for diabetes. As shown later, 3-MOB was also the strongest predictor of family history for T2D. The 
conditional random forest model validated the predictive effect of age and physical activity level, Fig. 1 Panel B. 
In order to properly assess the importance of heredity for diabetes, we constructed additional machine learning 

Figure 2.  Random forest models for radiological examinations of liver, heart, visceral- and subcutaneous fat 
and abdominal cross section – Partial dependence plots for strongest predictors These figures (Panels A–F) 
are two-way partial dependence plots that show the dependence between radiological examinations of fat 
distribution and the most important predictors, marginalizing over the values of all other features. These are 
generated with conditional random forest models and enable us to visualize interactions among predictors.
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models with a binomial predictor for heredity called group (i.e. first-degree relatives vs. control subject), which 
resulted in similar outcomes.

The partial dependence analyses (Fig. 2 Panel B) revealed minor interactions between the most important 
predictors for lipid accumulation in heart, according to the machine learning models. However, heredity for 
diabetes demonstrated strong interaction effects between age and visceral fat. Thus, like liver lipids, cardiac lipids 
were predicted by amount of visceral fat but physical activity and age were unexpectedly strong predictors. Linear 
regression showed that only age was a significant predictor for lipid accumulation in heart (RR 1.15; 95% CI, 1.05 
to 1.26), Fig. 1 Panel D.

Magnetic resonance imaging – Visceral fat area.  Visceral fat area (Fig. 1 Panel C) was most strongly 
associated with other adipose tissue stores, in particular subcutaneous adipose cell size and amount followed by 
age and liver lipids while the strongest metabolomics predictor was again 2-hydroxypalmitate, a marker of lipid 
oxidation.

Partial dependence analysis (Fig. 2 Panel D) showed that abdominal subcutaneous adipocyte size and amount 
of liver lipids were strong interacting predictors.

Gradient boosting (Fig. 1 Panel C) validated the strong impact of adipocyte size, liver lipids and age. These 
findings were confirmed in predictive models for MRI – abdominal cross section (L4/L5) as seen in Fig. 3 Panel 
A. Thus, these data show that ectopic fat accumulation in the liver, subcutaneous adipose cell size and markers of 
lipid oxidation such as 2-hydroxybutyrate/2-hydroxyisobutyrate, are important predictors of each other. Linear 
regression for visceral fat showed that age was the only significant predictor (RR 1.04; 95% CI, 1.02 to 1.05).

Magnetic resonance imaging – Abdominal subcutaneous fat.  In agreement with the analysis 
above, amount of subcutaneous adipose tissue was best predicted by subcutaneous adipocyte size followed by 
visceral fat, markers of insulin sensitivity (Fig. 3 Panel B), and the fatty acid metabolites tetradecanedioate and 
2-hydroxypalmitate were also important predictors (Fig. 3 Panel B). However, the partial dependence analysis 
revealed that adipocyte size and visceral fat were not strong interacting predictors (Fig. 2 Panel F) and also in the 
gradient boosting analysis (Fig. 3 Panel B). The strongest metabolomics markers were 2-hydroxypalmitate and 
the dicarboxyl fatty acid tetradecaneoates which have previously been shown to be markers of elevated blood 
pressure and all-case mortality in the Twins UK and KORA cohorts and also to have effects on blood pressure in 
animal models11.

Heredity of type 2 diabetes.  We also performed predictive machine learning models for heredity of T2D 
since the cohort included 25 first-degree relatives. The random forest and gradient boosting models demon-
strated that 3-MOB closely followed by waist-hip ratio and caprate, which is an ester of decanoic acid, were the 
strongest predictors for heredity of diabetes (Fig. 4 Panel A). Stepwise modeling of the most important predictor 
in the previous model demonstrated that branched-chain amino acids (valine and isoleucine), acetoacetate and 
insulin sensitivity (OGTT S-Insulin t-30) were the strongest predictors of 3-MOB (Fig. 4 Panel B). The metabolite 
3-hydroxybutyrylcarnitine, which is associated with insulin resistance, type 2 diabetes and fatty acid oxidation in 
the liver, was also an important predictor of 3-MOB and acetoacetate (Fig. 4 Panel B). Partial dependence plots 
revealed interaction effects between branched-chain amino acids and markers of lipid metabolism, such as the 
interaction between 3-hydroxybutyrylcarnitine and valine (Fig. 4 Panel D).

