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ARTICLE INFO ABSTRACT

Keywords: Ruxolitinib is the first approved JAK1 and JAK2 inhibitor, and is known to interfere with the JAK

SARS-CoV-2 / STAT signaling pathway, one of the critical cellular signaling pathways involved in the

COVID-19 inflammatory response. This review presents an overview of SARS-CoV-2 and the COVID-19 pandemic, and then

;AK/ f{IAipathway focuses on the potential efficacy of ruxolitinib in this infection. The potential targets of ruxolitinib were de-
uxolitini

termined by using genetic alterations that have been reported in COVID-19 patients. The potential effectiveness

Cytokine st
yiokine storm of ruxolitinib is suggested by evaluating the interactions of these potential targets with ruxolitinib or JAK/STAT

pathway.

1. Introduction

In the final days of 2019, a pneumonia of unknown
etiology with fever, breathing difficulties, and invasive lung lesions was
reported in Wuhan China by the WHO. On January 7, 2020, Chinese
scientists identified the etiologic agent as a new type of coronavirus,
with the genome sequence available five days later [1]. WHO changed
the status of the disease to a pandemic on March 11, 2020, because of
the rapid increase in cases and worldwide spread [1]. As of June 17,
2020, the total number of Coronavirus disease 19 (COVID-19) cases
worldwide was approximately 8 million and the total number of deaths
was approximately 450,000, a death total ratio of 5.48 percent [2]. At
present, there is no protective vaccine or approved treatments avail-
able.

2. Overview of the SARS-CoV-2

The virus, which is the cause of the COVID-19 was named as Severe
Acute Respiratory Syndrome-related Coronavirus (SARS-CoV-2) by
Coronaviridae Study Group of the International Committee on
Taxonomy of Viruses (Fig. 1a). SARS-CoV-2 is a betacoronavirus, in the
Coronaviridae family along with two other species that infect humans,
SARS-CoV, and MERS-CoV [3].

The genomic structure of the virus is a positive-sense, single-
stranded RNA which is approximately 30 kb (29,903 nucleotides). The
viral RNA is packaged by nucleocapsid proteins and this structure is

surrounded by a bilayer lipid corona structure which includes mem-
brane, envelope, and spike proteins (Fig. 1b).
The transcriptome contains the open reading frame (ORF) 1ab, S, ORF3a,
E, M, ORF6, ORF7a, ORF7b, ORF8, N, and ORF10 genes, respectively.
ORFlab is cleavaged to nonstructural proteins (nsp). Among them,
nspl2 has RNA-dependent RNA polymerase activity which performs
replication and transcription of the viral genome using it as a template.
The functions of other ORFs, which encode accessory proteins, are not
yet clearly described [4]. The S gene encodes the Spike glycoprotein
that binds to the human angiotensin-converting enzyme 2 (ACE2
) receptor to infect the host cells [5]. While Envelope
and Membrane proteins encoded by E and M genes, associate with the
bilayer lipid envelope structure on the outer surface of the virus, N
codes the Nucleocapsid protein that directly interacts with the viral
genome [6].

The S protein of virion binds to the ACE2 receptor of the
cell that will be infected by the virus (Fig. 1c). In the process following
the binding, it is suggested that proteases especially TMPRSS2, on the
surface of the host cell can strengthen binding and trigger receptor-
mediated endocytosis by causing conformational changes in the S gly-
coprotein [5]. The early endosome carrying the virion matures towards
the late endosome during vesicular traffic process and the gradual in-
crease in the endosomal lumen acidity causes the release of the viral
genome to the cytoplasm [7]. Firstly, ORFlab is translated using the
viral RNA, and its cleavage forms the RNA-dependent
RNA polymerase which is involved in both replication and transcription
of structural proteins. Using these transcripts, cytoplasmic ribosomes
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Fig. 1. Overview of the SARS-CoV-2 a. Taxonomy of the virus; b. Viral transcriptome; c. Pathophysiology.

translate the nucleocapsid protein, and ER-bound ribosomes translate
the spike, envelope, and membrane proteins into the ER lumen. Nu-
cleocapsid packed viral RNA is encapsulated within the vesicle which
carries spike, envelope, and membrane proteins on its membrane in the
Endoplasmic Reticulum Golgi Intermediate Compartment (ERGIC). Fi-
nally, a complete virion is released to the extracellular region by exo-
cytosis [8].

