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SUMMARY

High-dimensional data, such as those generated by single-cell RNA sequencing (scRNA-seq), 

present challenges in interpretation and visualization. Numerical and computational methods for 

dimensionality reduction allow for low-dimensional representation of genome-scale expression 

data for downstream clustering, trajectory reconstruction, and biological interpretation. However, a 

comprehensive and quantitative evaluation of the performance of these techniques has not been 

established. We present an unbiased framework that defines metrics of global and local structure 

preservation in dimensionality reduction transformations. Using discrete and continuous real-

world and synthetic scRNA-seq datasets, we show how input cell distribution and method 

parameters are largely determinant of global, local, and organizational data structure preservation 

by 11 common dimensionality reduction methods.
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In Brief

Dimensionality reduction tools are critical to visualization and interpretation of single-cell 

datasets. Heiser and Lau use unbiased, quantitative metrics to evaluate how common embedding 

techniques such as t-SNE and UMAP maintain native data structure. Datasets with discrete and 

continuous topologies indicate that input cell distribution is integral to algorithm performance.

INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) offers parallel, genome-scale measurement of 

tens of thousands of transcripts for thousands of cells (Klein et al., 2015; Macosko et al., 

2015). Data of this magnitude provide powerful insight toward cell identity and 

developmental trajectory—states and fates—that are used to interrogate tissue heterogeneity 

and characterize disease progression (Regev et al., 2017; Wagner et al., 2019). Yet, 

extracting meaningful information from such high-dimensional data presents a massive 

challenge. Numerical and computational methods for dimensionality reduction have been 

developed to reconstruct underlying distributions from native “gene space” and provide low-

dimensional representations of single-cell data for more intuitive downstream interpretation. 

Basic linear transformations such as principal-component analysis (PCA) have proven to be 

valuable tools in this field (Sorzano, Vargas and Montano, 2014; Tsuyuzaki et al., 2020). 

However, given the distribution and sparsity of scRNA-seq data, complex nonlinear 

transformations are often required to capture and visualize expression patterns. 
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Unsupervised machine learning techniques are being rapidly developed to assist researchers 

in single-cell transcriptomic analysis (Van der Maaten and Hinton, 2008; Pierson and Yau, 

2015; Wang et al., 2017; Linderman et al., 2017; Becht et al., 2018; Ding, Condon and Shah, 

2018; Lopez et al., 2018; Mcinnes and Healy, 2018; Risso et al., 2018; Eraslan et al., 2019; 

Townes et al., 2019). Because these techniques condense cell features in the native space to a 

small number of latent dimensions, lost information can result in exaggerated or dampened 

cell-cell similarity. Furthermore, depending on input data and user-defined parameters, the 

structure of resulting embeddings can vary greatly, potentially altering biological 

interpretation (Kobak and Berens, 2019).

With a deluge of computational techniques for dimension reduction, the field is lacking a 

comprehensive assessment of native organizational distortion consequential to such 

methods. We present an unbiased, quantitative framework for evaluation of data structure 

preservation by dimensionality reduction transformations. We propose metrics for broad 

characterization of these methods based on cell-cell distance in native, high-dimensional 

space. Initial benchmarking of 11 published software tools on discrete and continuous cell 

distributions shows global, local, and organizational data structure conservation under 

different parameter and input conditions. Applying our framework to additional data types 

underscores the modality- and dataset-specific nature of dimension reduction performance.

RESULTS

Cell Distance Distributions Describe Global Structure of High-Dimensional Data

In order to evaluate dimensionality reduction techniques, Euclidean cell-cell distance in 

native, high-dimensional space is used as a quantitative standard. In scRNA-seq, counts of 

unique molecular identifiers (UMIs) for each gene make up the features of the dataset, while 

every observation represents a single cell (Figure 1A). In this way, transcriptomic data is 

represented as an m × n matrix (observations × features).

Global data structure in the native space can be constructed by first calculating an m × m 
matrix containing the pairwise distances between all observations in n dimensions (Figure 

1B, top). The upper triangle of this symmetric distance matrix contains unique cell distances 

in the dataset, which can then be represented by a probability density distribution as in 

Figure 1D. From these distances, local “neighborhoods” can be defined in the form of a K 

nearest-neighbor (Knn) graph. The Knn graph is represented as a binary m × m matrix that 

defines the K cells with the shortest distances to each cell in the dataset (Figure 1B, bottom). 

Similarly, a distance distribution and Knn graph can be constructed from a low-dimensional 

latent space resulting from dimensionality reduction (Figure 1C).