Subcutaneous adipose cell size and insulin sensitivity (HOMA2-IR).  Adipose cell size is rarely 
measured in clinical studies but appeared as a strong predictor of cardiometabolic risk factors including amount 
of visceral fat and liver lipids (see Fig. 1 Panels A–C). Thus, we set out to identify predictors of adipose cell size. 
As shown in Fig. 5 Panels A–B, fat in visceral and subcutaneous depots were strong predictors followed by meas-
ures of insulin sensitivity and waist circumference. We constructed additional models as sensitivity analyses to 
evaluate the strongest predictor for abdominal subcutaneous adipocyte size in a model without imaging variables 
and waist circumference. This revealed that insulin sensitivity (euglycemic clamp data) was the most important 
predictor closely followed by mono- and dicarboxyl fatty acids such as trans-urocanate and tetra-decanedioates 
as the strongest metabolomics markers of subcutaneous adipose cell size.

Furthermore, we scrutinized predictors of HOMA2-IR; a widely used clinical marker of insulin sensitivity. 
The initial machine learning models revealed¸ as expected, that glucose tolerance and insulin sensitivity were 
the strongest predictors since they are used to construct the HOMA index. These were, therefore, excluded from 
the analysis. Under these conditions, subcutaneous adipocyte cell size was the most important predictor for 
HOMA2-IR and explained approximately 40–60% of overall predictability, Fig. 5 Panel B. The conditional ran-
dom forest model for HOMA2-IR, not including radiological examination and serum insulin after oral glucose 
tolerance test, demonstrated similar importance for subcutaneous adipocyte cell size. 3-hydroxybutyrate was also 
strongly related to HOMA2-IR. Taken together, subcutaneous adipose cell size is an integrated marker of amount 
of ectopic fat and adipose tissue mass and, as such, an excellent marker of whole-body inulin sensitivity.

Relative contribution of imaging data and heredity for type 2 diabetes.  In addition to the relative 
importance of each predictor, we also calculated the relative contribution, i.e. the percentage of each predictor 
explained in every machine learning model and, thereafter, calculated the average of these percentages for each 
predictor from the random forest and gradient boosting models.

Figure 6 displays a mapped network between these predictors and how they are intertwined based on the 
relative contribution. Our machine learning analyses show that visceral fat, subcutaneous adipose tissue and 
waist-hip ratio are all strong predictors of adipose tissue mass and subcutaneous adipose cell size which, in turn, 
is a strong predictor for insulin sensitivity (HOMA2-IR).
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Moreover, adipose tissue mass, most strongly visceral fat, is an important predictor for ectopic fat distribution 
in liver and heart. The metabolite 3-methyl-2-oxobutyrate (3-MOB), shown to be a marker of impaired fasting 
glucose (IFG)12 and a strong predictor of ectopic fat accumulation. For heredity of type 2 diabetes, 3-MOB was 
a strong predictor along with glucose tolerance and insulin sensitivity. We performed stepwise modeling, which 
validated that BCAA and related metabolite (3-MOB) were strong predictors of heredity for type 2 diabetes.

Discussion
The purpose of this extensive study was to identify predictors of cardiometabolic risk profile based on different 
imaging analyses, glucose tolerance, insulin sensitivity, family history of diabetes and untargeted serum metab-
olomics. Family history is well known to be one of the most prominent risk factors for future development of 
T2D13. We sought to eliminate differences in baseline characteristics between control subjects and first-degree 
relatives. Therefore, all study participants were matched for BMI, blood pressure, waist circumference, fasting glu-
cose and insulin levels, with the exception of age, which was significantly higher in first-degree relatives (6 years) 

Figure 3.  Conditional random forest and gradient boosting for radiological examinations of an abdominal 
cross section, subcutaneous fat and liver fat according to magnetic resonance imaging and computer 
tomography – Relative variable importance by mean decrease accuracy and relative influence. These figures 
(Panel A–C) display the relative importance of phenotype-, imaging- and metabolomic markers for distribution 
of tissue in abdominal cross section, subcutaneous fat and liver fat according to magnetic resonance imaging 
and computer tomography. Strongest predictors were identified with machine learning models. Predictors 
that display a pronounced increase in importance compared to other predictors are strong predictors for the 
outcome. The regression estimates in Panel D shows the strongest predictors from the random forest models 
associated with risk increase and which are subsequently included in linear regression models to demonstrate 
the risk for each unit increase for those predictors.

https://doi.org/10.1038/s41598-020-66199-z


7Scientific Reports |         (2020) 10:9973  | https://doi.org/10.1038/s41598-020-66199-z

www.nature.com/scientificreportswww.nature.com/scientificreports/

(Table 1). Considering this, the predictor termed ‘first-degree relative’ should not be significantly influenced by 
metabolic- or body composition differences.

