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Abstract

Anthracyclines are archetypal representatives of the tetracyclic type II polyketide natural products 

that are widely used in cancer chemotherapy. Although the synthesis of this class of compounds 

has been a subject of several investigations, all known approaches are based on annulations, 

relying on the union of properly prefunctionalized building blocks. Herein, we describe a 

conceptually different approach using a polynuclear arene as a starting template, ideally requiring 

only functional decorations to reach the desired target molecule. Specifically, tetracene was 

converted to (±)-idarubicinone, the aglycone of the FDA approved anthracycline idarubicin, 

through the judicious orchestration of Co- and Ru-catalyzed arene oxidation and arenophile-

mediated dearomative hydroboration. Such a global functionalization strategy, the combination of 

site-selective arene and dearomative functionalization, provided the key anthracycline framework 

in five operations and enabled rapid and controlled access to (±)-idarubicinone.

The Streptomyces-produced type II polyketides doxorubicin (l)1 and daunorubicin (2)2 are 

among the most effective and most often used chemotherapeutics owing to their broad-

spectrum of anticancer activity (Figure 1).3 For example, doxorubicin (l) is used for the 

treatment of breast and bladder cancers, childhood solid tumors, soft tissue sarcomas, and 

aggressive lymphomas.4 Similarly, daunorubicin (2) is primarily used as an antileukemic 

drug for multiple myeloma, acute myeloid leukemia, acute lymphocytic leukemia, and 

Kaposi’s sarcoma.5 Although extremely effective, anthracyclines threaten patients with 

cumulative dose-dependent cardiotoxicity, severely limiting their long-term application as 

well as their use in patients with pre-existing cardiovascular risk.6 Therefore, significant 

research efforts have been devoted to the identification of derivatives with improved 

pharmacological properties.7 The successful result of one such medicinal chemistry 

campaign is idarubicin (3),8 an FDA approved anticancer agent with superior therapeutic 

efficacy and reduced cardiotoxicity relative to daunorubicin (2).9
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The need for tailored analogs has made anthracyclines the subject of rigorous investigation 

within the synthetic community.10 Thus, many innovative pathways to the aglycon 

anthracyclines (anthracyclinones) have been established, all of which rely upon annulation 

to forge one of the rings (see Figure 2a). The most commonly employed unifying 

disconnection is C-ring annulation, achieved through cycloadditions, cationic cyclizations, 

or anionic processes (Figure 2a, left inset).11 Moreover, cycloadditions were also explored to 

forge other rings of the tetracyclic core of these molecules (Figure 2a, right insets).12 Herein, 

we report a conceptually different, nonannulative approach to anthracyclinones, starting 

from a simple aromatic hydrocarbon via a global functionalization strategy (Figure 2b). 

Specifically, (±)-idarubicinone (4) was synthesized from tetracene (5), an ideal aromatic 

precursor containing the essential tetracyclic framework, through a manifold of arene 

functionalizations and a site-selective dearomative elaboration.

Following this global functionalization strategy, we commenced our studies by exploring 

functionalization reactions of tetracene (5), which would establish the proper oxidation 

states of the internal rings B and C within idarubicinone (4) (Figure 3). Thus, inspired by a 

similar transformation reported on anthracene, we achieved the first oxidation of 5 with 

catalytic amounts of cobalt(II) tetraphenylporphyrin (CoTPP, 5 mol %) and 

phenyliodine(III) sulfate as an oxidant,13 delivering 5,12-tetracenequinone (6) in 77% yield. 

Although this transformation proceeded readily, the second oxidation to the corresponding 

6,11-dihydroxy-5,12-tetracenequinone derivative 7 proved more challenging. Several 

oxidants known for direct arene oxidation, such as CAN, Frémy’s salt, hypervalent iodine 

reagents, or oxidizing metal complexes,14 were found to be unsuitable for this 

transformation. This setback was not surprising, as this type of peri-oxidation remains a 

largely unsolved synthetic challenge owing to the high oxidation potential of quinones. 

