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In the broad sense, the Bayesian networks (BN) are probabilistic graphical models that possess unique
methodical features to model dependencies in complex networks, such as forward and backward prop-
agation (inference) of disruptions. BNs have transitioned from an emerging topic to a growing research
area in supply chain (SC) resilience and risk analysis. As a result, there is an acute need to review existing
literature to ascertain recent developments and uncover future areas of research. Despite the increasing
number of publications on BNs in the domain of SC uncertainty, an extensive review on their application
to SC risk and resilience is lacking. To address this gap, we analyzed research articles published in peer-
reviewed academic journals from 2007 to 2019 using network analysis, visualization-based scientometric
analysis, and clustering analysis. Through this study, we contribute to literature by discussing the chal-
lenges of current research, and, more importantly, identifying and proposing future research directions.
The results of our survey show that further debate on the theory and application of BNs to SC resilience
and risk management is a significant area of interest for both academics and practitioners. The applica-
tions of BNs, and their conjunction with machine learning algorithms to solve big data SC problems relat-
ing to uncertainty and risk, are also discussed.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Bayesian networks (BN) are probabilistic graphical models,
which have been well recognized as a rigorous methodology for
the quantification of risks, uncertainty modeling, and decision-
making in the presence of structural dynamics (Fenton & Neil,
2013; Qazi & Akhtar, 2018). BNs are rooted in statistics, computer
science, and artificial intelligence and were initially introduced by
Pearl (1988). BNs are structured using conditional probability and
Bayes’ theorem, which capture dependency among system
components.

Dependencies in the context of supply chain (SC) management
can be modeled in different forms, for example, as a flow of
commodities between manufacturer and distribution centers. The
material flows can be vulnerable to disruptions and numerous
risks (Craighead, Blackhurst, Rungtusanatham, & Handfield, 2007;
He, Alavifard, Ivanov, & Jahani, 2018; Ivanov, Dolgui, Sokolov, &
Ivanova, 2017; Macdonald, Zobel, Melnyk, & Griffis, 2018;
Pournader, Kach, & Talluri, 2020; Yoon, Talluri, Yildiz, & Ho,
2018) which yield different types of supply, production, and logis-
tics disruptions (Sawik, 2020; Zhong & Nof, 2020). Within SC risk
management (SCRM), the resilience paradigm plays an important
role. SC resilience has recently gained extensive attention in
research. Resilience is commonly understood as the SC’s ability
to withstand disruptions and recover after disruption (Blackhurst,
Dunn, & Craighead, 2011; Brandon-Jones, Squire, Autry, &
Petersen, 2014; Dubey et al., 2019; Hosseini, Ivanov, & Dolgui,
2019a; Pettit, Croxton, & Fiksel, 2019). A resilient SC is therefore
characterized by some redundancy (e.g., backup suppliers and risk
mitigation inventory) and recovery capabilities (Behzadi,
O’Sullivan, & Olsen, 2020; Dolgui, Ivanov, & Sokolov, 2020). One
of the dominant challenges in managing SC resilience is controlling
the so-called ripple effect, that is, the propagation of a disruption
throughout multiple echelons in the SC (Dolgui, Ivanov, &
Sokolov, 2018; Mishra, Dwivedi, Rana, & Hassini, 2019; Scheibe &
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Blackhurst, 2018). For example, numerous ripple effects have been
observed at the beginning of COVID-19 pandemic when disrup-
tions at suppliers in Asia have propagated downstream in the SCs
causing material shortages and even facility closures on other con-
tinents (Ivanov, 2020a, 2020b). Recent studies have developed and
tested different approaches to designing and controlling SC resili-
ence using the BN with consideration of the propagation of disrup-
tion (Hosseini & Ivanov, 2019). However, these developments are
rather fragmented and existing knowledge is scattered throughout
literature.

BNs have been widely used in numerous domains of research,
including the energy, defense, and robotics industries (Boutselis
& McNaught, 2019; Buritica & Tesfamariam, 2015; Daemi,
Ebrahimi, & Fotuhi-Firuzabad, 2012; Lazkano, Sierra, Astigarraga,
& Martinez-Otzeta, 2007; Munya, Ntuen, Park, & Kim, 2015), social
sciences, including ecology (Bac Dang, Windhorst, Burkhard, &
Muller, 2019; Lau et al., 2017), medicine (Corani, Magli, Giusti,
Gianaroli, & Gambardella, 2013; Flores, Nicholson, Brunskill,
Korb, & Mascaro, 2011; Haddawy et al., 2018; Labatut, Pastor,
Ruff, Demonet, & Celsis, 2004; Petousis, Han, Aberle, & Bui, 2016;
Wang, Chen, & Wang, 2019), services and baking (Baesens et al.,
2004; De Sa, Pereira, & Pappa, 2018; Gupta & Kim, 2008; Tavana,
Abtahi, Di Caprio, & Poortarigh, 2018), finance and economics
(Gemela, 2001; Kita, Harada, & Mizuno, 2012), etc. Although BNs
and the theory underpinning them have flourished in the field of
engineering, applications to SCRM and resilience have progressed
rather slowly. One of the major reasons for this is the difficulty
of generating BNs. For many years, researchers had to build their
own BN models. Needless to say, this made BNs unapproachable
to the majority of researchers, particularly SCM scholars. During
the last decade, several BN software packages were introduced to
the market. This has facilitated the implementation of BNs and
resulted in increasing interest in research on BN applications to
SCRM, risk and resilience (Garvey, Carnovale, & Yeniyurt, 2015;
Hosseini et al., 2019; Hosseini, Ivanov, & Dolgui, 2019b, 2019a;
Ojha, Ghadge, Kumar Tiwari, & Bititci, 2018).

BNs have unique features that do not exist in other methodolo-
gies such as regression modelling (Chaudhuri, Boer, & Taran, 2018;
Kumar Sharma & Bhat, 2014) failure mode effect analysis (FMEA)
(Li & Zeng, 2016), fault tree diagrams (FTD) (Athikulrat,
Rungreanganun, & Talabgaew, 2015), Markov chains (Teasley,
Bemley, Davis, Erera, & Chang, 2016), Monte Carlo simulations
(MCS) (Deleris & Erhun, 2005), and structural equations modelling
(Liu, 2012; Sreedevi & Saranga, 2017). This makes them interesting
in terms of application to risk analysis and managing uncertainty
in complex SCs.

Despite the increasing number of publications on BNs, an exten-
sive review of their applications to SC risk, resilience, and the rip-
ple effect is lacking. To address this gap, we analyzed research
articles published in peer-reviewed academic journals from 2007
to 2019 using network analysis, visualization-based scientometric
analysis, and clustering analysis. We contribute to literature by
discussing the challenges of current research, and, more impor-
tantly, identifying and proposing future research directions.

To this end, we organize our study around the following main
research questions (RQ), i.e.:

RQ1: What are the merits and challenges of implementing BNs
in the context of SC risk, resilience, and the ripple effect?
RQ2: How and when should BNs be used in the context of SC
risk and resilience?
RQ3: What are potential subjects of research in SC risk and resi-
lience that can be uncovered through utilization of BNs?
RQ4: How can the ripple effect in SCs be controlled by using
BNs?
RQ5: How can BNs be integrated with machine learning to solve
big data SC problems?

More specifically, in this study,weargue that BNsare appropriate
tools for modelling and measuring SC risk and resilience, as well as
controlling the ripple effect. This is especially the case in large, inter-
connected and complex networks, because BNs 1) capture the inter-
dependency between SC entities, 2) reasonwith partial or uncertain
information, 3) combine expert knowledge with historical data
when the source of risk to the SC is novel (e.g., natural disaster)
and data availability is limited, 4) incorporate the new information,
5)measure the disruption of upstreamentities on downstreamenti-
ties of SCs, and 6) enable data-driven integration with machine
learning techniques. This is the first survey paper that analyzes the
applicability and appropriateness of BNs for modelling, measuring,
and assessing SC risk and resilience problems.

We demonstrate the merits and limitations of applying BNs to
this field of research. In addition, we compare several popular SC
risk management approaches to BNs. Last, we discuss potential
research opportunities that can be addressed by BNs. The rest of
this paper is organized as follows. In Section 2 we present research
methodology and data visualization. Section 3 articulates major
anchors of the BN theory. In Sections 4 and 5, we discuss the stud-
ies on BN applications to SC risk and resilience identified through
our search. Subsequently, in Section 6 we tease out and generalize
research and managerial implications of BN applications to SC risk
and resilience. One specific aspect of BN applications, i.e., data
learning is discussed in Section 7. We conclude with Section 8 by
summarizing major findings and outlining some future research
directions.
2. Research methodology and data visualization

We developed an original framework to analyze literature on
the application of BNs to SC risk, resilience, and the ripple effect
(Fig. 1).