It is clear that amount of visceral fat is the best marker of liver lipids, a strong marker of heart lipids and it was 
also a major marker of amount of subcutaneous adipose tissue and its adipose cell size. We have previously also 
shown that waist circumference, a well-established marker of visceral fat14, is strongly correlated to subcutaneous 
adipose cell size and the current data corroborate this15.

Interestingly, age was strongly associated with both heart, visceral and liver lipids. This is also consistent with 
previous findings showing that amount of visceral fat increases with age independent of BMI14. This increased 
visceral and ectopic fat accumulation may be caused by aging-associated cell senescence, which prevents the for-
mation of new functional cells in the subcutaneous adipose tissue and leads to lipid spill-over4,16. Surprisingly we 
observed that degree of physical activity was positively related to amount of heart lipids, which is similar to what 
has been shown for lipids in skeletal muscles17. Thus, this may be a general effect of physical activity and unrelated 
to negative metabolic consequences.

Figure 4.  Conditional random forest and gradient boosting models for heredity of type 2 diabetes with stepwise 
modeling for the strongest predictor in preceding model – Relative variable importance by mean decrease of 
accuracy and relative influence. These figures (Panels A–D) display the relative importance of phenotype-, 
imaging- and metabolomic markers for heredity of type 2 diabetes and the predictors that are strongest in 
each preceding machine learning models as a stepwise modeling approach to identify the metabolite pathway. 
Predictors that display a pronounced increase in relative importance (MDA or relative influence) compared to 
other predictors are strong predictors for the outcome. The beta coefficients (95% confidence intervals) next to 
the strongest predictors in the random forest models are generated from generalized linear regression models, 
in order to demonstrate the risk for each unit increase. The asterisk (*) denotes that decreasing values for that 
predictor is associated with risk increase.

https://doi.org/10.1038/s41598-020-66199-z
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Expansion of subcutaneous adipose cells is strongly associated with reduced whole-body insulin sensitivity, 
enhanced inflammation and it is also an independent predictor of future risk of developing T2D2,18,19. It is a 
consequence of inability to recruit new functional adipose cells10, which, in turn, is associated with a genetic pre-
disposition for T2D, but, not for obesity6,7, and increased precursor cell senescence4. Several recent studies have 
also shown that individuals with genetic markers of insulin resistance are characterized by reduced subcutaneous 
adipose tissu8,9, which is expected to increase the adipose cell size and accumulation of ectopic lipids.

Interestingly, we also found that adipose cell size is a major predictor of whole-body insulin sensitivity meas-
ured as HOMA index or with euglycemic clamps and that visceral fat is a predictor of subcutaneous adipose cell 
size as well as a marker of glucose tolerance. Alfa-hydroxybutyrate (α-HB) was the strongest metabolomics pre-
dictor of HOMA insulin sensitivity. Alfa-hydroxybutyrate has also previously been shown as a marker of insulin 
resistance, IGT and progression to developing T2D20,21.

Glucose tolerance and degree of insulin sensitivity were strong predictors of family history of T2D. However, 
the strongest predictor was 3-methy-2-oxobutyrate (3-MOB), a key metabolite of branched-chain amino acid 

Figure 5.  Conditional random forest, gradient boosting and partial dependence plots for adipocyte size and 
HOMA2-IR, with linear regression – Relative variable importance by mean decrease accuracy. Panels A to 
B display the relative importance of phenotype-, imaging- and metabolomic markers for adipocyte size and 
insulin sensitivity (HOMA), using machine learning models. Predictors that display a pronounced increase 
in importance compared to other predictors are strong predictors for the outcome. Panels C to D show partial 
dependence plots for the most important predictors identified by predictive machine learning models. Panel 
E shows risk increase for each unit increase according to linear regression models. *Group variable denotes a 
binomial predictor for heredity of type 2 diabetes, i.e., either first-degree relative or control subject.