Preservation of unique distances following dimension reduction is measured by direct 

Pearson correlation, while structural alteration of the cell distance distribution is quantified 

by the Wasserstein metric or Earth-Mover’s distance (EMD; Figure 1D). Widely applied to 

image processing, EMD determines the energy cost associated with shifting one distribution 

to another (Werman, Peleg and Rosenfeld, 1985; Rubner, Tomasi and Guibas, 1998, 2000; 

Levina and Bickel, 2001). This metric is ideal for our application as it scales linearly with 

separation of the means of two continuous distributions, in contrast to similar Cramér-von 
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Mises or Kolmogorov-Smirnov distances, and therefore captures maximum variability 

(Cramér, 1928; Kolmogorov, 1933). Finally, preservation of a Knn graph before and after 

low-dimensional embedding can also be quantified as the percentage of total matrix 

elements conserved in order to describe maintenance of local substructures in the data.

Discrete and Continuous Cell Distributions Exemplify Common Biological Patterns

A major consideration for testing dimensionality reduction techniques is the true structure of 

the input data in native, high-dimensional space. For the scope of our evaluation, we identify 

two overarching classes of scRNA-seq data for proof-of-principal: discrete and continuous. 

Discrete single-cell data are comprised of differentiated cell types with unique, highly 

discernable gene expression profiles. These data include classic PBMC experiments and 

neuronal datasets that can be easily clustered into distinct cell types (Zeisel et al., 2015; 

Rheaume et al., 2018). Conversely, continuous data contain multifaceted expression 

gradients present during cell development and differentiation and are commonly associated 

with dynamic systems such as erythropoiesis or embryonic development (Tusi et al., 2018; 

Wagner et al., 2019).

Mouse retina cells, analyzed using Drop-seq by Macosko and coworkers, provide a discrete 

cell distribution for our analysis (Macosko et al., 2015). Counts data from 20,478 genes for 

1,326 cells were analyzed using Louvain clustering to determine cell clusters (Figure 2A; 

Levine et al., 2015). We performed relatively coarse clustering, ignoring subtype 

heterogeneity in favor of clusters reflecting principal cell identity amenable to our 

downstream analyses (see STAR Methods). A t-distributed stochastic neighbor embedding 

(t-SNE) projection primed with 100 principal components (PCs) of all transcript counts 

allows for visualization of the data structure and represented cell types (Figure 2B). As 

evident from the 2D embedding, these data are highly discrete, and constituent cell clusters 

are easily distinguished by expression of marker genes identified in Macosko et al. (2015) 

(Figures 2C and S2A).

Mouse colon data, representing a continuous distribution of actively differentiating cells 

along the crypt axis of the colonic epithelium, were generated with indexing droplets 

(inDrop) scRNA-seq (Herring et al., 2018). Counts data from 25,504 genes for 1,117 cells 

were similarly clustered and embedded using t-SNE to visualize continuous data structure 

(Figures 2D and 2E). The six clusters form a branching continuum of cell states identified by 

expression markers (Figures 2F and S2B), resolving two major lineages in the colon: 

absorptive and secretory cells (Lepourcelet et al., 2005; Tamura et al., 2007; Larsson et al., 

2012). These clusters are linked together by pseudotemporal trajectories, and thus, their 

arrangement is expected to be conserved upon low-dimensional embedding.

Input Cell Distribution Determines Performance of Global Structure Preservation

Using metrics outlined in Figure 1, we compared 11 dimensionality reduction techniques 

applied to continuous and discrete datasets. To allow for direct input to these tools and 

comparison with linear PCA in the following analyses, raw counts for both datasets were 

feature-selected to the 500 most variable genes. Alternatively, a common preprocessing 

approach is initial dimension reduction with PCA, and we compare 500 PCs to our 500 
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variable genes (VGs) to demonstrate how this may affect downstream structure preservation 

(Figure S3A). Though our framework measures structure preservation relative to the input 

cell distribution, performance of dimension reduction methods is expected to vary under 

different preprocessing conditions, and we encourage the use of our metrics to evaluate not 

only the tools themselves but also upstream handling of the data.

Calculating our metrics on all cells in the dataset, we first assess global structure 

preservation following transformation to a latent space. Representative examples of 2D 

projections and their corresponding distance distributions and correlations using single-cell 

interpretation via multikernel learning (SIMLR) for the retina dataset and uniform manifold 

approximation and projection (UMAP) for the colon dataset are shown in Figure 3A and 

Figure 3H, respectively. Notably, the largest discrepancy in structural preservation is 

between the two datasets, highlighting the significance of input cell distribution to overall 

method performance. For example, Knn preservation is intuitively higher for most methods 

when applied to the colon dataset (Table S1), reflecting the notion of continuous 

neighborhoods—a moving window of expression gradients—connecting all cells through 

developmental pseudotime (PT). Another important observation regarding the dimension-

reduced spaces involves the directionality of the cell distance distribution shift. A 

compression of distances from native to latent space is indicated by a shift left in the 

cumulative distance distribution (Figures 3B, 3J, and S1A) or below the identity line in the 

unique distance correlation (Figures 3D, 3L, and S1B). Alternatively, a shift right in the 

cumulative distance distribution or above the identity line of the distance correlation 

signifies an exaggeration of native distances. These phenomena are important in the context 

of global versus local structure preservation. For example, UMAP appears to compress 

small, local distances to a greater extent than t-SNE, while both methods maintain relative 

global structure as indicated by a favorable correlation of large distances. Although this 

characteristic of UMAP embeddings causes greater information loss reflected in less 

favorable preservation metrics (Figures 3C and 3K; Table S1), clusters within the resulting 

projections tend to be visually condensed and perhaps more easily interpreted (Figures S3B 

and S3C).