Therefore, we decided to evaluate C–H activation, anticipating that the quinone carbonyl 

groups would serve as weakly coordinating directing groups for the peri-(C-6) and (C-11) 

positions15. After examining several carbonyl-directed hydroxylation protocols, we 

developed a one-pot procedure involving a modification of Ru-catalyzed sp2 C–H 

oxygenation pioneered by Ackermann ([Ru(cymene)-Cl2]2 and PIFA),16 followed by 

sequential one-pot hydrolysis and methylation to give desired product 7. Control 

experiments revealed that this functionalization likely proceeds through the peri-selective 

formation of ruthenacycle intermediate I-1, delivering phenol derivative, which underwent 

further oxidation to the hydroquinone stage in the presence of excess PIFA.17

With arene oxidation completed, which set the required oxidation state of the B and C rings, 

we turned our attention to the dearomative functionalization of the terminal ring A. We have 

recently reported a series of dearomatization strategies that employ visible-light-promoted 

para-cycloaddition between arenes and the arenophile N-methyl-1,2,4-triazoline-3,5-dione 

(MTAD, 8) and subsequent in situ manipulation of the resulting cycloadducts.18 With 

polynuclear arenes, we consistently observed highly site-selective cycloadditions onto the 

terminal rings. Because tetracenequinone derivative 7 contains two such regions, rings A and 

D, amenable to cycloaddition with MTAD, another level of complexity to this process was 

introduced. However, based on previous studies, we know that the relevant mechanistic 

feature of this process is a photoinduced charge- and electron-transfer from the arene to the 
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arenophile;19 therefore, the HOMO of the arene should dictate the site-selectivity in 

polynuclear aromatic settings. Accordingly, computational studies (at the B3LYP/def2-

TZVPPD level of theory) of 7 predicted a strong bias for the A ring, which has profoundly 

larger HOMO orbital coefficients, (see Figure 3, bottom inset for the corresponding HOMO 

surface). Indeed, this prediction correlated well with experiment, as we observed exclusive 

cycloaddition onto the A-ring to provide intermediate 9. With this site-selective 

dearomatization, we explored several strategies to introduce the remaining two carbon atoms 

needed to complete the idarubicinone framework. We found that the arenophile-based 

cycloaddition in combination with in situ Rh-catalyzed alkene hydroboration (7 → [9] → 
10) installed the boron moiety as a suitable handle for the introduction of the requisite acetyl 

group. Several hydroboration procedures were evaluated, but ultimately the cationic rhodium 

complex [Rh(cod)2BF4] with 1,4-bis(diphenylphosphino)butane (dppb) and catecholborane 

provided the best outcome (for optimization details, see Table S1 in Supporting 

Information).20 Although catecholborane was essential for the hydroboration step, the 

inherent instability of the resulting alkyl catechol boronic ester required immediate 

transesterification of catechol to pinacol to enable product isolation in higher yields.21 

Importantly, following this protocol, we were able to prepare multigram quantities of 

boronic ester 10 in a single pass in 55% yield and an endo/exo 3:1 dr (see Figure 3, bottom 

inset for an X-ray diffraction structure of 10).

Elaboration of organoborate 10 to the full skeleton of idarubicinone required installation of a 

two-carbon fragment through a seemingly straightforward B-alkyl Suzuki coupling reaction. 

However, since several standard Pd- and Ni-catalyzed reaction conditions failed,22 we 

decided to explore the C–C bond forming strategies involving the rich chemistry of boron 

1,2-metalate rearrangements. Particularly, we were keen to explore Zweifel olefination with 

lithiated ethoxyvinyl ether,23 which would provide rapid access to the C-9 acetyl group. 