Initially, we selected seven dominant online databases (i.e.,
Science Direct, Wiley Online Library, Informs, IEEE Digital Library,
Springer, Taylor & Francis, and Emerald Publishing). To ensure
the depth and breadth of our search, we also used well-known aca-
demic databases, including Google Scholar, Engineering Village,
and Ebsco Host. We confined the review to existing literature
exclusively found in journal articles. Using keywords to perform
the search, we selected articles pertinent to the application of
BNs in SC risk and resilience. The search process was performed
based on a combination of keywords relating to topic and method-
ology. The main keywords we used for topics included ‘‘supply
chain risk”, ‘‘supply risk”, ‘‘supplier risk”, ‘‘supply chain resilience”,
‘‘resilient supply chain”, ‘‘supply chain vulnerability’, ‘‘supply chain
disruption”, ‘‘supply chain risk management”, ‘‘supply chain dis-
ruption”, ‘‘supply chain recovery”, ‘‘supply chain risk manage-
ment”, ‘‘supplier risk”, and ‘‘supply chain risk uncertainty”. The
main keywords we used for methodology included ‘‘Bayesian net-
work”, ‘‘Bayesian belief network”, ‘‘Probabilistic graphical models”,
‘‘Bayesian networks”, ‘‘BN”, ‘‘Bayesian analytical”, and ‘‘Bayesian
inference”. 63 papers have been found with a publication year
between 2007 and 2019. The abstracts and contents of each article
were assessed by two independent researchers to ensure that the
contents of each were relevant to the scope of this study. For these
relevant articles, we performed further reference chasing. We then
read the abstracts and contents of references identified in the pre-
vious step to ascertain whether they might also be relevant to this
study. Further, each article was classified according to the year of
publication and the type of journal.



Fig. 1. Research methodology process framework.
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In the further course of this paper, we present a visualization-
based scientometric analysis to evaluate the current state and recent
developments in BN applications to SC risk and resilience. Data visu-
alization as a tool of the literature review has become increasingly
utilized, i.e., Fahimnia, Tang, Davarzani, & Sarkis, 2015, Xiang,
Wang, & Liu, 2017, Hosseini et al., 2019a, Zhong et al., 2019, Yu,
Wang, &Marcouiller, 2019. Such an analysis can help to (1) summa-
rize the general characteristics of publication outputs andmain sub-
ject categories, (2) reveal emerging trends and developments, and
(3) identify the share of journals with focused topics.
2.1. Term mapping visualization

An important objective of visualization is to analyze the fre-
quency of keywords that have been used in literature on BN applica-
tions to SC risk and resilience. The termmap clustering illustrated in
Fig. 2 allows representing the state-of-the-art research angles
around which we organize our overview of different subfields and
their interconnections in order to identify potential opportunities
for fulfilling the research gaps between the subfields.
This visualization depicts which terms are most important in a
publication cluster and what the relationship of co-occurrence is
between these terms (VanEck&Waltman,2014). Therearefiveclus-
ters (red, blue, green, yellow, and purple) in the termmapping visu-
alization. Each cluster contains the terms that have the highest
proportion of co-occurrence. The distance between two terms is
an indication of the relatedness of the terms. The smaller the dis-
tance between two terms, the stronger the relatedness is. The relat-
edness of terms is determined based on co-occurrence in
documents. The respective co-occurrences analysis between BN
and other terms is represented in Fig. 3. The co-occurrencemapping
represents the linkbetween twokeywords (nodes),which is approx-
imately inversely proportional to the similarity (relatedness in
terms of co-occurrence) of the keywords (Bornmann, Haunschild,
& Hug, 2018).
2.2. Journal co-citation analysis

Weused CiteSpace to visually cluster inwhich journals literature
on the topic is being published. Journal co-citation analysis helped



Fig. 2. Term map clustering.

Fig. 3. Co-occurrence analysis between BN and other terms.

4 S. Hosseini, D. Ivanov / Expert Systems with Applications 161 (2020) 113649
us to obtain insights regarding the frequency and influence individ-
ual journals are having on this field of research (Liu, Yin, Liu, &
Dunford, 2015).

According to the journal clustering visualization represented in
Fig. 4, the top 10 cited journals are European Journal of Operational
Research, Management Science, International Journal of Production
Economics, International Journal of Production Research, Operations
Research, Computers & Industrial Engineering, Omega, Expert Systems
with Applications, Supply Chain Management, Production and Opera-
tions Management, respectively. The visualization indicates that
these journals have a greater influence in the field of SC risk and
resilience.
3. Theory of Bayesian network (BN)

This section focuses on understanding the principles of BNs,
that is: 1) BN definition, assumption and fundamentals, 2) struc-
tural learning, 3) parameter learning, and 4) inference and
reasoning.

3.1. Fundamentals

BNs are a powerful technology for capturing uncertainty and
assessing risk. BNs are structured based on Bayes’ theorem and
conditional probability theory. Bayes’ theorem enables us to reason



Fig. 4. Visualization of journal co-citation network.
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in a logical, rational, and consistent way by computing the poste-
rior probability of input data given new data input in a specific
state. Bayes’ theorem can be represented as shown in Eq. (1):

P hjDð Þ ¼ PðDjhÞPðhÞ
PðDÞ ð1Þ

For data D and variable h;P hjDð Þ is the posterior probability of h
in light of the observed data D, PðDjhÞ is the likelihood function of
the probability of new data D given h, PðhÞ is prior (unconditional)
probability distribution of parameter h, and PðDÞ is marginal like-
lihood (evidence). With the use of Bayes’ rule and in light of the
data, we are able to update our beliefs about the variable h to a pos-
terior belief. BNs can be used for representing the impact of evi-
dence on existing data through probabilistic expressions
describing the causal relationship among variables (Dury,
Valverde-Rebaza, Moura, & Andrade Lopes, 2017).

Technically, BNs are directed acyclic graphs (DAGs) with a set of
nodes (variables) and set of arcs (edges), where the probabilistic
relationship among variables is expressed by a set of arcs. Variables
in BNs can be defined in different forms, including Boolean (yes/no,
true/false), continuous, ranked (low/medium/high), etc. Let’s con-
sider a BN with a set of nodes, represented by
V ¼ fX1;X2; � � � ;Xng, and set of arcs that specifies the probabilistic
dependency among variables. Let’s assume that there is outgoing
arc from Xi to Xj, indicating a relationship where the state values
of variable Xj depend on state values of variable Xi. In the context
of risk management, if we consider Xi and Xj to both be disruptive
events, then the occurrence of Xj depends on the occurrence of Xi.
Put simply, Xi and Xj are cause and effect variables. Xi is called the
parent of Xj because of the outgoing arc from Xi to Xj, while Xi is
called the child of Xj. There are three types of nodes in BNs: 1) leaf
nodes, which are nodes without a child, 2) root nodes, which refer to
nodes without a parent node, and 3) intermediate nodes, are nodes
with at least one parent and one child node.

Consider a BN with 4 nodes as illustrated in Fig. 5.
Fig. 5. Example BN with 4 nodes.
In the example in Fig. 5, X1 and X2 are root nodes, X3 is interme-
diate node, and X4 is a leaf node. The prior probabilities of
P X1ð Þ;PðX2Þ, and the conditional probabilities of PðX3Þ, and
PðX4Þ must be determined. Each node is associated with a condi-
tional probability table (CPT), which lists the probability of a real-
ization of a variable given the values of other variables.

The probability of individual variables can be computed from
the joint probability distribution (JPD) in a BN. The JPD of this BN
can be written by Eq. (2).

P X1;X2;X3;X4ð Þ ¼ PðX1Þ � PðX2Þ � PðX3jX1;X2Þ � PðX4jX3Þ ð2Þ
Suppose that we are interested in calculating the probability of

X4, then PðX4Þ can be calculated using Eq. (3).

P X4ð Þ ¼
X

X1 ;X2 ;X3

PðX1Þ � PðX2Þ � PðX3jX1;X2Þ � PðX4jX3Þ ð3Þ

Consider a supplier that may fail to deliver raw materials to a
manufacturer due to two disruptive events, e.g., hurricane and
labor strike, denoted by e1, and e2, respectively, as shown in
Fig. 6. The supplier is a Boolean variable with the states ‘‘failed”
or ‘‘operational”. There are two states (true/false) associated with
each disruptive event. The true and false states represent the prob-
abilities that the disruptive event occurs and does not occur,
respectively.

Consider prior probabilities of independent occurrence of the
hurricane and labor strike as 4% and 7%, respectively. The probabil-
ity of disruptive events can be obtained through historical data or
expert knowledge, or a combination of both thereof. The probabil-
ity of a supplier failure is conditional on the probability of the
occurrence of disruptive events e1 and e2. The CPT of the supplier
given e1 and e2 is shown in Table 1.

The disruption probability of supplier is calculated based on the
JPD using Eq. (4).

P Supplier ¼ failð Þ¼
X

e1 ;e2

P Supplier¼ failje1;e2ð Þ�P e1ð Þ�P e2ð Þ

¼P Supplier ¼ failje1 ¼ ture;e2 ¼ trueð Þ
�P e1 ¼ trueð Þ�Pðe2 ¼ trueÞ
þP Supplier ¼ failje1 ¼ true;e2 ¼ falseð Þ
�P e1 ¼ trueð Þ�Pðe2 ¼ falseÞ
þP Supplier ¼ failje1 ¼ false;e2 ¼ trueð Þ
�P e1 ¼ falseð Þ�Pðe2 ¼ trueÞ
þP Supplier ¼ failje1 ¼ false;e2 ¼ falseð Þ
�P e1 ¼ falseð Þ�Pðe2 ¼ falseÞ ¼ 2:95% ð4Þ

In the example given, the probability that the supplier fails or
operates is 2.95% and 97.05%, respectively, as shown in Fig. 7.