These findings are particularly important when considering datasets and data types beyond 

scRNA-seq. For instance, other single-cell technologies such as assay for transposase-

accessible chromatin (scATAC-seq) and mass cytometry (CyTOF) have expectedly diverse 

distributions of cell-cell distances due to technical differences in dynamic range, dropout 

rate, and noise. Applying our structural preservation framework to two datasets used to 

benchmark UMAP against t-SNE, fast Fourier transform-accelerated interpolation-based t-

SNE (FIt-SNE) and scvis (Becht et al., 2018; Figure S4), we identify a clear distinction 

between these CyTOF and scRNA-seq datasets that is deterministic of method performance 

(see STAR Methods, Theoretical basis for difference in dimension reduction performance 

across single-cell techniques). Indeed, we assert that input data structure is highly variable 

across single-cell technologies and biological samples (Figure S3D), and we recommend 

evaluating dimensionality reduction tools in the context of their intended application.
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Parameter Optimization Plays Key Role in Structural Preservation

User-defined parameters for unsupervised algorithms often present themselves as “black-

box” knobs with unknown consequences. Tuning these parameters can be a daunting task for 

the single-cell analyst, but it is known to be crucial to algorithm performance (Belkina et al., 

2019; Kobak and Berens, 2019; Tsuyuzaki et al., 2020). Using our proposed metrics, we 

evaluated global structure preservation across a range of perplexity (n_neighbors) values for 

t-SNE and UMAP applied to both discrete and continuous data. Through a balance of 

distance correlation, EMD, and Knn preservation, we can identify an initial range of optimal 

perplexity values between 3% and 10% of the total number of cells in the dataset (Figure 

S3E).

Additionally, as our framework is agnostic to the distance metric and neighborhood size (K) 

chosen for evaluation, we can perform cursory comparisons of possible alternatives to 

Euclidean distance (Figure S3F) and titrate the value of K to determine its effect on observed 

preservation values (Figure S3G). Here, we observe optimal K between 3% and 10% of the 

dataset size to reliably discriminate between methods, in accordance with the perplexity 

parameter.

Substructure Analysis Elucidates Contribution to Global Performance

To corroborate results of global structure preservation and dissect contribution of local 

(within cluster) and organizational (between cluster) distances to overall dimension 

reduction performance, clusters were isolated for targeted substructure quantification. Here, 

we can measure distance preservation of individual clusters as well as distances between 

clusters to emphasize local arrangement (Figures S1C and S1D).

Retinal cone cells (Figure 2A; cluster 4, n = 94) were used as an example of local distances 

in the discrete dataset, while mature colonocytes (Figure 2D; cluster 1, n = 273) were 

isolated in the colon dataset (Figures 3E and 3M). Local distance compression represents the 

overarching trend for the 11 evaluated tools, indicated by a correlation shift below the 

identity line (Figures S3H and S3J). The latent spaces from scVI and 10-component PCA 

are notable exceptions, yielding the two lowest EMD values for each dataset (Figure S3M). 

This most likely results from the 10dimensional latent spaces of these methods capturing 

more cellular variability than 2D projections, and these two embeddings should be 

considered with this caveat in the context of our larger analysis. Added noise in the SIMLR 

latent space of mouse retina cells indicates a disagreement with Louvain cluster 

membership, and may be attributed to the truncated, 500-feature input used for our analysis 

(Figure S3H). Moreover, this observation suggests that discrete, “on-off” expression patterns 

are less robust to dropouts that cause mis-assignment of cell type than continuous gradients 

of gene expression.

Besides maintenance of local structure, dimensionality reduction methods are also tasked 

with preserving cellular neighborhoods or relationships between clusters. By calculating the 

distribution of distances from cells in one cluster to those in another, we can evaluate these 

associations to investigate organization of data substructures (Figures S1C, 3F, and N). In 

the mouse retina dataset, distances between bipolar cells, rod cells, and amacrine cells 

Heiser and Lau Page 6

Cell Rep. Author manuscript; available in PMC 2020 June 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Figure 2A; clusters 0,1, and 2, n = 309,281, and 258) are marked largely by compression, 

with some tools altering the arrangement of the three clusters (Figure S3K, red boxes). For 

example, the bipolar and amacrine clusters are closest to one another in the native gene 

space, but bipolar cells are closer to rod cells in the UMAP embedding, indicated by the 

ordering of each distribution. Conversely, relative distances between three adjacent clusters 

along the goblet cell lineage (Figure 2D; clusters 0, 3, and 4, n = 274,140, and 135) are more 

highly conserved by all embeddings. These results confirm that related cells in continuous 

scRNA-seq data are tethered to their neighbors through intermediate expression states, 

resulting in improved structure preservation upon latent projection (Figures S3L and S3N).