https://doi.org/10.1038/s41598-020-66199-z
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(BCAA)22 and isoleucine as well as valine (not shown) were also strong predictors. We also found mannose as 
a marker of insulin resistance and future risk of developing both T2D and CVD23,24 to be a predictor of family 
history and its phenotype. Detailed partial dependence plots also showed that isoleucine and a-HB strongly inter-
acted to predict 3-MOB levels and this was also found for valine (data not shown). Previous work has shown that 
a-HB levels predict IGT while 3-MOB is more closely associated with IFG20. However, all our subjects had normal 
GTT and no IGT or IFG were included. This suggests that these biomarkers of family history actually predict 
inherent factors associated with family history and future risk of developing glucose intolerance.

Amount of liver lipids and heart lipids showed quite distinct differences in their predictors. Amount of visceral 
fat, lipid oxidation products, glucose tolerance and amount of abdominal subcutaneous fat and adipose cell size 
mainly predicted liver lipids. Heart lipids were also predicted by amount of visceral fat and liver lipids, but more 
strongly by age and degree of physical activity as discussed. In fact, age was an important predictor of amount of 
visceral fat as well as ectopic fat. This is likely a consequence of increased subcutaneous adipose tissue progenitor 
cell senescence4,16 preventing recruitment of new cells and promoting lipid storage in other depots.

The strength of this study is the extensive phenotyping together with imaging data and metabolomics markers 
while a weakness is the limited number of individuals included. However, most previous studies have not been 
able to integrate all information as generated in this study. In Fig. 6, we have summarized our key findings of pre-
dictors and their apparent associations. It is clear that amount of adipose tissue, also in this non-obese cohort, and 
subcutaneous adipose cell size are central factors associated with both insulin sensitivity (HOMA and clamp data) 
and ectopic liver lipids. In fact, the most prominent predictor of HOMA, excluding glucose and insulin levels, was 
adipose cell size while a-HB was the most prominent metabolomics marker. Increased subcutaneous adipose cell 
size is associated with amount of adipose tissue and, in particular, visceral fat and waist circumference. Our study 
comprised exclusively of non-obese men, therefore, it is conceivable that these findings are imprecise for women.

Taken together, our current data show that subcutaneous adipose tissue mass and cell size, even in the 
non-obese state, are key predictors of whole-body insulin sensitivity as well as visceral and ectopic hepatic lipid 
accumulation. Family history of T2D is predicted by both OGTT and HOMA, but the most prominent marker 
was the BCAA metabolite 3-MOB as well as mannose and a-HB. It is likely that family history of T2D and its asso-
ciated genetic effects are central for both the expanded adipose cell size and accumulation of ectopic fat, which are 
all components of the cardio-metabolic risk profile.

Study Population and Methods
The local Ethical Committee at the Sahlgrenska Academy at the University of Gothenburg approved the study 
protocol. The study was performed in agreement with the Declaration of Helsinki. All subjects received oral and 
written information and gave their informed consent to participate.

Study population.  We recruited in total 25 first-degree relative and 28 control persons via newspaper adver-
tisements and through earlier studies performed at the laboratory. Inclusion criteria in the first-degree relative 
group were male sex, at least one first-degree relative with a diagnosis of type 2 diabetes mellitus and general 
good health. Inclusion criteria in the control group were male sex, no first-degree relative with type 2 diabe-
tes mellitus and general good health. Most recruited individuals had previously undergone examinations in the 
laboratory and had gained around 8% in body weight since previous investigations. We also recruited other 
individuals from previous recent investigations and they were placed on a supervised hypercaloric diet to also 
increase body weight with around 8% before inclusion in the study. This was done to ensure similar changes in 
body weight and hypercaloric diet intake in the groups. Subcutaneous adipose tissue biopsies were performed 
from the lower abdominal wall and processed for cell sizing as previously reported10. This study was approved by 

Figure 6.  Relative importance between imaging, phenotype and metabolomics data, in individuals with- and 
without heredity for type 2 diabetes. The relative importance for predictors was ranked according to highest 
relative contribution of each predictor in both the random forest model and gradient boosting model. The size 
of the arrows does not indicate greater strength between the predictors and outcomes.

https://doi.org/10.1038/s41598-020-66199-z
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the regional ethical committee (approvals 384-12 and T803-13). All general clinical investigation methods have 
been described previously25,26.