3. Overview of the COVID-19
3.1. Symptoms

SARS-CoV-2 is transmitted from human to human with droplets and
from the mucosal surfaces of the nose, mouth, and eyes [9]. It is
thought that the majority of the SARS-CoV-2 infected individuals are
asymptomatic depending on their general health conditions and age.
Fever, dry cough, fatigue or weakness, and dyspnea are the most
common (> 50%); myalgia, chest oppression or pain, diarrhea, loss of
or poor appetite, shortness of breath, expectoration, anorexia are
common (< 50% and > 10%); headache, chest pain, sore throat, vo-
miting, loss of smell and taste are the less common (< 10%) symptoms
of the diagnosed cases [10-20].
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3.2. Diagnosis

In addition to general symptoms and laboratory findings,
chest computed tomography (CT), rapid antibody-based methods, and
molecular tests including Real-Time Reverse Transcriptase-PCR are
utilized for diagnosis of COVID-19 [10]. SARS-CoV-2 was isolated from
different clinical samples including upper and lower respiratory tract
passages, blood, and stool. However the infectious nature of the
live virus is not exactly defined, with the exception of the
respiratory tract samples [21]. Based on Real-Time Reverse Tran-
scriptase-PCR test results, the infectivity rate decreases in virus from
bronchoalveolar lavage, sputum, throat, nasal and pharyngeal swabs,
respectively [22]. Similarly, the infectivity rate appears to be higher in
the early and progressive stages of the disease, compared to the re-
covery stage. The high viral load and infectious properties of the re-
spiratory samples are thus suggestive evidence of respiratory trans-
mission [23].

3.3. Risk factors

Advanced age (= 65 years) is defined as the most
common risk factor. Comorbidities - hypertension, cardiovascular dis-
eases, diabetes, chronic obstructive pulmonary diseases, malignancies,
chronic kidney or hepatic diseases, asthma, or infectious diseases such
as tuberculosis, and hepatitis - have been identified as other



B. Goker Bagca and C. Biray Avci

risk groups [10,11,13,17,19,24]. Although smoking is the main risk
factor for various diseases especially lung cancer, it is not classified as a
risk factor of COVID-19 as yet [25]. Various genetic factors may also
affect the prognosis of COVID-19; for example, the phenotypes
of HLA-B *46:01 and HLA-B*15:03 affect the severity of infection by
causing low and high binding affinity of SARS-CoV-2 to cells, respec-
tively [26].

3.4. Complications

Complications triggered by COVID-19 are the main factors affecting
disease severity and death. The most common complication of the
COVID-19 is acute respiratory distress syndrome (ARDS). It is char-
acterized by the appearance of ground-glass opacities in the lungs and
results in serious respiratory failure and secondary complications, in-
cluding multiple organ failure related to insufficient oxygenation levels
[20,24,27]. Cytokine release syndrome or cytokine storm (See “4-
Cytokine storm and COVID-19” section), hemophagocytic lymphohis-
tiocytosis, and septic shock are frequently seen as complications from
hyperactivation of the immune system [28-32]. Development of the
autoimmune diseases including neurodegenerative disorders like Guil-
lain Barre Syndrome, hematologic disorders like autoimmune hemo-
lytic anemia is reported during COVID-19 treatment [33,34]. Acute
cardiac, kidney, and liver injury are reported as
common complications [20,24,27]. Although meningitis and en-
cephalitis are also reported as less common complications of COVID-19,
other bacterial or viral co-infections are quite frequent and they may
result in deaths [18,35].