Nevertheless, a major pitfall of this design was the presence of the quinone and its general 

incompatibility with organolithium reagents. Indeed, prospecting experiments involving 

boronic ester 10 and 1-ethoxyvinyllithium resulted in the addition of organolithium species 

to quinone, delivering a mixture of products without any traces of the desired olefinated 

product. To address this chemoselectivity issue, we developed a one-pot process that 

involved in situ masking of the quinone. Thus, a tetrahydrofuran (THF) solution of boronic 

ester 10 was sonicated with Zn powder in the presence of trimethylsilyl chloride (TMSCl), 

resulting in the formation of a fully protected bis-hydroquinone.24 This intermediate was 

exposed to a freshly prepared 1-lithioethyl vinyl ether to form the boronate complex I-2, 

which was immediately subjected to Zweifel olefination by addition of iodine and base.25 

Concurrently with olefination, the excess iodine also oxidized the labile silylated 

hydroquinone back to the quinone, and workup of the reaction mixture with an aqueous HCl 

solution hydrolyzed the newly introduced vinyl ether to the corresponding methyl ketone 11. 

Remarkably, this one-pot operation involved several distinct transformations and was 

performed on a multigram scale in 72% yield.26

Although the arenophile-mediated dearomative hydroboration and subsequent Zweifel 

olefination introduced the desired methyl ketone, this sequence also installed a bridging 

urazole moiety, which had to be strategically transmuted to reveal the fully decorated A ring 
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of idarubicinone (4). This task was partially accomplished by treatment of ketone 11 with 

base followed by Me2SO4, initiating β-elimination of urazole at position C-10 with 

subsequent methylation of the urazole hydrazyl nitrogen, furnishing α,β-unsaturated ketone 

12 in 79% yield. The N-alkylation of the urazole motif proved necessary to prevent 

undesired side reactions during subsequent manipulations (for details, see Table S2 in 

Supporting Information). Finally, subjecting olefin 12 to Mukaiyama hydration conditions27 

selectively introduced the tertiary alcohol at position C-9, as α-ketol product 13 was 

obtained in 70% yield as a single diastereoisomer. Notably, the use of recently reported 

silane, PhSiH2(Oi-Pr),28 was beneficial for high conversions of this hydrogen-atom transfer 

process.

This hydration achieved the proper oxidation state of the A-ring, and the only difference 

between intermediate 13 and idarubicinone (4) at this stage resided in two hydroquinone 

protecting groups and the urazole moiety instead of a hydroxy group at the C-7 position. 

Although deprotection of methyl ethers to hydroquinone proceeded without any difficulties 

using BCl3 (13 → 14, 98% yield), the removal of the urazole proved to be an arduous task. 

Eventually, the inspiration for the direct urazole-to-hydroxy exchange was found in the 

Moore hypothesis for the biological mode of reactivity known as bioreductive alkylation.29 

Thus, it was proposed that anthracyclines undergo in vivo quinone reduction and subsequent 

C-7 amino sugar elimination, producing a reactive species in the form of a phenylogous 

quinone methide. Moreover, this concept was demonstrated in solution with several 

anthracyclines, which formed the corresponding semiquinone intermediates upon subjection 

to specific reducing agents.30 The direct translation of these findings to our system, for 

example the addition of sodium dithionite to precursor 14, did not eliminate the urazole; 

however, after the addition of base (NaOH) we observed elimination and exclusive 

formation of 7-deoxyidarubicinone (15) under anaerobic conditions. This result was in 

accordance with the literature, since deoxygenated anthracyclinones were commonly 

observed upon reduction of anthracyclines.31 Mechanistically, the reduction of quinone 14 to 

hydroquinone, followed by base-induced elimination of the urazole, likely formed the 

semiquinone methide I-3, which after protonation gave the deaminated product 15. 