To further capture substructure rearrangement in low-dimensional embeddings, we construct 

a coarse graphical representation of our native and latent spaces, with minimum spanning 

trees (MSTs) connecting nearest neighbor cluster centroids (Figures 3G and 3P). Comparing 

the edges of each graph allows us to evaluate latent cluster topology relative to the native 

space, as permuted edges indicate rearrangement of substructures following dimension 

reduction. Once again, we see a global increase in topological preservation of continuous 

versus discrete data, corroborating previous observations (Figures S3P–S3R).

Simulated Datasets with Defined Topology Validate Observations

Single-cell data with expected global topology were simulated using Splatter (Zappia et al., 

2017). Three distinct lineages, equally separated in high dimensional space, originate from a 

common state. A discrete simulation was generated by removing the central shared state 

(Figure 4A), while the continuous dataset maintains complete connectivity between the three 

developmental paths (Figure 4F). Pseudotime (PT) values, assigned to each cell by the 

simulation, should correlate directly to distance in the embedding and can thus be used as an 

alternative ground-truth native structural distribution for our framework. Both simulations 

were processed by previously evaluated dimensionality reduction tools (Figures 4B, 4C, 4G, 

and 4H), and latent distances between cells from the three defined paths were correlated to 

pairwise sums of corresponding PT values (Figures 4D, 4E, 4J, and 4K). In this way, large 

PT sums between cells at the ends of each simulated path and small PT sums between cells 

near the shared central state should have the largest and smallest distances from one another 

in an ideal latent embedding, respectively. Again, dimension reduction of discrete data 

performs poorly compared to the entirely continuous simulation. All embeddings generally 

cluster each path properly (Figure 4B), but misorientation of these clusters from their shared 

center results in negative structural correlation for some embeddings including t-SNE and 

UMAP (Figures 4C and 4; Table S2).

DISCUSSION

As high-dimensional data become increasingly pervasive in systems biology, computational 

tools for reliable and reproducible analysis of these data are tremendous assets to discovery. 

Dimensionality reduction techniques allow for embedding cellular observations with tens of 

thousands of features into a low-dimensional space for visualization and downstream 

processing. We present an unbiased, quantitative framework based on native cell distance to 

evaluate data structure preservation by these tools.
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We identified dispersion trends in local and global distance distributions that denote 

expansion and contraction of native cell distances. This allowed us to evaluate general 

performance of dimensionality reduction methods on entire single-cell datasets and take a 

deeper dive to examine how distances within or between clusters contribute to the global 

structure of a low-dimensional embedding (Figures 3 and S3). With a goal of grouping cells 

by their gene expression profiles, most dimension reduction tools evaluated herein compress 

local distances, embellishing cluster similarity, while maintaining or expanding global 

distances, exaggerating cluster distinction. These characteristics of dimensionality reduction 

methods are desirable for most applications. However, resolution of rare cell types and sub-

cluster heterogeneity may be lost, stressing the importance of preprocessing, feature 

selection, and user-defined parameters (Figure S3).

Discrete scRNA-seq data are more susceptible to structural perturbation by downstream 

dimension reduction, as indicated by larger EMD values and lower distance correlations in 

the retina dataset than colonic epithelial data (Figure 3). We also observed cluster 

rearrangement within the retina dataset, suggesting that relative substructure organization is 

poorly defined for discrete datasets while continuous cell distributions are more robust to 

these effects (Figure S3). Cursory exploration of perplexity and K parameters in t-SNE and 

UMAP, as well as alternative preprocessing approaches, reveals a range of optimal values 

that yield favorable structure preservation metrics, endorsing the need for parameter and 

preprocessing optimization for dimensionality reduction of single-cell datasets (Figures S3E 

and S3G). The above observations were confirmed using simulated datasets with defined 

global topology that could be quantified in place of native cell distances (Figure 4).

Finally, a careful look at additional synthetic and real-world data confirms that behavior of 

dimensionality reduction methods is primarily driven by the input cell distance distribution 

that is modality and dataset specific (Figure S4). Our findings challenge the context in which 

dimensionality reduction methods are benchmarked and indicate that performance 

characterization is often not universally extensible. Consequently, we encourage evaluation 

of such tools on data types, datasets, and preprocessing approaches specific to the user’s 

intended application.

STAR★METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, KSL (ken.s.lau@vanderbilt.edu).

Materials Availability—This study did not generate new unique reagents.

Data and Code Availability—The code generated during this study is available at https://

github.com/KenLauLab/DR-structure-preservation.

METHOD DETAILS

Cell Filtering—Raw counts expression matrices downloaded from GEO (accession IDs 

GSM1626793, GSM2743164) were filtered for high-quality cells prior to downstream 
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analysis. The cumulative sum of total UMI counts for each cell was plotted along with the 

slope of the secant line to the curve as a function of rank-ordered cell. The distance between 

these two curves was used as a metric for determining the rate of diminishing cell quality. 