3.5. Current therapies

No treatment or drug has yet been approved, although different
therapeutic approaches are currently being tested against the symptoms
of COVID-19. Current treatment applications are separated into two
subgroups: the first group of the treatment strategies includes antiviral
drugs and immune-based therapies to overcome viral infection; the
second group comprises antithrombotics, ventilation or oxygen thera-
pies, used for secondary complications.

Remdesivir (GS-5734, Gilead Sciences) is an RNA-dependent RNA
polymerase inhibitor, used against RNA viruses such as Ebolaviruses,
although it has not yet been approved for any indication [36,37].
Chloroquine (or hydroxychloroquine) is an approved antimalarial drug
that increases the pH of lysosomes and inhibits autophagy by sup-
pressing lysosome-autophagosome fusion [38]. This autophagy in-
hibitor is a part of the current COVID-19 treatment protocol because it
inhibits the endocytic pathway which allows virus entry into the cell
and activation after binding to the ACE2 receptor [39]. Nevertheless,
current indicated that chloroquine has no beneficial value in seriously
ill patinets. HIV protease inhibitors have been approved for use in
treatment of HIV that function to inhibit proteolysis of viral proteins
necessary to complete the HIV life cycle [40]. It is predicted that pro-
tease inhibition performed with agents such as Lopinavir/Ritonavir
(Kaletra, Abbott Laboratories) may also be effective against SARS-CoV-
2 [41].

The use of plasma (known as convalescent plasma therapy) or im-
mune globulins from recovered individuals is being tested in clinical
trials to help activate the immune system against SARS-CoV-2 in pa-
tients. Also, interferons (interferon alfa and interferon beta) are being
tested for the same purpose [42]. Numerous clinical studies aimed to
induce adaptive immunity are currently underway by different research
teams [43,44].
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It has been reported that the infection-related increase of coagula-
tion parameters especially the D-dimer (normal range < 0.5 ug/ml) is
directly proportional to the severity of the disease. Coagulation ab-
normalities cause disseminated intravascular coagulation and triggers
venous thromboembolism and pulmonary embolism which are among
the main causes of COVID-19 related death. Antithrombotic and an-
ticoagulant drugs including heparin, warfarin, direct-acting oral antic-
oagulants are used to protect against the development of coagulation
and thromboembolism complications during the treatment process
[45].

3.6. Genetic alterations in COVID-19

Various genetic alterations have been reported that could poten-
tially be used as therapeutic targets during COVID-19 infection (Fig. 2).
These variations especially include inflammation and immune response
regulation [10,11,13-17,19,24,27,29,31,32,46-53]. Furthermore, in-
creased expression of ACE2 and TMPRSS2 may contribute to compli-
cations in the heart, lungs, and different organs of the nervous system
[47,54].

4. Cytokine storm and COVID-19

As a consequence of SARS-CoV-2 infection, a cytokine storm syn-
drome is triggered by dysregulated immune responses; the cytokine
storm is characterized by a high inflammatory response, including
elevated levels of cytokines and immune cells that infiltrate and destroy
organs and cause lung lesions, respiratory dysfunction, multiple organ
damage, and death [28]. Cytokines are a group of immunoregulatory
cell-cell communication molecules including different subtypes named
chemokine (chemotaxis cytokine), interleukin (leukocyte related cyto-
kine), lymphokine (lymphocytes-related cytokine), monokine (mono-
cytes-related cytokine) and interferons. Although originally thought to
be secreted by specific immune cells, it is now recognized that non-
immune cells, fibroblasts or endothelial cellsrespond to inflammation or
injury, as well as monocytes, macrophages, B- and T-lymphocytes.
These cytokines are both cause and effect of the immune response and
include both pro- and anti-inflammatory molecules [55].