3.2. Structural learning

Perhaps the most difficult task in dealing with BNs is under-
standing how they are structured. Generally speaking, the BN
Fig. 6. BN for modeling supplier disruption.



Fig. 7. Distribution probability of variables associated with BN model in Fig. 6.

Table 1
The CPT of supplier disruption given two disruptive events.

Disruptive event 1, e1 (hurricane) true false

Disruptive event 2, e2 (labor strike) true false true false

Supplier fails 0.21 0.08 0.12 0.02
Supplier operates 0.79 0.92 0.88 0.98
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structure (configuration) can be determined using expert knowl-
edge or through machine learning algorithms (Koller & Friedman,
2012). The intuitive knowledge provided by experts can determine
dependencies between the variables, that is, the event likelihoods
(i.e., variable assignments). In this case, the BNs can be constructed
manually. In other cases, the use of expert knowledge in BNs with
large numbers of variables (nodes) may not be easy or practical. In
P X2 ¼ truejX5 ¼ yesð Þ ¼ PðX2 ¼ true;X5 ¼ yesÞ
PðX5 ¼ yesÞ ¼

P
X1 ;X3 ;X5

PðX1;X2 ¼ true;X3;X5 ¼ trueÞ
P

X1 ;X3 ;X5
PðX1;X2;X3;X4;X5 ¼ trueÞ

¼
P

X1 ;X3 ;X5
PðX1Þ � PðX2 ¼ truejX1Þ � PðX3jX1Þ � PðX4jX2 ¼ true;X3Þ � PðX5 ¼ yesjX4ÞP
X1 ;X3 ;X5

PðX1Þ � PðX2jX1Þ � PðX3jX1Þ � PðX4jX2;X3Þ � PðX5 ¼ yesjX4Þ ð5Þ

Fig. 8. BN example with 5 nodes.
some cases, it can be difficult to identify experts with all the
required knowledge.

An alternative way to determine the structure of a BN is
through data. This means that the causal relationships (depen-
dency) among variables are determined through data learning.
Generally, there are two methods of structure learning. The first
is a score-based approach, which uses a scoring function such as
‘‘maximum likelihood” to assess how well the BN fits to the data,
and then searches over the space of DAGs to find the structure with
the highest score. The score-based approach is comprised of two
parts: the search algorithm and the definition of a score metric.
Local search, greedy search, and the Chow-Liu algorithm are
among the most common search algorithms that have been
applied in this approach (Conrady & Jouffe, 2018). The second
method is a constraint-based approach, which employs statistical
tests to identify a set of link constraints for the graph and then
finds the best DAG that satisfies the constraints. Notably, searching
for the optimal BN structure is NP-hard problem. Hence, there have
been several attempts to reduce the search space for different
structure learning techniques (Friedman, Nachman, & Peer, 1999).
3.3. Parameters learning

For a given BN structure and the CPT of node i,
P Xið jparent nodes of XiÞ is typically estimated using the
maximum likelihood expectation method from the observed
frequencies in the dataset associated with the BN. When a
dataset is not available, CPTs can be determined using expert
knowledge.
3.4. Inference and reasoning

The ability of BNs to perform inference is one of their most pow-
erful features. This fact makes BNs suitable for analyzing SC risk
and resilience problems. The inference in BNs relies upon evidence.
The inference analysis can be performed by entering evidence and
using propagation to update the marginal probabilities of all unob-
served variables. Consider the BN example with 5 nodes illustrated
in Fig. 8. Let’s assume that nodes X1 to X4 are Boolean with two
states of false and true, and X5 is a Boolean node with states of
yes and no.

Assuming that we have evidence that node X5 is in its yes state,
we wish to know the probability that X2 is true given X5 is yes. This
probability can be calculated as shown in Eq. (5).
Different methods exist to reduce the complexity of the
marginalization expressions in Eq. (5). These include Monte Carlo
sampling, dynamic programming, and loopy belief propagation
(see, e.g., Fenton & Neil, 2013 for a detailed discussion).

4. Applications of BNs to supply chain risk management

During the last two decades, SCs have become more vulnerable
to disruptions due to globalization, multiple sourcing strategies,



Table 2
Computations of marginal disruption probability of MF.

State of parent nodes (ui) P MF ¼ disruptedjuið Þ P uið Þ
u1 ¼ MB ¼ no; SRM ¼ nof g P MF ¼ disruptedju1ð Þ ¼ 0:03 P u1ð Þ ¼ 0:8463
u2 ¼ MB ¼ no; SRM ¼ yesf g P MF ¼ disruptedju2ð Þ ¼ 0:12 P u2ð Þ ¼ 0:0837
u3 ¼ MB ¼ yes; SRM ¼ nof g P MF ¼ disruptedju3ð Þ ¼ 0:1 P u3ð Þ ¼ 0:0637
u4 ¼ MB ¼ yes; SRM ¼ yesf g P MF ¼ disruptedju4ð Þ ¼ 0:28 P u4ð Þ ¼ 0:0063
FMF ¼ P

8ui
P MF ¼ disrupted j uið Þ � P uið Þ � 4:36%
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complexity, and interconnectedness (Craighead et al., 2007; Ho,
Zheng, Yildiz, & Talluri, 2015; Hosseini, Barker, & Ramirez-
Marquez, 2016). Blackhurst and Wu (2009), Sodhi and Tang
(2010), Zsidisin and Ritchie (2010) identified a framework based
on four key steps to reduce SC vulnerability to disruptions: (1)
identifying potential risks, (2) measuring and assessing risks, (3)
mitigating risks, and (4) responding to risks. Measuring potential
SC risks is essential to reducing the disruption of SC operations.
For example, Hong, Lee, and Zhang (2018) presented a comprehen-
sive review on procurement risk management under uncertainty.
Their findings indicate that a proper management of procurement
risks is not only required to mitigate lead time and price risks but
also emphasizes the value of sophisticated analytical techniques in
managing supply and demand uncertainties.

The focus of this section is to review the applications of BN on
modelling and measuring SC risks. This section does not aim to
review the definitions of risks and analyze SC risk factors. We refer
readers to Ho et al. (2015), Fahimnia et al. (2015), Heckmann,
Comes, and Nickel (2015), IvanovDolgui (2019) for a comprehen-
sive review of definitions and core characteristics of SC risks.

4.1. SC risk modeling

Consider a manufacturing facility (MF) whose operation is
exposed to two major disruptions: machinery breakdown (internal
risk) and shortage of raw material (external risk). These two dis-
ruptions can negatively impact the operations of an MF (Fig. 9).

The BN illustrated in Fig. 9 has two parent nodes, machinery
breakdown and shortage of raw material, denoted by MB and
SRM, respectively, and a child node represented by MF. Each parent
node consists of two states: yes versus no. Each disruption occurs
independently and there is no correlation between disruptions.
Let’s assume that the prior probability that MB and SRM risks occur
independently are 7% and 9%. An MB and SRM risk induces 10% and
12% probability of disruption at MF, respectively. The probability
that MF fails to operate when both risks occur simultaneously is
28% and there is still a 3% chance that MF will fail to operate if nei-
ther MB nor SRM occurs. The marginal probability of disruption of
MF, FMF is calculated as shown in Table 2.

BN applications to SC risks can be found in numerous studies.
Srikanta Routroy (2016) developed a BN to model information risk
in SCs. The proposed BN model captures three key risk factors,
including information breakdown factors, information leakage fac-
tors and reluctance in information sharing factors. The sub-causes
of each above-mentioned risk factor are identified and modeled as
parents of relevant risk factors. The author then measured the
impact of risk factors and their corresponding sub-risk factors in
terms of revenue impact. Rodgers and Singham (2019) constructed
a BN to evaluate the likelihood and impact of disruptions on a
Fig. 9. BN of manufacturing facility (MF) impacted by two risks and their
corresponding distribution probabilities.
clinical SC network. Their BN model would enable practitioners
to develop SC risk mitigations by simulating different possible dis-
ruptions in a clinical SC. The BN model used in Rodgers and
Singham (2019) is constructed based on expert knowledge elicita-
tion and can be used to identify and prioritize the vulnerable com-
ponents of SC network.

Lockamy and McCormack (2012) used a BN to develop supplier
risk profiles to determine the risk exposure of a company’s rev-
enue. The target node in their model is supplier revenue impact,
which is conditional on three nodes, network risks, operational risks,
and external risks, as represented in Fig. 10. Each risk itself is con-
ditional on a set of relevant sub-risks. For example, operational
risks are conditional on driving risk factors (risks 6–9 in Fig. 10),
which include quality problem, delivery problem, service problem,
and supplier human resource problem. The authors then investi-
gated the supplier’s revenue impact subject to various combina-
tions of network, operational, and external risks. The authors
examined and ranked the vulnerability of 15 suppliers with respect
to network, operational, and external risks. The practical implica-
tion of their model is to assist SC managers in identifying the most
vulnerable suppliers.