Clinical variables.  Lifestyle factors were evaluated through a questionnaire filled out at the laboratory. Body 
weight and height, and waist and hip circumferences were recorded and BMI was calculated. The proportions of 
body fat and lean body mass were determined using bioelectrical impedance (single frequency, 50 kHz; Animeter, 
HTS, Odense, Denmark). Blood pressure was measured in a sitting position after a five minutes rest with a mer-
cury sphygmomanometer.

To evaluate glucose tolerance status, fasting blood samples were drawn after 12 hours of fasting and were 
followed by an OGTT (75 g glucose orally). Samples for measurement of plasma glucose and serum insulin were 
drawn after 0, 30, 60 and 120 minutes.

Again after 12 hours of fasting, an intravenous glucose tolerance test (IVGTT) was performed to determine 
the first and second phases of insulin secretion. A bolus of glucose (300 mg/kg in a 50% solution) was given within 
30 seconds into the antecubital vein. Samples for the measurement of plasma glucose and insulin (arterialized 
venous blood) were drawn at −5, 0, 2, 4, 6, 8, 10, 20, 30, 40, 50 and 60 minutes. The acute and the late insulin 
responses, i.e. incremental area under the insulin curve, (AIR, 0-10 minutes; LIR, 10-60 minutes) were calculated 
using the trapezoidal method.

In subgroup 1 the IVGTT was followed by a hyperinsulinemic euglycaemic clamp was initiated (insulin infu-
sion: 240 pmol m−2 min−1 for 120 min) to evaluate insulin sensitivity as previously reported27. Whole blood 
glucose was clamped at 5.0 mmol/l for the next 120 minutes by infusion of 20% glucose at various rates according 
to glucose measurements performed at five minutes intervals (YSI, Yellow Springs Instrument Company, OH). 
Insulin sensitivity (M) was calculated as the mean glucose infusion rate during the last 30 minutes of the clamp 
adjusted for body weight, and M/I was calculated as the M-value corrected for steady-state insulin concentra-
tions. In all subgroups, fasting plasma insulin and fasting plasma glucose from the OGTT were used to calculate 
a HOMA-IR index using the formula HOMA-IR = (fasting plasma glucose × fasting plasma insulin)/22.5 M and 
M/I were used to validate the HOMA-IR. Only the HOMA-IR value is reported here to assess insulin sensitivity. 
All metabolites were measured in serum subsequent to overnight fasting.

Plasma glucose was measured using standard laboratory methods (Department of Chemistry, Sahlgrenska 
University Hospital, Gothenburg, Sweden). Plasma insulin was measured at the University of Tübingen, Germany, 
by micro-particle enzyme immunoassay (Abbott Laboratories, Tokyo, Japan).

A subcutaneous abdominal adipose tissue biopsy was performed. The biopsies (approximately 20–30 mg) were 
obtained with a needle aspiration technique, from the paraumbilical region after local infiltrative anesthesia with 
lidocaine (20 ml, 0.5%)28.

Isolation of adipocytes was performed by initially washing the biopsied to remove traces of blood, followed by 
and treatment with collagenase (1 mg/ml) (Sigma, St Louise, MO, USA) for 60 minutes at 37 °C in a shaking water 
bath. Isolated adipocytes were filtered through a 250 mm nylon mesh and washed with fresh medium. Adipocyte 
cells were placed on a siliconized glass slide and 100 consecutive cell diameters were measured with a calibrated 
ocular and expressed as the average value in μm.

MRI and MRS for fat determination.  MR imaging and localized 1H-MR spectroscopy was performed 
using a 1.5 T MR-system (Intera/Achieva, software release 3.2) using the vendor´s 16 channel SENSE XL Torso 
coil (Philips Medical Systems, Best, The Netherlands). The software used included a research package enabling 
navigator triggered MRS and a field map based B0-shimming29,30.