4.1. The JAK/ STAT pathway

Cytokines regulate different cellular and immune processes and
their activation is controlled by the JAK/STAT signalling pathway [56].
The Janus kinases (JAKs) and the signal transducers and activators of
transcriptions (STATs) form one of the main regulatory cell signaling
pathways (Fig. 3). The JAK non-receptor tyrosine kinase family in-
cludes Jakl, Jak2, Jak3, and Tyrosine kinase 2 (Tyk2) proteins. Their
unique structure consists of seven JAK homology domains (JH1-7); at
the carboxy-terminal, are two kinase domains (JH1 and JH2). This fa-
mily is named for the mythological Janus god because of the two
headed tandem kinase domains. The JH1 domain is a catalytic com-
ponent and a second kinase domain is a pseudo-kinase JH2 that has an
autoregulatory suppressor function. JH3 is a Src homology (SH2) do-
main and the activated SH2 generates a binding site for STAT tran-
scription factors. At the amino terminal end is a receptor-interacting
FERM domain comprising JH4-7 (Band 4.1, ezrin, radixin, moesin)
[57]. The JAK non-receptor tyrosine kinases receive numerous different
extracellular signals (growth factor, cytokine, and hormone) from host
receptors and transfer these responses to the nucleus via the in-
tracellular STATs. When extracellular signals are received by the spe-
cific JAK-associated receptor, a conformational change occurs that
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causes autophosphorylation on the tyrosines of the JAKs, and sub-
sequent dimerization of the STATs. Dimerized STATs are directed into
the nucleus and trigger transcription of the immune regulatory, apop-
totic, cell cycle, and differentiation related genes. The STAT protein
family includes STAT1, STAT2, STAT3, STAT4, STAT5a, STAT5b, and
STAT®6, and all contain an N-terminal, coiled-coil domain involved in
protein-protein interactions, DNA-binding domain for sequence-specific
DNA binding andnuclear localization, a linker region, an SH2 domain
involved in dimerization and protein association, and a transactivation
domain (TAD) that carries conserved tyrosine residues that are phos-
phorylation sites for host kinases [58]. Depending on the physiological
signal, the JAK/STAT pathway regulates critical cellular homeostasis
processes including immune response, proliferation, differentiation,
migration, and apoptosis[59].

The IL6/JAK/STAT3 signaling pathway represents a specific branch
of the JAK/STAT pathway that includes IL6, an essential pleiotropic
cytokine produced by B cells T cells, dendritic cells, and macrophages
to generate an immune response or inflammation. Binding of IL6 to its
specific receptor (IL6 receptor-subunit alpha IL6R) triggers a hetero-
hexameric complex with IL6 receptor subunit-f (gp130, IL6ST) and
activates the IL6/JAK/STAT3 pathway, that includes activation of in-
flammation-related downstream targets [58].

IL6 is is one of the pivotal inflammatory cytokines upregulated in
influenza, vaccinia, hepatitis B and C, Crimean-Congo hemorrhagic
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fever, and human immunodeficiency virus infections in humans [60]. In
the context of COVID-19 cytokine storm, IL6 is likewise one of the most
highly expressed cytokines; elevated serum levels of IL6 are considered
one of the main indicators of poor prognosis in SARS-CoV-2 infection.
The local inflammatory response, generated in part through IL6, also
spreads throughout the body and contributes to cytokine release and
acute respiratory distress syndromes, as well as organ damage. Different
therapeutic strategies to overcome hyper-inflammation include the use
of JAK/STAT pathway inhibitors and particularly anti-IL6 inhibitors
[28].