Kaki, Salo, and Talluri (2015) evaluated the risks of an automo-
tive SC using BN methodology. The authors proposed index, called
supplier disruption impact (SDI), which measures the increased
total risk of a focal manufacturing company (FMC), when supplier
n is disrupted. The authors studied the impact of SC complexity,
density, and reliability using BNs. Managerial insights reflect how
SC complexity and density impact the risks that stem from the sup-
ply base. The authors also compared the vulnerability of a single
supply strategy versus a multiple supply strategy using BNs. The
authors concluded that a supplier with a large number of parents
is more risky which indicates that suppliers with more parents
have higher importance. The proposed BN model can be only
implemented for forward SCs but it cannot be used for the revere
SCs as they contain cycles. Besides, the authors built BN model
based on an assumption that a supplier can be either fully dis-
rupted or fully operational. This could not be the case in practice
as a supplier can be still operational with some level of its original
capacity in the presence of a disruption. As such, modeling states of
a supplier disruption with ranked variables (i.e., operational, fully
operational, semi-operational) could extend the results of this
study.

Kumar Sharma and Sharma (2015) developed a BN to quantify
the risk of a SC system. The authors considered four major risk fac-
tors, including firm specific (process risk, control risk), industry
specific (supply risk, demand risk), SC specific (relationship risk,
logistical risk), and risk of natural disaster. One major critical point
is that the weights of all SC risks are considered equally. It is nota-
ble that SC risk factors (i.e., demand risk, environmental risk, and
operational risk) may have different importance and therefore
the disruption impacts on suppliers can vary. Utilizing a weighted
ranked node that captures the weight of each risk could strengthen
the usability of the proposed BN model. Besides, utilizing a contin-
uous node instead of a binary variable could be more practical.



Fig. 10. BN for analyzing the risk profile of supplier revenue impact (Lockamy & McCormack, 2012).
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The main critical observations from Lockamy and McCormack
(2012), Kumar Sharma and Sharma (2015), Kaki et al. (2015) and
Srikanta Routroy (2016) is that the interdependency among risks
is almost ignored. The focus of those works on a particular problem
without adapting BNs to the reality of SCRM needs to be extended
by capturing the complex interdependency among different types
of SC risks. Moreover, the likelihood of an SC risk is the only asso-
ciated factor considered, while the severity and detection stage
(i.e., early/late) of a disruption risk are not taken into account.

Corman and Kecman (2018) developed a BN to predict the delay
of a train due to common disruptions which impact railway trans-
portation systems. The proposed BN model enables the probability
of distribution due to random variables to be updated and the
uncertainty of future train delays to be reduced. The model helps
decision makers to make better predictions of train traffic. Wan,
Yan, Qu, and Yang (2019) proposed an integrated BN and FMEA
to assess maritime SC risks. The main advantage of their method
is to improve the accuracy of estimating maritime SC risk in the
presence of data with high uncertainty. The authors considered
five commonmaritime SC risks including transportation of danger-
ous goods, fluctuation of fuel price, fierce competition, unattractive
markets, and change of exchange rates in sequence. Every risk fac-
tor is conditioned on five triggers including likelihood, time delay,
additional cost, quality damage, and visibility. Rodger (2014)
applied a BN for estimating SC backorder aging risk. The authors
determined the structure of BN model from real-world SC data
and the posterior distribution probability for backorders are deter-
mined using a stochastic simulation based on Markov blankets.
The BN is used to minimize the replenishment cost by finding opti-
mal backorder replenishment alternatives.

Qazi, Dickson, Quigley, and Gaudenzi (2018) developed an
approach based on integration of a BN and expected utility (EU)
to manage SC risks. The main advantage of their BN model is that
it considers the risk-aversion of decision makers. The risk accep-
tance level for risk-averse SC managers, risk-seeking SC managers,
and risk-neutral SC managers is modeled using a BN. The authors
considered j risks imposed on the SC network. The risk propagation
measure (RPM) for the jth risk is defined as the probability
weighted by expected utility of the SC network if risk j is realized.
RPMj is calculated as shown in Eq. (6).

RPMj ¼ PðRj ¼ TrueÞEURj¼True ð6Þ
where EURj¼True is the expected utility given risk j is realized. The
authors considered K strategies to mitigate disruption risks. Let rk

denote the kth mitigation strategy, while the mitigation strategy
has I states. It is assumed that there is a cost associated with each
mitigation strategy, so the EU resulting from undertaking risk mit-
igation strategy k can be calculated using Eq. (7).
X

i2I
Pi rkð ÞUðsi;CkÞ ð7Þ

where Pi rkð Þ is the probability that strategy type k is in state i,
and Uðsi;CkÞ is the utility associated with mitigation strategy k, and
the cost of mitigation strategy k. The authors finally studied the
impact of different risk mitigation, risk sources, and risk interac-
tion using BN. The proposed BN in Qazi et al. (2018) modeled only
Fig. 11. Local and global disruptions with consideration of risk interdependency.
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on-time state of the supply risk rather than monitoring the
dynamic nature of the SC risk. In addition, this BN model does
not capture the conflicting motivation of main stakeholders. Other
BN applications to SC risk assessment can be found in Kao, Haung,
and Li (2005); Wu (2005), Li and Chandra (2007), Shevtshenko and
Wang (2009), Sharma and Routroy (2016), Kumar Sharma and
Sharma (2015).

4.2. Interdependency modeling of SC risks

A major research gap in the field of SC risk management is the
interdependency impact of different risks on SC performance. BNs
are powerful tools for capturing the interdependencies among
risks and their impacts on SC performance. The earthquake and
tsunami that struck the northeast coast of Japan in 2011 halted
the operations of many automotive and electronic manufactures
and suppliers for several weeks (Computerworld, 2016; Reuters,
2016). The Japanese tsunami was triggered by the earthquake.
The impact of this interdependency was ignored, so the occurrence
of the tsunami and its impact was not predicted at an early stage
(Livescience, 2013; Nature, 2011).

Through conditional probability, risk interdependency can be
easily modeled using a BN. We demonstrate a BN model in
Fig. 11 with three suppliers that are impacted by global disruption,
local disruption, or combination of both thereof.

Supplier 1 is impacted by three local disruptions. Supplier 2 is
impacted by two local disruptions: tsunami and earthquake. The
tsunami is conditional on the earthquake, so the tsunami can
directly disrupt supplier 2, and or the occurrence of an earthquake
could indirectly disrupt supplier 2 through tsunami. Supplier 3 is
impacted by a single local disruption. Finally, all suppliers are vul-
nerable to a global disruption, economic collapse. As demonstrated
in this example, a BN is not only capable of modelling the different
types of SC risks (local and global), but also the interdependency
among those risks.

4.3. SC risk propagation and ripple effect modelling

Inference analysis is a unique feature of BNs that can be used to
simulate the propagation impact of a disruptive event on SC enti-
ties, i.e., the ripple effect (Ivanov, Sokolov, & Dolgui, 2014; Dolgui
et al., 2018; Hosseini et al., 2019b; Mishra et al., 2019). In inference
analysis, we enter any number of observations anywhere in the BN
model and use propagation to update the marginal probability dis-
tribution of all unobserved variables. The inference analysis is usu-
Fig. 12. Probability distribution of
ally in the form of forward propagation (FP) or backward
propagation (BP). FP and BP are also known as forward and inverse
inference, respectively. FP focuses on inferring outputs from input
observation, also known as cause to effect propagation, while diag-
nosis refers to inferring inputs from outputs, also known as effect
to cause propagation. We demonstrate FP analysis when economic
collapse and labor strike occur, as known through certain observa-
tion. The probability failure of suppliers 1, 2, and 3 after FP
increases from 2.62%, 4.27%, and 2.43% (Fig. 12) to 37.56%,
54.83%, and 15.62%, respectively (Fig. 13).

Now we wish to see how much the probability of local and glo-
bal disruptions increases when supplier 1 (effect) is assumed to be
failed. It is notable that any of the three suppliers can be chosen to
demonstrate the effect, but we picked supplier 1, because it is
impacted by four different disruptive events. BF is performed on
supplier 1 by assuming that supplier 1 fails to operate and the
impact of this observation is backwardly propagated through the
BN by updating the marginal probability distribution of disruption
variables. There are different algorithms that can be used for FP
and BP analysis, such as variable elimination, relevance tree, loopy
belief propagation, and likelihood sampling (Fenton & Neil, 2013).
Fig. 14 shows the probability distribution of disruptions that
impact supplier 1 under BP analysis.

FB and BP are great features of the BN, because they enable the
investigation of the ripple and bullwhip effect on the SCs (Dolgui,
Ivanov, & Rozhkov, 2020). The ripple effect occurs when the impact
of disruption on upstream entities (suppliers) of a SC cannot be
localized, propagate throughout the SC, and negatively impact
downstream entities (retailers and customers) (Ivanov et al.,
2014, 2019a, 2019b). A key challenge in the field of SC risk man-
agement is to quantify and simulate the impact of disruption on
upstream entities and the cascading effect on downstream entities.
This can be easily managed using the FP feature of BNs. Recently,
several attempts have been made to study the propagation analysis
of disruption in SC systems using BNs. Ojha et al. (2018) developed
a risk exposure index using the BN approach to model risk propa-
gation in SCs. The authors argue that understanding the cascading
impact of risks is critical for designing resilient SC networks. The
authors investigated the vulnerability of multi-echelon SC net-
works against different disruption scenarios that propagates from
upstream to downstream nodes.