The cell number at which this distance was 50% of its maximum was chosen as a cutoff, 

with cells contributing less UMI counts were removed. Next, a 100-component PCA and 

UMAP with n_neighbors value of 0.5% of the total cells in the dataset were used to 

visualize cell populations and manually gate out clusters containing high mitochondrial 

counts, indicating dead cells. Analysis performed using scanpy (Wolf, Angerer and Theis, 

2018).

Process shown in:

• https://github.com/KenLauLab/DR-structure-preservation/blob/master/dev/

QC.ipynb

Clustering—PhenoGraph (Levine et al., 2015) was used to perform Louvain clustering on 

both datasets in Python. To create coarse, ground-truth clusters, the algorithm was run on 

100 principal components of all genes in each dataset. For the retina data, 100 PCs of 20,478 

genes explained 33.5% of the variance in the dataset. For the colon data, 100 PCs of 25,505 

genes explained 54.0% of the variance. k values of 50 and 100 for generating the Knn graph 

to seed the Louvain algorithm for the retina and colon datasets, respectively, were chosen to 

provide coarse clustering of major cell types. Nine resulting clusters for the retina dataset 

and six resulting clusters in the colon dataset were analyzed by Seurat’s Find All Markers 

and Do Heatmap functions (Butler et al., 2018) to obtain visualizations of up- and down-

regulated genes in each cluster (Figure 2A,D).

Process shown in:

• https://github.com/KenLauLab/DR-structure-preservation/blob/master/dev/

consensus_clustering.r

Dimensionality Reduction—All dimensionality reduction was performed on feature-

selected data containing the most variable genes in each dataset. Genes were rank-ordered 

by variance using the Pandas (version 0.22.0) (Mckinney, 2010) DataFrame.var function in 

Python, and the top 500 were chosen. Each dimensionality reduction technique was run 

“out-of-the-box” with default parameters on the feature-selected data. DCA, scvis, scVI, 

ZINB-WaVE and GLM-PCAtake raw, unnormalized counts as input. Developers of ZIFA 

recommend a log2 transformation of counts, which we first normalized to the maximum 

UMI count within each cell. Arcsinh-transformed counts normalized to the maximum UMI 

count in each cell were used for all other methods (t-SNE, FIt-SNE, UMAP, SIMLR, PCA).

Visualization—Cumulative cell distance distributions were plotted from the upper triangle 

of symmetrical cell distance matrices using triu_indices function from the numpy Python 

package (version 1.16.3) (Oliphant, 2006). The histogram and cumsum functions from 

numpy were used to plot cumulative distribution functions using n/100 bins, where n is the 

length of the flattened distance vector. Unique distance correlation was visualized using the 

JointGrid and kdeplot functions from the seaborn package (version 0.9.0) (Waskom et al., 
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2014), as well as the pyplot.hist2d function from the matplotlib package (version 3.0.3) 

(Hunter, 2007). Cluster topology graphs were plotted using the network function 

draw_networkx.

Functions used for above visualizations can be found in:

• https://github.com/KenLauLab/DR-structure-preservation/blob/master/

fcc_utils.py

Splatter Simulation—Simulated single-cell datasets were generated using the Splatter 

package (1.8.0) (Zappia et al., 2017). Continuous dataset was generated with 500 features 

(nGenes) and 3,060 observations (batchCells), with a lib.loc value of 10 and lib.scale value 

of 0.05 to generate data close to observed counts distributions from scRNA-seq. The 

simulation defined three paths with equal group.prob values (0.3333333) originating at the 

same state (path.from = c(0,0,0)). Each path had path.nSteps value of 1,000 indicating as 

many possible continuous expression states emanating from the common origin state. These 

step values are used as pseudotime (PT) measures in our analysis. Discrete simulation data 

was generated by simply excluding all cells with PT values less than 400, eliminating the 

common central state. The resulting dataset had 1,873 observations for the 500 features of 

the continuous simulation. When evaluating embeddings of these simulated data, native cell-

cell distance distributions were replaced with cell-cell PT sums normalized in the same 

fashion. These analyses were only performed pairwise between cells in each of the three 

developmental paths.

Functions used for above simulation can be found in:

• https://github.com/KenLauLab/DR-structure-preservation/blob/master/dev/

splat_sim.Rmd

• https://github.com/KenLauLab/DR-structure-preservation/blob/master/dev/

splat_sim.ipynb

Theoretical basis for difference in dimension reduction performance across 
single-cell techniques—Based on prior evidence and common practice in the field, we 

aim to validate our metrics and address the challenges our results pose to current 

conceptions about popular dimensionality reduction tools. UMAP was benchmarked against 

t-SNE, FIt-SNE and scvis on three datasets (Becht et al., 2018): two CyTOF – Samusik and 

Wong – and one scRNA-seq – Han mouse cell atlas. We applied our structural preservation 

framework to the Samusik and Han datasets (Weber and Robinson, 2016; Han et al., 2018), 

making interesting observations that both substantiate our metrics and emphasize a major 

takeaway from this study.