5. Overview of the ruxolitinib and effect mechanisms

The first approved JAK inhibitor was ruxolitinib, followed by other
JAK inhibitors including baricitinib, upadacitinib, tofacitinib, pefici-
tinib, and fedratinib [61-63] that are under clinical investigation for
the treatment of the cytokine storm. Among these, baricitinib
(LY3009104, INCB028050, Olumiant, Eli Lilly) was the second JAK1
and JAK2 inhibitor, approved in 2018 for treatment of rheumatoid
arthritis. In addition to its anti-inflammatory effects, baricitinib also
inhibits virus endocytosis, indicating a dual specificity inhibitor [64].
And although clinical studies are underway, there is a caveat - bar-
icitinib may increase patient vulnerability to co-infection, virus re-
activation, lymphocytopenia, and neutropenia, thus indicating that it
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Table 1 (continued)

Status

Design Patients & Medical condition Time frame

Dose

Sponsor

Name

Trial ID

NYR

® 15 days

® 13 patients

® Observational
® Retrospective
® Monocentric

® Non-profit

® Phase 2

COVID-19: Ruxolitinib for the Treatment of cytokinE  Azienda USL Toscana Nord Ovest- Italy Twice daily at least 20 mg (for

NCT04361903

® COVID-19 diagnosed

the first 48 hours)

Storm resPiratory dIstREss Syndrome. RESPIRE Study

NYR

® 14 days

® 100 patients

Twice daily 5mg

Marcelo Iastrebner- Argentina

Collaborator: Novartis

Ruxolitinib in the Treatment of Covid-19

NCT04414098

® SARS-Cov2 infection

® Experimental
® Open label
® Prospective

confirmed by PCR test

Once daily 5mg

Ruxolitinib Managed Access Program (MAP) for Novartis Pharmaceuticals

NCT04337359

Patients Diagnosed With Severe/Very Severe COVID-

19 Illness

NYR

® 28 days

® 216 patients

® Phase 3

Different combinations with
anakinra, tocilizumab

Assistance Publique Hopitaux De

Marseille- France

An Open Randomized Therapeutic Trial Using

NCT04424056

® Proven COVID-19

©® Randomized
® Open label

ANAKINRA, TOCILIZUMAB Alone or in Association

With RUXOLITINIB in Severe Stage 2b and 3 of

COVID19-associated Disease (INFLAMMACOV)

Study of Ruxolitinib Plus Simvastatin in the

R

® 14 days

® Phase 2 ® 94 patients

Twice daily 5mg (7 days)

Hospital Universitario Madrid
Sanchinarro-Madrid- Spain

NCT04348695

® SARS-Cov2 infection

©® Randomized
® Open label

Twice daily 10 mg (following
7 days) combination with

simvastatin

Prevention and Treatment of Respiratory Failure of

COVID-19. (Ruxo-Sim-20)

confirmed by PCR test

*Collaborator: Apices Soluciones S.L.

R

Twice daily 5mg ® Phase 2 ® 70 patients ® 45 days

Lomonosov Moscow State University
Medical Research and Educational

Center- Russia

COLchicine Versus Ruxolitinib and Secukinumab In
Open Prospective Randomized Trial (COLORIT)

NCT04403243

® Randomized
® Open label

A available; NYR not yet recruiting; O ongoing; R recruiting; W withdrawn.
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may not be an ideal treatment option [65]. A similar situation is en-
countered with interleukin inhibitors. Tocilizumab, an approved IL6
receptor antagonist, has been shown to reduce cytokine release syn-
drome symptoms in severe patients COVID-19 [66], but may also
contribute to an increased risk of death by increasing im-
munosuppression in severely ill patients [30].

5.1. Ruxolitinib

Ruxolitinib (INCB018424; Jakavi; Incyte Corporation) is a potent
JAK1 and JAK2 inhibitor that blocks JAK kinase activity and prevents
STAT activation and nuclear translocation. Ruxolitinib was approved
by the FDA in November 2011, December 2014, and May 2019 for the
treatments of Myelofibrosis, Polycythemia Vera, and Acute Graft-
Versus-Host Disease, respectively to reduce the high level of cytokine
release associated with these disorders. Therefore, ruxolitinib has
begun to take its placein the treatment of autoimmune diseases such as
rheumatoid arthritis, psoriasis, and lupus erythematosus, as well as
other allergic and inflammatory diseases [67]. Ruxolitinib also inhibits
IL6/JAK/STAT3 pathway, thus reducing circulating IL6 levels [68,69].