Nepal and Prakash Yadav (2015) proposed a model based on
integration of a BN and a decision tree to evaluate a supplier’s risk.
The target node of the BN model is total cost due to sourcing risk,
which is conditional on supplier nodes, where each supplier node
BN model illustrated in Fig. 7.



Fig. 13. Probability distribution of BN model illustrated with inference analysis on economic collapse and labor strike variables.

Fig. 14. Probability distribution of disruptions impacting supplier 1 under BP analysis.
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is conditional on a set of risk factors. The authors used linguistic
variables (low, medium, and high) to express the risk level of each
risk factor. Many of the BN models (Kumar Sharma & Sharma,
2015; Lockamy & McCormack, 2012; Nepal & Prakash Yadav,
2015; Sharma & Routroy, 2016) that have been proposed in SCRM
suffer from ah lack of studying specific risks at particular locations
in SCs, the impact of disruption risk throughout the SCs and ulti-
mate consequences. Garvey et al. (2015) proposed an index that
measures the risk propagation in a supply networks using BN tool.
Their model accounts for the inter-dependencies among different
risks, as well as the idiosyncrasies of SC network structure. The
authors finally argued that a BN is a natural fit for examining risk
propagation in complex and highly interdependent SCs, regardless
of the structure of SC networks.

Hosseini et al. (2019b) proposed a metric to measure the ripple
effect in a two-echelon SC with a set of suppliers and manufactur-
ers. The authors first defined the operability of each supplier using
three states: fully operational, semi-disrupted, and fully disrupted.
The service level of a supplier is then defined as the child node of
the supplier, meaning that the service level depends on the oper-
ability level of supplier. The authors modeled the ripple effect of
supplier disruption in terms of the total expected utility (TEU) of
a supplier. The TEU of a supplier is modelled using a decision tree,
which is created based on service level and operability level of that
Fig. 15. TEU of a supplier created using a BN (Hosseini et al., 2019d).
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supplier. Fig. 15 represents the TEU of a supplier impacted by its
operability and service level.

The TEU of SC is then calculated as the sum of the TEU of all sup-
pliers and the manufacturers. For example, the TEU of set of suppli-
ers is calculated using Eq. (8).

TEUsuppliers ¼
XT

t¼1

Xm

i¼1

X3

k¼1

X3

l¼1

pikt � piklt � Uiklt ð8Þ

where, pikt is the probability that supplier i is in state k in time per-
iod t, piklt denotes the probability that the service level (SL) of sup-
plier i is in state l at time t knowing that supplier i is in state k, and
Uiklt is the expected utility associated with service level state l of
supplier i when supplier i is in state k at time period t. There are
four set of time periods, suppliers, states of supplier (operational,
semi-disrupted, fully disrupted), and states of supplier’s service
level (low, medium, high), which are denoted by t, i, k, and l,
respectively.

The authors examined the vulnerability of the manufacturer in
terms of service level and TEU with respect to disruption of each
individual supplier using FP. By performing FP analysis, the authors
assumed that each supplier is fully disrupted (fully dis-
rupted = 100%) separately and propagate the impact of this disrup-
tion on the service level and TEU of the manufacturer. The FP
analysis helped to identify the suppliers whose disruption would
have a higher negative impact on service level and TEU of the man-
ufacturer. In Hosseini et al. (2019b), an integrated model of dis-
crete Markov chain and BN is presented in which the impacts of
a disruption are quantified in terms of service level and expected
utility. The proposed integration of BN with continuous Markov
chain model when supplier capacity in the presence of a disruption
could be a promising future avenue of research. Qazi, Quigley, and
Dickson (2014) proposed a hybrid BN game theory approach,
where a BN is used to capture the dependency between risk factors
of SC and game theory is utilized to evaluate the risks associated
with conflicting incentives of stakeholders within a supply net-
work. Future research should focus more on exploration of hybrid
BN approaches with other risk analysis methodologies. The authors
presented two different BNs; one representing the Boeing’s per-
ceived SC risks and the other depicting real time supply chain risks
faced by the company (Qazi et al., 2014). A game between two sup-
pliers and Boeing are modeled by the authors. Game theory
approach is used to model the risks associated with conflicting
motivations among the stakeholders in supply networks. The
SC disruption 
triggers

Mitigation 
strategies 

SC risks

C

Fig. 16. Generic BN model
results of this game-theoretical analysis were fed as inputs to the
BN.

4.4. A generic BN model for assessing SC risk

Literature analysis reveals that the existing BN models are
developed for specific types of SC structures or specific risks. As
such, the literature lacks a generic BN model that can be used
regardless of SC structural designs or risk types. The proposed gen-
eric BN model is illustrated in Fig. 16.

In Fig. 16, the distribution probability occurrence of SC risks
can be defined using binary states such as true (if the SC risk
occurs), and false (if the SC risk does not occur). The SC risk
itself can be further broken down into operational and disrup-
tion risks or external and internal risks. The SC risks variable
is conditional on SC disruption triggers, which include a vast
variety of causes, including natural disasters, bankruptcy of sup-
plier or logistics provider, poor communication and information
sharing between SC entities, economic and political crises, etc.
The occurrence of SC disruptions also depends on the mitigation
strategy, which can be viewed as a control variable. SC managers
can significantly reduce disruption frequency by utilizing appro-
priate mitigation strategies, such as high flexibility (flexible
transportation modes), redundancy (holding excess inventory
backup), and a multiple sourcing strategy (IvanovDolgui, 2019).
The probability that a SC risk occurs (True) can be written as
shown in Eq. (9).

PðSC risks ¼ TrueÞ ¼ PðSC risks

¼ TruejSC disruption; mitigation strategiesÞ
� P SC disruption strategiesð Þ
� P mitigation strategiesð Þ ð9Þ

The consequences of SC risk disruption include increases in lead
time, delivery delays, loss of market share, and reputation, etc.,
which have adverse effect on the utility of SC systems. Hence, util-
ity is considered a child node of the consequences node. The sever-
ity of consequences depends on the type of SC risk and managerial
decisions. The generic framework represented in Fig. 16 can be tai-
lored for a specific SC, such as a green SC (GSC), depending on the
type of SC risk, mitigation strategy, and the consequences of
disruption.

The maximal EU of the generic BN model can be calculated as
shown in Eq. (10).
onsequences

Decision

Utility

Variable node

Decision node

Utility node

for assessing SC risk.
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max
Decision

X

Consequences

P Consequencesð Þ U ðConsequences;DecisionÞ

ð10Þ
Fig. 17. Causal relationship between disruptive event characteristics and resilience
capacity characteristics.
5. BN for SC resilience

SC risk management is rooted in an event-oriented perspective
while SC resilience is a system property which allows absorbing
negative events (risks) and recovering in case of disruptions. One
can compare risks with viruses, and resilience - with immune sys-
tems. Measuring and analyzing SC resilience has grown signifi-
cantly as a research topic over the last decade (Cardoso, Barbosa-
Povoa, Relvas, & Novais, 2015; Hosseini, Ivanov, & Dolgui, 2019a;
Ivanov, 2020; Kim, Chen, & Linderman, 2015). BNs have been
widely used to model and measure the resilience of different sys-
tems, such as waterway transportation (Hosseini & Barker,
2016a), urban infrastructure (Huck & Monstadt, 2019), manufac-
turing (Hosseini et al., 2016; Rajesh, 2018), and energy (Gupta,
Bruce-Konuah, & Howard, 2019; Mola, Feofilovs, & Romagnoli,
2018). However, the application of BN to SC resilience is relatively
new and requires more exploration.

Hosseini and Barker (2016b) developed a BN model to evaluate
and select resilient suppliers. The authors measured the resilience
of a supplier in terms of its resilience capacity, which consists of
absorptive capacity, adaptive capacity, and restorative capacity.
The drivers of absorptive capacity include segregation, surplus
inventory, backup suppliers, physical protection. The driver of
absorptive capacity is rerouting, and the drivers of restorative
capacity are technical resources and budget resources. A major cri-
tique on this work is that the resilience of a supplier is measured in
static time, while a dynamic BNmodel seems to bemore promising.

Ojha et al. (2018) quantified SC resilience through risk propaga-
tion analysis. The authors developed a BN model that quantified
risk propagation behaviors at each node across the SC network.
The resilience of supply network is quantified in terms of loss of
service level.

Hosseini and Ivanov (2019) proposed a metric for the resilience
of an original equipment manufacturer (OEM) with an assessment
of supplier’s vulnerability to disruption and the SC’s exposure to
the ripple effect. The resilience of OEMwith respect to i-th supplier
is measured as the ratio of recoverability to vulnerability of OEM
when the i-th supplier is disrupted. The authors quantified the
resilience of OEM with respect to each individual supplier on a
two-tier automotive SC and measured the importance of each sup-
plier using information theory technique. Finally, they identified a
set of suppliers who are important, but less resilient. The outcomes
of their research can assist SC managers in enhancing the resilience
of their SCs by (i) identifying critical suppliers, and (ii) investing in
critical suppliers with low levels of resilience.