Figure S4A compares t-SNE to UMAP on the hematopoietic subset of the Han scRNA-seq 

dataset. Interestingly, the two methods perform very similarly, with UMAP slightly 

outperforming t-SNE as described in Becht et al. (2018). Figures S4B–S4D reflect a similar 

analysis of the Samusik CyTOF dataset, where there is a clear improvement in unique 

distance preservation by UMAP over t-SNE, indicated by a strong increase in cell-cell 

distance correlation. Again, this result agrees with Becht and coworkers, who also correlated 
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cell distances to show vast improvement over t-SNE and other methods. Nonetheless, our 

framework identifies a marginal increase in EMD for UMAP overt-SNE, indicating a higher 

degree of global structural distortion, likely due to more compact clustering by UMAP 

(Figure S4B). We propose that improved performance of UMAP applied to CyTOF data is 

due to the input cell distribution.

Because mass cytometry measurements have a larger dynamic range and lower dropout rate 

than scRNA-seq, the overall variance of cell distance distributions from CyTOF is greater 

(Figure S3D). This allows for better discrimination between “large” (global) and “small” 

(local) distances in the native space. With this in mind, we can explore the mathematical 

basis for global distance preservation in UMAP versus t-SNE to help explain why these 

advantages may not always be clearly observed when applied to scRNA-seq data.

First, t-SNE models the conditional probability that any two points xi, xj would be neighbors 

if neighbors were chosen in proportion to a Gaussian probability density function at xi (Van 

der Maaten and Hinton, 2008). We can simplify this probability density function to Equation 

1.1 under the right parameter conditions. Conditional probability for low-dimensional 

distances between points yi,yj, is modeled by the Student t-distribution, simplified in 

Equation 1.2.

pij = exp −
xi − xj 2

2σ2 ≈ exp − xi − xj 2 (1.1)

qij = 1 + yi − yj 2 −1
(1.2)

UMAP models distance probabilities very similarly. Equations 2.1 and 2.3 show 

simplification of high-dimensional conditional probabilities given the defined 

symmetrization used by UMAP (Equation 2.2). Equation 2.4 shows UMAP’s low-

dimensional distance probability model, which is not exactly the Student t-distribution, but 

approximates to it underthe right parameters a and b (Mcinnes and Healy, 2018).

pi j = exp −
xi − xj − ρi

σi
≈ exp(− xi − xj ) (2.1)

pij = pi j + pj i − pi jpj i (2.2)

pij ≈ 2exp(− xi − xj ) − exp(− xi − xj − xj − xi ) ≈ 2exp(− xi − xj )
≈ exp − xi − xj 2 (2.3)

qij = 1 + a yi − yj 2b −1 ≈ 1 + yi − yj 2 −1
(2.4)
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The cost function for optimization of t-SNE coordinates is Kullback-Leibler divergence 

(DKL), defined in Equation 3.1 for X representing the set of cell-cell distances in the high-

dimensional (native) space, and Y representing the set of corresponding distances in the low-

dimensional (latent) space. We additionally notate pij and qij as P(X) and Q(Y) for all 

xi,xj∈X and yi,yj∈Y, respectively. The first term of this equation is close to 0 for both large 

and small X, so you can approximate DKL by the second term alone and substitute pij and qij 

from Equations 2.3 and 2.4 for P(X) and Q(Y) (Equation 3.2).

DKL(X, Y ) = P (X)log P (X)
Q(Y ) = P (X)logP (X) − P (X)log Q(Y ) (3.1)

DKL(X, Y ) ≈ − P (X)log Q(Y ) ≈ e−X2 log(1 + Y 2) (3.2)

Evaluating the limits of DKL in Equation 3.2, there is a large penalty at small X and large Y, 

but for large X the penalty is marginal regardless of Y (Equations 3.3, 3.4).

lim
X 0

DKL(X, Y ) ≈ log(1 + Y 2) (3.3)

lim
X ∞

DKL(X, Y ) ≈ 0 (3.4)

On the other hand, UMAP uses cross entropy (CE) as its cost function (Equation 4.1). This 

function behaves the same as t-SNE for small X, shown in Equations 4.2 and 4.3. The 

difference arises at large X, where the penalty becomes very large for small Y (Equation 

4.4).