MRI to assess abdominal fat.  The amount of intra-abdominal and subcutaneous fat was assessed at the 
level between the 4th and the 5th lumbar vertebra (L4/L5) using T1 weighted axial images acquired with a TE of 
5.24 ms, TR of 91 ms, 80 degree flip angle, pixel size of 1*1 mm2 and a 10 mm slice thickness.

Data processing was performed using an in-house developed segmentation program written in MatLab 
(MATLAB R2014b, The MathWorks Inc, USA). An intensity threshold value for fat signal was determined 
for each individual patient and the surface of intra-abdominal and subcutaneous adipose tissue was quanti-
fied. Inter-muscular fat, as well as muscle, bone and lean tissue was excluded. The fat fraction is reported as 
intra-abdominal to total volume, and subcutaneous adipose tissue to total volume ratios.

MRS to asses liver fat.  Liver spectra were acquired in end expiration using point resolved spectroscopy 
(PRESS) with a TE of 30 ms and TR of 2700 ms. Four non-water suppressed signals and 32 water suppressed 
(CHESS) signals were acquired with 1.0 kHz spectral bandwidth and 1024 data points. The voxel (2.5 × 2.5 × 2.5 
cm3) was positioned within the right liver lobe and care was taken to exclude large intrahepatic blood vessels, bile 
ducts and abdominal adipose fat.

The liver MRS data were processed using the jMRUI software. In jMRUI the spectra were eddy current cor-
rected, and residual water and base line were removed using a Hankel-Lanczos filter (HLSVD, a single decompo-
sition method). For the non-water suppressed reference spectra all metabolite signals, except water, were removed 
using the HLSVD algorithm. In the processed spectra water (H2O, 4,7 ppm), methylene (CH2, 1.3 ppm) and 
methyl (CH3, 0.9 ppm) were quantified using the AMARES algorithm and all metabolites were corrected for 
T2 relaxation using T2 values from the literature31–33. The fat fraction(%), denoted MRS-liver lipids in results, is 
calculated as (CH2 + CH3)/H2O.

MRS to assess heart lipids.  Cardiac MRS measurements were performed using PRESS with a TE of 35 ms. 
The spectroscopy scans were cardiac triggered to end systole, using individually optimized time-delays33, and 
respiratory triggered at end expiration. Eight non-water suppressed dynamics (TR = 6000 ms) and 128 water 
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suppressed (CHESS) dynamics (TR = 3000 ms) were acquired. The voxel (4.5cm3) was carefully planned within 
the ventricular septum and care was taken to minimize effects from blood and epicardial lipid contamination.

The cardiac MRS data were processed using the jMRUI software. In jMRUI the spectra were eddy current 
corrected and residual water and base line were removed using HLSVD. In the processed spectra trimethylamines 
(TMA), creatin (Cr), methylene (CH2), methyl (CH3) and an additional lipid complex at 2.1 ppm were quantified 
using the AMARES algorithm. All metabolites were corrected for T2 relaxation using T2 values from the litera-
ture and the fat fraction (%), denoted as MRS cardiac lipids in results, was calculated as (CH2 + CH3)/H2O.

Statistical analysis.  Our analysis of data involves baseline characteristics for phenotype-, imaging- and metab-
olomic variables for all study participants and according to hereditary status for diabetes, presented as mean ± 
SD (Table 1 and supplementary Table 1). Correlation between covariates in persons with first-degree relatives and 
control subjects were tested by Spearman correlation coefficient (supplementary figure 1). A general linear model 
were applied to test for associations while controlling for the potential confounders, i.e. body mass index, age and a 
variable termed group, denoting first-degree relative or control subjects, see supplementary Table 2 for more details.

Predictive models.  We constructed predictive models with Conditional Random forest and Gradient boost-
ing to examine relative variable importance, i.e. predictive ability of a broad range of predictors for amount of 
ectopic-, visceral- and abdominal subcutaneous fat accumulation, assessed with various radiological examina-
tions. Random forest and Gradient boosting are both machine learning algorithms.

Conditional random forest.  The random forest models were based on conditional inference trees, in order 
to reduce bootstrap sample bias and variable selection bias, resulting in more accurate measurements of vari-
able importance, particularly for categorical predictors34,35. Random forest is a nonparametric machine learn-
ing model that consists of a collection of decision trees with random feature selection. Each regression tree is 
tested on a bootstrap sample of two-third of the original dataset for training instances, features and one-third for 
out-of-bag (OOB) measures. Conditional random forest has built-in mechanisms for estimation of test error and 
certainty in each prediction model by using OOB-error rate. Initially, internal-validation mechanism was utilized 
to construct conditional random forest models that minimalized the OOB-error rate. Thereafter, results from 
internal validation techniques were compared to k-fold cross validation with test and training dataset, using 3 to 
5 iterations for various models turned out to be superior.