Proposed a resilience measure to quantify the resilience of a
two stage SC made up of suppliers and single manufacturer using
a BN. Resilience (W) is measured as the union of successful mitiga-
tion (pre-disaster) and contingency (post-disaster) strategies, as
demonstrated in Eq. (11). Resilience can be achieved when the mit-
igation strategy harnesses the shocks of disruption, otherwise con-
tingency strategy comes into play.

W ¼ P Mitigation strategy ¼ Succeedð Þ
þ PðContingency strategy

¼ SucceedjMitigation strategy ¼ FailÞ ð11Þ
The probability of successful mitigation is further measured in

terms of probability of successful absorptive capacity, while the
probability of successful contingency is quantified by the probabil-
ity of adaptive and restorative capacity (Eq. (12)).
W ¼ P Absorptive capacity ¼ Succeedð Þ
þ P Adaptive capacity ¼ SucceedjAbsorptive capacity ¼ Failð Þ
þ P Restorative capacity ¼ SucceedjAbsorptive capacity ¼ Failed; Adaptive capacity ¼ Failð Þ

ð12Þ

The authors then used BN methodology to model the causality
between absorptive, adaptive, restorative capacity and the charac-
teristics of disruptive events (likelihood of disruption, a, and inten-
sity of disruption, b) (Fig. 17).

As illustrated in Fig. 17, the restorative capacity (third line of
defense), denoted byH; is conditional on adaptive capacity (second
line of defense), denoted by U, where adaptive capacity itself is
conditional on absorptive capacity (first line of defense), denoted
by X. The likelihood and density of disruption is dependent on
absorptive capacity, since it is the first line of defense (pre-
disaster strategy).

Ojha et al. (2018) proposed a resilience metric in which the resi-
lience of a supply network with a set of nodes and arcs is calculated
in terms of service level. Let’s assume that SLkw and SLk0represent the
service level of node k in week w, and service level of node k when
there is no disruption. Finally,w0 denotes theweek inwhich disrup-
tion occurs at the supply network, andwn represents the timewhen
disruption ends plus time to recover from the negative effect of dis-
ruption. The resilience index (RI) is then calculated by Eq. (13).

RI ¼ 1�
Pwn

w¼wo
ð1� SLkw=SLk0Þ
ðwn �w0Þ ð13Þ
6. Research andmanagerial implications of BN application to SC
risk and resilience

In this section, we summarize research and managerial implica-
tions of BN application to SC risk and resilience.

6.1. Research implications

Through our study, we have identified that BNs have several
methodical characteristics that make them appropriate for mod-
elling,measuring, and analyzing SC risk and resilience studies. How-
ever, BNs also have somepotential limitations. This section provides
an overview of the strengths andweaknesses of a BN approach to SC
risk and resilience modelling and compares it with other methods.

The practical and methodological strengths of BNs can be sum-
marized as follows:

1. Forward and inverse inference: BNs provide a conceptual line of
reasoning from cause to effect (forward inference) and effect
to cause (inverse inference), and quantify the strengths of those
relationships. This unique capability of BNs provides a means to
improve decision-making support, since it enables insightful



Fig. 18. Advantageous properties of BNs for solving SC risk and resilience problems.
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‘‘what-if” disruptive scenarios and provides managers with the
ability to investigate potential disruptive evidence. With the
assistance of forward inference, decision-makers can predict
the impact of SC risks and propagate their impacts on SC perfor-
mance (e.g., cost, lead time, service level). Inverse inference is
particularly beneficial when SC managers wish to know how
mitigation strategies (e.g., extra pre-positioning inventory of
suppliers, utilizing backup supplier) should be adjusted to effi-
ciently mitigate disruptions.

2. Data type modelling: In contrast to regression, optimization, and
neural networks that are only capable of quantitative data, BN
models are able to incorporate different types of variables,
including Boolean (e.g., true/false), ranked (e.g., low/medium,
high), continuous (e.g., normal distribution), and ordinal. BNs
are a powerful methodology for capturing the qualitative and
quantitative characteristics of SC risks.

3. Small and incomplete dataset: A challenging issue in measuring
the resilience of SC systems is the lack of datasets. High impact
disruptive events, like natural disasters, occur rarely, and as a
result, there are an inadequate amount of datasets in terms of
quantifying SC resilience. A useful feature of BNs is that they
can easily work with little data. There is no minimum sample
size required to perform the analysis, and BNs take into account
all data available (Myllymaki, Silander, Tirri, & Uronen, 2002;
Uusitalo, 2007). Moreover, Kontkanen, Myllymaki, Silander,
and Tirri (1997) demonstrate that BNs can achieve good predic-
tion accuracy with rather small sample sizes. Furthermore, BNs
have been shown to be robust to imperfect knowledge (Pollino
& Handerson, 2010).

4. Combining different sources of knowledge: A key feature of BNs is
that they use prior information. Priors reflect our knowledge of
the subject before research is conducted, and can be either
informative, if there is already sufficient knowledge about the
subject, or uninformative, if not much is known (Uusitalo,
2007). Prior probabilities are updated with new data to obtain
a synthesis of the old knowledge and new data. This synthesis
can be then used as a prior in a new study (Uusitalo, 2007).
BNs can easily synthesize historical data and expert knowledge
in a mathematically coherent manner. This feature of BNs is
useful for SC risk and resilience analysis, because expert knowl-
edge can be combined with a small amount of historical data
when there is little data available about disruption characteris-
tics (e.g., probability of disruption, intensity of disruption, con-
sequence of disruption).

5. Complexity: BNs can integrate information from difference
sources, model the causality among the elements of SCs, and
incorporate both qualitative and quantitative evidence without
losing the uncertainties associated with evidence. For example,
a BN can be used to capture the interactions between organiza-
tional, technical, and human risk factors of SC systems. BNs are
suitable tools for exploring and explaining complex SC systems,
particularly SC 4.0, the next generation of digital SCs, which are
characterized by a high level of interaction (dependency)
between humans, cyber-physical systems, and digital technol-
ogy (Dubey et al., 2019).

6. Explicit handling of uncertainty: It is easy to encode uncertainty
and decision freedom into a BN. For example, consider that a
model for predicting SC risk disruption is established, but we
know that humans do not always make rational decisions. The
SC decision-maker could be either risk-averse, risk-seeking, or
risk-neutral, might have short/long term objectives in mind
when making these decisions, and their decisions might not
align with the most rational decision made by the BN model.
Here, we can add variables that incorporate the risk aversion
of SC managers and a degree of randomness in decisions to
obtain a better understanding of how decision-makers in SCs
interact with model outcomes. As such, BNs can help to encode
the degree of randomness associated with the disruption of SC
systems.

The main features of BNs, which make them attractive for appli-
cation to SCRM and resilience problems, are summarized in Fig. 18.

Consider different theoretical aspects in Fig. 18 in detail.
Nonparametric modeling: BNs are a nonparametric model in the

sense that they do not use functional forms or parameters, and
relationships between variables are expressed in terms of condi-
tional probability. Unlike other methods, such as regression, BNs
can represent the joint probability distribution of all variables.

Omni-directional inference: BNs perform evaluation in all direc-
tions. In fact, BNs can perform evaluations from ‘‘cause to effect”
or ‘‘from effect to cause” (BP), while regression models are unidi-
rectional algebraic models, which only perform one-way evalua-
tions. For example, consider the linear regression model that is
represented in Eq. (14):
y ¼ b0 þ b1x1 þ b2x2 þ � � � þ bnxn ð14Þ
where y represents the disruption risk of a supplier, depending on
different risk types, such as demand risk, political risks, resource
risk, etc., represented by x1; x2; � � � ; xn. In the linear regression model
represented above, we can set a value for each risk type (xi) and
obtain an estimate of the disruption risk to supplier (y), while in
BNs we can not only set value on xi and estimate the y value, but
also set a value on y and estimate x values. This feature is extremely
important for SC resilience analysis, because decision-makers often
need to know to what degree mitigation strategies need to be
improved given a desired resilience value. This analysis can be per-
formed using the BP feature of BNs.

No distinction between independent and dependent variables: BNs
do not require to differentiate between dependent and indepen-
dent variables, unlike regression models where we must determine
the independent and dependent variables. This is a very key fea-
ture of BNs, because in SC risk problems, we may not have suffi-
cient knowledge about the interrelation between risk sources,
risk disruption mitigation strategies, and the outcomes for SC risk.



Fig. 19. The interface of BN properties used for SC risk, resilience analysis, and
ripple effect analysis.
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Different variable representation: Unlike other quantitative risk
analysismethods, such as regressionmodels andMarkov chains that
only work with numerical variables, BNs allow us to represent both
numerical and categorical variables and treat them in the sameway.

Nonlinear and probabilistic: The relationships between SC risk
variables, including SC risk types, risk disruption mitigation strate-
gies, and outcomes of SC risks are nonlinear and probabilistic. BNs
are suitable for modelling nonlinear and probabilistic systems.

Causality representation: Unlike the FMEA, MCS, and regression
models, BNs are capable of encoding the causal relationship
between variables using joint probability distribution. This feature
is important for analyzing SC risk problems as there is probabilistic
and causal relationship between various SC risk sources and SC risk
exposure. There are also other useful methodologies for modelling
SC resilience, such as complex adaptive systems (Zhao, Zuo, &
Blackhurst, 2019). However, these are built upon distinctively dif-
ferent methodical principles than BNs, which makes comparison
difficult. For this reason, they are not considered in this paper.