CE(X, Y ) = P (X)log P (X)
Q(Y ) + (1 − P (X))log 1 − P (X)

1 − Q(Y ) (4.1)

CE(X, Y ) ≈ e−X2 log(1 + Y 2) + 1 − e−X2 log 1 + Y 2

Y 2 (4.2)

lim
X 0

CE(X, Y ) ≈ log(1 + Y 2) (4.3)

lim
X ∞

CE(X, Y ) ≈ log 1 + Y 2

Y 2 (4.4)

Undoubtedly, the CE cost function has theoretical advantages over DKL, and strikes a 

balance between local and global distance preservation for more uniformly distributed 

samples. So why is performance seemingly equivalent on scRNA-seq data such as our colon 
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and retina datasets, as well as the Han hematopoietic dataset evaluated by Becht, et al.? We 

propose that the negative binomial nature of scRNA-seq data causes the native set of cell 

distancesX to have a small variance (even following normalization and log or arcsinh 

transformation), resulting in a similar cost function profile in both t-SNE and UMAP. 

Conversely, CyTOF data with more variant cell distances are predisposed to favorable 

optimization by the CE cost function.

To further test this hypothesis with a simpler example, we generated a synthetic dataset 

consisting of two 1,000-point Gaussians in three-dimensional space (Figure S4J). The 

resulting cell distance distribution is bimodal, consisting of local distances between cells in 

each Gaussian and global distances from one point cloud to the other. UMAP outperformed 

t-SNE drastically in correlation and EMD values, with only a slight loss in Knn preservation 

(to be expected, as t-SNE favors small distances in its optimization) (Figures S4K and S4L). 

This result corroborates prior evidence that UMAP distinguishes itself greatly on datasets 

with clear “local” and “global” distance populations, owing to its cost function. 

Consequently, we assert that behavior of dimensionality reduction methods is predominantly 

governed by the input data itself, and we encourage evaluation of these techniques on data 

types, datasets, and normalization and preprocessing approaches specific to an intended 

application.

QUANTIFICATION AND STATISTICAL ANALYSIS

Distance Metric Calculations—Pearson correlation was performed for Euclidean cell-

cell distance preservation analysis using the scipy.stats.pearsonr function from the scipy 

package (version 1.1.0) (Oliphant, 2007). The wasserstein_1d function from the POT 

package (version 0.6.0) (Flamary and Courty, 2017) was used to calculate the Earth Mover’s 

Distance between vectors containing unique distances between all cells in the dataset (upper 

triangle of distance matrix), except for local comparisons between clusters, where the entire 

flattened matrix was used as the cell-cell distance matrices are not symmetrical. K nearest 

neighbor graphs were constructed using the scikit-learn (version 0.20.0) (Pedregosa et al., 

2011) function sklearn.neighbors.kneighbors_graph. Knn preservation was calculated as the 

percentage of elements in the Knn graph matrix that are conserved. Cluster centroid 

topology graphs and minimum spanning trees were generated using networkx (version 2.2) 

(Hagberg, Schult and Swart, 2008).

Functions used for above calculations can be found in:

• https://github.com/KenLauLab/DR-structure-preservation/blob/master/

fcc_utils.py

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Cell distance distributions define global data structure in native and latent 

space

• Input cell distribution is determinant of dimensionality reduction performance

• Modality-specific cell distributions influence degree of structural preservation
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Figure 1. Cell Distance Distributions Describe Global Structure of High-Dimensional Data
(A) Representation of scRNA-seq counts matrix.

(B) Cell-cell distances in native gene space are calculated to generate an m × m matrix, 

where m is the total number of cells. The K nearest-neighbor (Knn) graph is constructed 

from these distances as a binary m × m matrix.

(C) Upon transformation to low-dimensional space, a distance matrix and Knn graph can be 

calculated as in (B).

(D) Distance matrices from native (B) and latent (C) spaces are used to build cumulative 

probability density distributions, which can be compared to one another by Earth-Mover’s 

distance (EMD; left). Unique cell-cell distances are correlated (right), and Knn preservation 

represents element-wise comparison of nearest-neighbor graph matrices in each space.

See also Figure S1.

Heiser and Lau Page 18

Cell Rep. Author manuscript; available in PMC 2020 June 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Discrete and Continuous Cell Distributions Exemplify Common Biological Patterns
(A) Relative expression of top genes in each cluster for mouse retina dataset.

(B) t-SNE embedding primed with 100 principal components of retina dataset with overlay 

of consensus clusters.

(C) t-SNE projection from (B) with overlay of marker genes used to identify cell types in 

(A).

(D) Relative expression of top genes in each cluster for mouse colonic epithelium dataset.

(E) t-SNE embeding primed with 100 principal components of colon dataset with overlay of 

consensus clusters.

(F) t-SNE projection from (E) with overlay of marker genes used to identify cell types in 

(D).

See also Figure S2.
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Figure 3. Global and Local Structure Preservation Analysis of Dimension Reduction Methods on 
Discrete and Continuous scRNA-seq Datasets
(A) Example 2D projection of mouse retina data using SIMLR with cluster overlay (top). 

Cumulative distance distributions for native and latent spaces (bottom left) and 2D 

histogram representing correlation between unique distances (bottom right).

(B) Cumulative distance distributions of evaluated projections of retina data.

(C) Summary of structure preservation metrics for retina data.