Gradient boosting models.  In addition to conditional random forest models, we constructed gradient 
boosting models to compare results from various models. Gradient boosting is another machine learning model 
that constructs ensembles of decision trees and measures variables importance in similar ways as conditional ran-
dom forest models. However, the prediction is performed differently. In Gradient boosting each tree is grown on 
the residuals of the previous tree and prediction is subsequently accomplished by weighting the ensemble outputs 
of all the regression trees. In the gradient boosting models, we assumed Gaussian distribution for reducing the 
squared-error loss and the shrinkage factor applied to each tree was set to 0.00136. With these settings, the gradi-
ent boosting models showed rather similar predictions as the conditional random forest models.

Model building.  Hyperparameter optimization was performed for every machine learning model, using 
automated grid search. Parameters that were evaluated in the conditional random forest model included number 
of trees, predictors in each split, minimum sum of weights in a node to be considered for splitting and the propor-
tion of observations needed to establish a terminal node. Machine learning models were based on hyperparame-
ters that minimize root mean squared error (RSME). Grid search for the gradient boosting models included the 
parameters interaction depth, number of trees, shrinkage factor and number of observations in a terminal node.

Each conditional random forest models contains a unique subset of predictors since features with near-zero 
influence (negative MDA-score) and correlated predictors were excluded in the preliminary machine learning 
models. Feature selection for each model was based on subject matter knowledge, to improve signal extraction 
of predictors, improve model diagnostics and metrics (RSME). In the gradient boosting models, predictors with 
low relative influence were sequentially excluded until relative importance plot demonstrated stability for the 
strongest predictors. Each random forest and gradient boosting model were built using between 600 to 3,500 
regression- or classification trees. Additional model diagnostics was performed with measurement of r-squared 
(R2) on test sets for each model. However, due to small sample size, we noticed relatively large fluctuations in R2 
depending on partition size of test samples. Therefore, model building was performed to minimize RMSE and 
optimize R2 values for each model.

Relative importance of predictors is presented as mean decrease of accuracy (MDA) and relative influence for 
conditional random forest and gradient boosting, respectively, a large relative importance indicates that the pre-
dictor is important, whereas a small MDA or relative influence value indicates that the predictor is less important 
for that outcome.

Partial dependence plots.  Comprehensive model building revealed interactions between strong predictors 
for certain outcomes. Therefore, we constructed two-way partial dependence plots (Figs. 2, 4 and 5), based on 
random forest models, which demonstrates the interaction effects of varying values for the most important pre-
dictors. Partial dependence plots visualizes the relationship between predictors, whether it is linear, monotonous, 
more complex or if it’is increasing or decreasing values that is related with the outcome37.

Linear- and logistic regression models.  The most important predictors identified by means of machine 
learning models were subsequently included in linear and logistic regression models. The regression estimates 
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and 95% confidence intervals that are presented in Fig. 1 Panel D, Fig. 3 Panel D, and Figs. 4–5 Panel E. These 
were generated from regression models using log-transformed variables and unstandardized regression coeffi-
cients. These models were intended to validate the partial dependence plots to ensure that a decrease or increase 
in a feature value was associated with increased predictability of the outcomes.

Imputation.  We used missForest package in R to impute missing data for study participants, this package 
is based on the random forest algorithm37. We analyzed distributions and means before and after imputation 
without observing virtually any differences. A p-value of less than 0.05 were considered to indicate statistical 
significant.

Calculations were performed in R (v 3.6.2) using the following packages: Corrplot, GBM, missForest, Random 
Forest, Caret, ggRandomForests, Party, Plotmo, GridExtra, cForest, MLR and hydroGOF. R package version 2.25).

Computer code and data availability
All computer code used to generate results reported in the manuscript will be available to editors upon request. 
The data is available on a general public repository (www.datadryag.org), submitted with https://doi.org/10.5061/
dryad.4qrfj6q7b.
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