Causal modelling: A key challenge in the context of SCRM is to
understand the causality and association between disruption/oper-
ational risks and performance of the SC. BNs can address the cau-
sation/association issues of SC risk problems, unlike regression
methods, which model the correlation. This causal modelling helps
us to better understand and control the impact of SC risks.

Compact joint probability distribution (JPD): BNs allow us to rep-
resent knowledge about SC risks compactly in the form of JDP. This
is an important property in SC risk analysis, because the depen-
dency between risks, the disruption consequences (lead time
delay, loss of service level, cost increase, etc.) of supplier or manu-
facturer disruption in the presence of a disruptive event can be effi-
ciently modelled using JDP.

Machine learning: Machine learning has become imperative to
solving big data SC and logistics problem. Machine learning can
be used to develop the structure of the BN. For example, consider
transportation companies targeting minimization of the risk of
freight damage during delivery to customers by analyzing their
big data on freight transportation via machine learning. There are
several variables that cause freight damage, including transporta-
tion mode, type of packaging, delivery inspection at loading loca-
tion, type of freight (e.g., hazardous, perishable, etc.), weight,
volume, and size of commodities, etc. Machine taught BNs can be
used to predict the damage costs, which occurs during freight
transportation, where not only the impact of each aforementioned
damage risk factor on freight disruption cost can be measured, but
the interdependency among those risk factors investigated as well.
For this specific example, machine taught BNs can provide mean-
ingful insights for logistics distribution managers to better under-
stand the impact of each individual risk factor, as well as the effects
of their interdependence, on the loss of profit.

Despite the striking features of BNs, utilizing BNs also comes
with certain challenges and limitations:

1. Lack of feedback loops: Due to the acyclic nature of BNs, it is
impossible to model systems with cyclic flows, such as closed
loop SCs.

2. Temporal dynamics: Poor representation of temporal dynamics
is a key limitation of BNs. Temporal dynamics or dynamic BNs
are used to represent variables whose values change over time.
A dynamic BN can be represented using a static representation
where each time step or time slice is represented as a static pro-
cess. A BN cannot be run over several iterations, but represents
a change in outcome over a stated period (Pollino & Handerson,
2010). The temporal dynamics can be used to model the disrup-
tion and recovery of SC systems, since they are time-dependent.
Computational time may increase significantly when a large
number of time-slices are considered.
3. Prior knowledge: The BN results are useful when the prior
knowledge is reliable. Either excessively pessimistic or opti-
mistic qualities of prior beliefs will negatively impact the entire
network, which results in invalid results. Selecting the proper
distribution for prior probabilities has a notable effect on the
quality of the resulting network.

6.2. Managerial insights

BNs have been used in SCRM and resilience studies for three
main managerial reasons: (i) risk and resilience causal modelling,
(ii) measuring risk and resilience, and (iii) improving vulnerability
and resilience of SCs (Fig. 19).

The analysis of literature shows that the primary objective for
the use of BNs is causal modelling, such as interdependency mod-
elling between SC risks (e.g., Qazi, Quigley, Dickson, & Ekici, 2017;
Qazi & Akhtar, 2018; Boutselis & McNaught, 2019), causal relation-
ship modelling between disruptive events and resilience capacities
(absorptive + adaptive + restorative) of SC entities (Hosseini &
Barker, 2016a, 2016b; Hosseini & Ivanov, 2019). Additionally,
researchers used BNs to simulate and quantify the impact of natu-
ral disaster and operational risks on SC performance, particularly
ripple effect modelling of supplier disruption using FP (Garvey,
Carnovale, & Yeniyurt, 2015; Hosseini, Ivanov, & Dolgui, 2019b;
Ojha, Ghadge, Kumar Tiwari, & Bititci, 2018; Yang & Liu, 2018).
Lastly, BNs are used by researchers to find possible ways to
improve SC resilience using BP analysis in a time dependent (tem-
poral) model (Hosseini, Barker, Ramirez-Marquez, 2016a; Hosseini,
Al Khaled, Sarder, 2016b; Hosseini et al., 2019a, 2019b). The liter-
ature on BNs has been classified based on the main properties of
BNs, causal, temporal, FP, and BP modelling, respectively, and are
listed in Table 3. Table 3 includes the papers that utilized the major
features of BN. Combinations of BN features have been used in lit-
erature for SC vulnerability and risk propagation analysis, ripple
effect modelling, and SC resilience improvement analysis.

These BN applications can provide a number of useful manage-
rial insights. For example, managers can use BN to uncover associ-
ations between network structures and risk propagation. This
would allow analyzing critical network elements leading to SC dis-
continuities and collapses through disruption propagation and
modelling of interdependencies in SCs with consideration of state
dynamics within SC nodes. Such an analysis can be applied to
assessment of SC robustness and resilience to disruptions with
the ripple effect considerations. Moreover, the BN make it possible
to examine different disruption propagation mechanisms and
identify disruption propagation scenarios of different severity for



Table 3
Classification of SC risk and resilience studies based on the main features of BN.

Article Objective of article Scope of article Main feature of BN used in the article Explanation

SC
risk

SC
resilience

Causal
modeling

Forward
Propagation

Backward
propagation

Temporal
model

Hosseini and Barker
(2016b)

Resilience supplier selection U U U U BN is applied to model primary, green and Resilience criteria of supplier selection
problem

Qazi et al. (2014) SC risk assessment U U U An integrated Game theory and BN approach is utilized to quantify SC risks
Wan et al. (2019) Assessing maritime SC risks U U BN is developed to quantify the risk of SC maritime risks
Boutselis and

McNaught (2019)
Spare demand forecasting U U BN is used to forecast spare demand under disruption risk

Hosseini et al. (2019d) Ripple effect modeling of Supplier
disruption

U U U U U DBN is used to model the ripple effect of supplier disruption

Hosseini and Ivanov
(2019)

SC resilience modeling with ripple
effect consideration

U U U U Metrics are developed based on the application of BN to measure the vulnerability,
recoverability and resilience of suppliers

Kumar Sharma and
Sharma (2015)

SC risk assessment U U BN is used to measure and evaluate SC risks

Sharma and Routroy
(2016)

SC information risk modeling U U U BN is utilized to study the impact of Information breakdown and leakage on SC
Revenue impact

SC resilience modeling U U U SC resilience metric is proposed which is based on the forward propagation feature
of BNs

Qazi et al. (2017, 2018) SC network risk analysis U U BN is used to analyze the SC network risks and causality relationship among risks
Garvey et al. (2015) SC risk propagation analysis U U U A model based on BN is developed that measures the disruption propagation in SC

networks
Ojha et al. (2018) SC risk propagation of SC networks U U U BN is used to model SC risk propagation
Yang and Liu (2018) Vulnerability assessment of SC U U BN is used to calculate the network Parameters of SC vulnerability
Kaki et al. (2015) Supplier disruption risk assessment U U U BN is used to assess the SC network disruption by measuring the risk propagation

of disrupted supplier
Hu et al. (2019) Disruption risk analysis of SC U U Effective disruptive mitigation policies are Suggested using BN to minimize

disruption
Risk in petroleum SC

Qazi and Akhtar
(2018)

SC risk modeling U U U BN is used to model interdependency among SC risks and manage risk specific with
respect to the risk appetite.

Rodgers and Singham
(2019)

SC disruption modeling U U BN is utilized to quantify the probability of Disruption in a clinical SC

Lockamy and
McCormack (2012)

Supplier risk analysis U U U The revenue impact of supplier disruption Is evaluated using BN.

Rodger (2014) SC risk modeling U U U A fuzzy BN is proposed to predict supply chain backorder risk.
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Fig. 20. A map of analytic modelling for BN and machine learning (adapted from Conrady & Jouffe, 2018).
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stress-testing of SC designs. This property can also be used to test
the proneness of specific SC designs to disruption risk propagation.
7. Applying machine learning to BNs

The structures of BN models that we have discussed so far are
constructed solely based on expert elicitation. Many of BN models
(e.g., Kumar Sharma & Sharma, 2015; Lockamy & McCormack,
2012) used expert knowledge to determine conditional probabili-
ties for each node. In a real-life context, it is often unrealistic to
expect precise probability estimations to be provided by experts
(Constantinou, Fenton, & Neil, 2016). Besides, experts’ beliefs could
be biased (Johnson, Tomlinson, Hawker, Granton, & Feldman,
2010). As such, recent literature extensively utilized learning tech-
niques to forecast the values of some system-relevant parameters
(Chen & Chao, 2020). Machine learning techniques, such as super-
vised and unsupervised learning algorithms, can be used to learn
the structure (cause-effect relationship among nodes) of BNs.
Recently, machine learning techniques have been reported to have
their first applications to SC disruption risk analysis (Baryannis,
Validi, Dani, & Antoniou, 2019; Cavalcante, Frazzon, Forcellinia, &
Ivanov, 2019; Mani, Delgado, Hazen, & Patel, 2017; Shang,
Dunson, & Song, 2017; Ye, Xiao, & Zhu, 2015; Zage et al., 2013).
To better understand the application of machine learning in BNs,
we created a map of analytic modelling and reasoning, as shown
in Fig. 20.