(D) 2D histograms of cell distance correlations for retina data.
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(E) Example 2D projection of retina data using zero-inflated negative binomial-based 

wanted variation extraction (ZINB-WaVE) and overlay of cone cells (left) and 2D histogram 

representing correlation between the two sets of unique distances (right).

(F) Same as in (E) for distances between bipolar, amacrine, and rod cell clusters, using scvis 

projection.

(G) Example graph representation of cluster topology for retina dataset, using t-SNE 

projection primed with single-cell variational inference (scVI) latent space. Red edges 

represent those not present in minimum spanning tree of native graph.

(H) Same as in (A), with UMAP projection of mouse colon data.

(J) Cumulative distance distributions of evaluated projections for colon data.

(K) Summary of structure preservation metrics for colon data.

(L) 2D histograms of cell distance correlations for colon data.

(M) Same as in (E), with deep count autoencoder (DCA) projection of mature colonocytes.

(N) Same as in F for distances between immature, developing, and mature goblet cell 

clusters, using zero inflated factor analysis (ZIFA) projection.

(P) Same as in (G), but for the colon dataset, using generalized principal component analysis 

(GLM-PCA) projection.

See also Figure S3 and Table S1.
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Figure 4. Simulated Datasets with Defined Topology Validate Observations
(A) Diagram of discrete synthetic data with ground-truth topology defined by three equally 

spaced developmental paths along directional pseudotime (PT) from a common source state 

(removed to discretize paths).

(B) 2D embeddings by 11 dimensionality reduction tools showing unique paths defined in 

discrete simulation.

(C) Same as in (B), with overlay of PT values for each cell as defined in simulation.
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(D) 2D histograms showing correlation of pairwise distances between cells in each of the 

three developmental paths with the sum of PT values between each pair of cells as ground-

truth topology.

(E) Summary of correlation and EMD values between cells in each path for all 

dimensionality reduction methods.

(F) Diagram of continuous synthetic data with ground-truth topology defined by three 

developmental paths along directional PT from a common source state.

(G) 2D embeddings by 11 dimensionality reduction tools showing unique paths defined in 

continuous simulation.

(H) Same as in (G), with overlay of PT values for each cell.

(J) 2D histograms showing correlation of pairwise distances between cells in each of the 

three developmental paths with the sum of PT values between each pair of cells as ground-

truth topology.

(K) Summary of correlation and EMD values between cells in each path of continuous 

simulation for all dimensionality reduction methods.

See also Figure S4 and Table S2.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Mouse retina scRNA-seq Macosko et al., 2015 GEO: GSM1626793

Mouse colon scRNA-seq Herring et al., 2018 GEO: GSM2743164

Mouse bone marrow cyTOF Weber and Robinson, 2016 FlowRepository: FR-FCM-ZZPH

Mouse bone marrow/blood scRNA-seq Han et al., 2018 GEO: GSE108097

Software and Algorithms

Python version 3.7.4 Python Software Foundation http://python.org

DCA version 0.2.3 Eraslan et al., 2019 https://github.com/theislab/dca

FIt-SNE Linderman et al., 2017 https://github.com/KlugerLab/FIt-SNE

matplotlib version 3.0.3 Hunter, 2007 http://matplotlib.org

networkx version 2.2 Hagberg et al., 2008 http://networkx.github.io

numpy version 1.17.4 Oliphant, 2006 http://numpy.org

pandas version 0.25.3 McKinney, 2010 https://pandas.pydata.org/

PhenoGraph 1.5.2 Levine et al., 2015 https://github.com/rflamary/POT

POT version 0.6.0 Flamary and Courty, 2017 https://github.com/rflamary/POT

scanpy version 1.4.4.post1 Wolf et al., 2018 https://github.com/theislab/scanpy

scikit-learn version 0.21.3 Pedregosa et al., 2011 http://scikit-learn.org

scipy version 1.3.3 Oliphant, 2007 http://scipy.org

scVI version 0.5.0 Lopez et al., 2018 https://github.com/YosefLab/scVI

Scvis version 0.1.0 Ding et al., 2018 https://github.com/shahcompbio/scvis

seaborn version 0.9.0 Waskom et al., 2014 http://seaborn.pydata.org

splatter version 1.8.0 Zappia et al., 2017 https://doi.org/10.18129/B9.bioc.splatter

umap-learn version 0.3.10 Mcinnes and Healy, 2018 https://github.com/lmcinnes/umap

ZIFA version 0.1 Pierson and Yau, 2015 https://github.com/epierson9/ZIFA

R version 3.6.1 The R Foundation http://r-project.org

Seurat version 3.0.0 Butler et al., 2018 https://satijalab.org/seurat

SIMLR version 1.8.1 Wang et al., 2017 https://github.com/BatzoglouLabSU/SIMLR

GLM-PCA Townes et al., 2019 https://github.com/willtownes/scrna2019

ZINB-WaVE version 1.4.2 Risso et al., 2018 http://bioconductor.org/packages/release/bioc/html/zinbwave.html
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