However, we noticed that in the presence of oxygen, this reactive intermediate underwent 

competitive oxidation,32 delivering idarubicinone (I-3 → 4). Accordingly, short exposure of 

14 to an aqueous solution of sodium dithionite and NaOH, followed by rapid saturation of 

reaction mixture with oxygen, provided (±)-idarubicinone (4) and (±)-7-deoxyidarubicinone 

(15) in 31% and 57% yield. Although extensive optimization of this protocol did not result 

in a higher ratio of desired anthracyclinone 4 to 15 (for details, see Table S3 in Supporting 

Information), this deoxygenated side-product could be readily converted to aglycone 4 in 

one or two steps using known protocols.33

In summary, we have described a functionalization-based approach to (±)-idarubicinone (4) 

from tetracene (5). The salient feature of this strategy is a judicious orchestration of two 

arene functionalizations and dearomatization, introducing the functionality of the A, B, and 

C rings of the anthracyclinone skeleton. Specifically, Co- and Ru-catalyzed arene oxidations, 

site-selective arenophile-mediated dearomative hydroboration, and subsequent Zweifel 

olefination provided the fully decorated anthracyclinone framework. Moreover, adjustment 
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of the A ring, including a formally redox neutral urazole-to-hydroxy exchange delivered (±)-

idarubicinone (4) in 8 operations and 2% overall yield from tetracene (5).

Importantly, by employing a simple polynuclear hydrocarbon aromatic starting material, the 

described work also presents a notable departure from previously reported syntheses of 

anthracyclinones in which annulations were critical to the overall synthetic design. In fact, 

polynuclear arenes are not commonly considered in synthetic planning for construction of 

stereochemically complex scaffolds. However, through the development and application of 

new methods, the present study provides a compelling case in which tetracene serves as an 

ideal template for imprinting of desired functionality. Thus, the range of available 

polynuclear arenes, as well as numerous functionalization opportunities, can be combined to 

render this global functionalization approach an appealing and complementary entry for the 

preparation of other type II polyketide-like compounds.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Structures of doxorubicin (l), daunorubicin (2), and idarubicin (3).
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Figure 2. 
(a) Selected annulation-based strategies to anthracyclinones. (b) This work: synthesis of (±)-

idarubicinone (4) from tetracene (5) using a nonannulative approach.
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Figure 3. 
Synthesis of (±)-idarubicinone (4) from tetracene (5). Reagents and conditions: 1. CoTPP (5 

mol %), (PhIO)3SO3, CH2Cl2, 25 °C, 2 h, 77%; 2. [Ru(p-cymene)Cl2]2 (2.5 mol %), PIFA, 

DCE, 100 °C, 12 h; then H2O, 100 °C, 12 h; then Me2SO4, K2CO3, (CH3)2CO, 74 °C, 24 h, 

42%; 3. MTAD (8), CH2Cl2, −50 °C, 36 h; then [Rh(cod)2]BF4 (10 mol %), dppb (10 mol 

%), HBcat, THF, −30 °C, 12 h; then pinacol, −78 to 25 °C, 12 h, 55% (3:1 dr); 4. Zn0, 

TMSCl, THF, ultrasonication, 40 °C, 30 min; then then CH2C(Li)OEt, −78 to −25 °C, 30 

min; then I2, −78 to −25 °C, 30 min; then NaOMe, −78 to 25 °C, 4 h; then 1 M HCl, 25 °C, 

2 h, 72%; 5. KOt-Bu, THF, −78 °C, 20 min; then Me2SO4, −78 to 0 °C, 1.5 h, 79%; 6. 

Mn(dpm)3 (10 mol %), PhSiH2(Oi-Pr), O2, i-PrOH/DCE 1:1, 0 to 25 °C, 2 h, 70%; 7. BCl3, 

CH2Cl2, −78 °C, 1 h, 98%; 8. Na2S2O4, H2O/THF/MeOH 1:1:1, −20 °C, 20 min; then 

NaOH, −20 °C, 60 s; then O2, −20 °C, 5 min, 31% of 4 and 57% of 15.
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