In Fig. 20, the x-axis represents the modelling purpose, which
ranges from association/correlation to causation. Association/cor-
relation is a model that explains the correlation between the vari-
ables, including description and prediction models such as neural
networks. The causation models represent the causality of the vari-
ables, such as explanatory, simulation, and optimization models.
The y-axis reflects the source of model, ranging from data to
theory.

Traditionally, models have been built based on theory and esti-
mated based on data (e.g., regression models). Today, due to the
availability of big data and tools which make computation easier,
machine learning algorithms can be used to create a BN model
from data. Machine learning algorithms, as depicted in the upper
left hand side of Fig. 20, are driven by data generally suitable for
prediction. Unlike the machine learning algorithms, the structural
equations models and regression are driven by theories that are
used for prediction and or explanation. Considering the model
source (y-axis), the structure of BNs can be built from theory
(e.g., human learning, human intelligence, or can be developed
based on data from machine learning, or a combination of both
thereof).

Hereupon, the BN can be applied to the entire spectrum of
model sources. In the context of SC resilience, the intra-causal rela-
tionships between SC risk factors (e.g., natural disasters, economic
and political crises, transportation failures) and their causal influ-
ence on SC performance (e.g., cost, service level, lead time) can
be understood based on data from machine learning (Ivanov and
Dolgui, 2020). BNs can be used for causal reasoning and prediction
purposes. Causal reasoning can be extensively used in the context
of SC risk and resilience, e.g., if we wish to predict the conse-
quences of specific disruption triggers (e.g., economic crises) on
performance (e.g., delivery delay, loss of market share). The BN
can facilitate this through causal reasoning by inputting evidence
(setting the probability of economic crises to 100%) and updating
the marginal probabilities of all unobserved variables. Causal rea-
soning in this case can tell us how much the probability of each
consequence may vary if an economic crisis occurs.

In summary, we propose a generic framework that integrates
the BN with machine learning to model SC risk and resilience prob-
lems. This framework consists of five component steps, as illus-
trated in Fig. 21.

The steps in the framework shown in Fig. 21 are explained in
detail below.

Step 1: Model objectives: The first step is to define model objec-
tives. The primary objective in this study is to measure SC resili-
ence and disruption risk. Once the model objective and the
variables of BN models, such as disruption triggers, are specified,
then consequences, etc., should be identified.

Step 2: Data management: The second step is to collect historical
data. Historical data can be combined with expert knowledge if
there is not sufficient data available. It is notable that the expert
knowledge can be used for conditional probability elicitation, par-
ticularly when the risk is novel or very infrequent. Readers may
refer to Wright and Ayton (1987), Constantinou et al. (2016), and
O’Hagan (2019) for more details about the integration of expert
knowledge and historical data.

Step 3: Parameters and structure learning: This step, where the
conditional probabilities (CPT) of BN variables and structure
(causality) of the BN model are learned via machine learning algo-
rithms, is the most important. It is notable that there might be
missing values in the database. In such a case, an expectation–max



Table 4
A comparison between different features of well-known methodologies for solving SC risk and resilience problems.

Type of modeling Inference analysis Dependency modeling Type of relationship

Nonparametric Parametric Forward propagation Backward propagation Causation Correlation Linear Nonlinear

Bayesian Network U U U U U U U U

Linear regression U U U U U

Fault Tree U U

Markov Chain U U U U

FMEA U U

Determine model 
objective of SC risk/

resilience
Specify model variables 

Evaluate model with 
expert

Collect historical dataSufficient data for 
learning?

Combine expert opinion 
with historical data

Missing values in dataset? Learn CPTs using machine 
learning from data

Perform parameter learning 
using EM algorithm

Perform machine learning to 
learn the structure of model

Perform Validation analysis Satisfied with the 
structure?

Perform decision 
analysis

Determrr ine model
objb ective of SC risk/

resilience
Specifyff momm del variaba les

Model Objectives

Collect historical dataa aSuffff iff cient data foff r
learnrr ing?

Combm ine expert opinion
withtt historical data

Data Management

Missing valull es in dataset? Learaa nrr CPTs using machine
learnrr ing frff om dataa a

Perfoff rm paraa amaa eter learaa nrr ing
using EM algorithmhh

Parameters Learning

Perfoff rm mamm chine learaa ning to
learnrr thtt e strtt urr ctutt ruu e of momm delStructure Learning

EvEE aluataa e momm del withtt
expertrr

Perfoff rm Validation analysis Satitt sfiff ed withtt the
strurr cture?

Structure Validation

Perfoff rm decision
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Model 
Implementation

Yes

No

NoYes

No

Yes

Fig. 21. General framework of a BN based on machine learning for SC risk and resilience problem analysis.
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imization (EM) algorithm can be used to estimate the CPT of the
variable with the missing value.

Step 4: Model validation: Once the BN model is built, it is impor-
tant to validate the structural design of the model. Different valida-
tion methods, such as cross-validation and sensitivity analysis, can
be applied.

Step 5: Model implementation: The last step is to perform deci-
sion analysis to understand how the different types of disruptions
could impact SC performance. Different types of ‘‘cause to effect” or
forward propagation (FP) and ‘‘effect to cause” or backward prop-
agation (BP) analyses can be performed to better understand the
impact of contingency and mitigation strategies to improve SC
resilience.

8. Conclusion and future research

BNs are a powerful methodology for managing risk assessment
and decision-making subject to uncertainty. In the broad sense,
BNs are probabilistic graphical models that possess unique
methodical features to model dependencies in complex networks,
such as forward and backward propagation (inference) of disrup-
tions. BN techniques have been widely utilized by researchers to
develop decision support systems in various sets of applications,
including reliability engineering, system safety, medical diagnosis,
equipment failure diagnosis, and demand forecasting.

The application of BNs in the field of SCRM is relatively new and
allows obtaining novel insights which are difficult to examine with
the help of other methods (Table 4). This study aims to introduce
BNs into SC risk and resilience research. BNs have transitioned
from an emerging topic to a growing research area in SC resilience
and risk analysis. As a result, it is necessary to review existing lit-
erature to identify recent developments in this area and uncover
potential directions for future research. Despite an increasing num-
ber of publications on BNs in research SC uncertainty, an extensive
review on their application to SC risk and resilience is lacking. To
address this gap, we analyzed research articles published in peer-
reviewed academic journals published between 2007 and 2019
using network analysis, visualization-based scientometric analysis,
and clustering analysis. Through this study, we contribute to liter-
ature by discussing the challenges of current research, and, more
importantly, identifying and proposing directions for future
research. The results of our survey show that further debate on
the theory and application of BNs to SC resilience and risk manage-
ment is a significant area of interest for both academics and prac-



18 S. Hosseini, D. Ivanov / Expert Systems with Applications 161 (2020) 113649
titioners. The applications of BNs and their conjunction with
machine learning algorithms for solving big data SC problems
under uncertainty and risks have also been discussed.

The results of our survey show that BNs are a suitable tool for SC
risk and resilience problems, because they can easily capture
causality and interdependency between SC risk sources, mitigation
strategies, and consequences of risk. They can represent nonlinear
relationships between variables in terms of conditional probability.
BNs are particularly useful for modelling, measuring, and predict-
ing SC resilience, because they can model the interdependency
between drivers of mitigation and contingency disaster strategies.
They can be used to simulate the impact of unforeseen disruptions
on SC resilience through FP analysis. Through BP analysis, BNs can
provide managerial insights concerning to what degree drivers of
mitigation and contingency strategies must be improved to obtain
a satisfactory level of resilience. Finally, given the increase in the
availability of data and the number of SC companies seeking to uti-
lize machine learning to increase profitability, the future develop-
ment of BN models should be adapted through use of supervised
and unsupervised learning algorithms.

Finally, we suggest potential research opportunities based on
our analysis of the literature review and the gaps observed therein.
The first future research direction relates to Dynamic Bayesian net-
work (DBN) for SC resilience. The majority of current application of
BNs for SC risk and resilience were static, and consequently they
cannot capture the change in SC performance level (e.g., cost, ser-
vice level, lead time). DBN is an appropriate methodology to
dynamically simulate the vulnerability of SC entities. SC resilience
can be measured as a function of its vulnerability and recoverabil-
ity from disruption. The concept of resilience is dynamic and con-
siders SC recovery from disrupted performance over time. Hence,
DBN is a good choice for modelling the dynamicity feature of SC
resilience. Future research opportunities can focus on developing
DBN to quantify the resilience of SCs. Second, we point to analysis
SC structural complexity. The vulnerability and recoverability of SCs
depend on many factors such as their complexity and structure. It
is more difficult to control and restrain the risk propagation in SCs
with high level of complexity and interconnectedness. The future
research attempts could focus on measuring and analyzing the
propagation of risks on complex and interconnected networks.
Finally, hybrid BN for SC risk and resilience represent a promising
research area. BNs can be used in conjunction with other risk anal-
ysis approaches, such as FTD, FMEA, MCS, decision trees, Markov
Chain, etc. One option is to develop an integration of continuous
Markov chain model and BN to model the vulnerability and recov-
erability of SC entities. The transition probability between states of
Markov chain model can be encoded using CPTs.
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