5.2. Ruxolitinib and viral infections

The potential of ruxolitinib in the treatment of different in-
flammatory conditions is also being investigated.

5.2.1. Immunosuppression

Ruxolitinib is used in both acute and chronic graft versus host dis-
ease from allogeneic hematopoietic stem cell transplantation. [70].
Hemophagocytic lymphohistiocytosis, a rare secondary disease trig-
gered by viral infection or autoimmune disease, in which a hyper-ac-
tivated immune response may causesevere complications; ruxolitinib
has been shown to suppress cytokine levels and the JAK/STAT pathway
in Epstein-Barr Virus (EBV)-associated hemophagocytic lymphohistio-
cytosis [71].

5.2.2. Antiviral efficacy

The anti-viral properties of ruxolitinib may have activity against
Human Immunodeficiency Virus (HIV) and EBV infections. Ruxolitinib
has been shown to inhibit HIV-1 replication in lymphocytes and mac-
rophages and to suppress HIV-1 reactivation [72, as well as to inhibit
production of inflammatory cytokines such as IL1f, IL2, IL5, IL6, IL7,
IL13, IL15, and IFNG [73-75]. Similarly, the anti-viral potential of
ruxolitinib is also indicated in EBV infection where ruxolitinib inhibits
EBV-infected PBMC proliferation and reduces elevated inflammatory
cytokines by inhibition of STAT3 [76,77].

5.2.3. Opportunistic infections

Because the JAK/STAT pathway is a primary signal pathway, sup-
pression of this pathway can also result in the emergence of opportu-
nistic infections. The development of Polyomavirus (JC-Virus and BK-
Virus) related fatal encephalopathy and meningitis has been reported
during ruxolitinib treatment [78,79]. Because the JAK/STAT pathway
inhibits Zika Virus (ZIKV) and Hepatitis C Virus (HCV), members of the
Flaviviridae family, it is suggested that ruxolitinib may actually increase
viral replication [80,81]. Hepatitis B Virus (HBV) reactivation has also
been reported due to ruxolitinib treatment [82]. Infections of different
Herpesvirus family members which include Varicella-Zoster Virus
(VZV), EBV, and Cytomegalovirus (CMV), have also been reported.
Development of gastric ulcer and meningoencephalitis due to EBV and
VZV infections has been reported in patients with myelofibrosis and
polycythemia vera treated with ruxolitinib, respectively [83,84]. Rux-
olitinib has also been associated with reactivation of CMV, VZV, and
EBV during myelofibrosis, graft versus host disease, and myelodys-
plastic syndrome treatments [85-88]. Reactivation causes secondary
diseases that include lymphoproliferative disorders [89].
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Fig. 4. Potential interactions between ruxolitinib and COVID-19 related genetic alterations.

6. Potential interactions between ruxolitinib and COVID-19

Since ruxolitinib is well-toleratedand used in the elderly population
at present, it is a powerful candidate to overcome the hyperimmune
syndrome that arises in COVID-19 patients [68]. A number of clinical
trials assessing the efficacy of ruxolitinib in COVID-19 related symp-
toms are ongoing (Table 1).

To determine the potential molecular efficacy of ruxolitinibon ge-
netic alterations,molecular pathways that include altered genes were
determined by the KEGG Pathway Database and the STRING Database
Version 11 (Fig. 4). Ruxolitinib reduced the expression of inflammatory
biomarkers at both the gene and protein levels in different cells
(Table 2).

7. Conclusion

It is clear that ruxolitinib has an important potential in overcoming
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complications caused by immune hyperactivation related to the JAK/
STAT signaling pathway. Since the JAK/STAT pathway is associated
with the induction of multiple molecular immune pathways, inhibition
of this pathway may result in the inhibition of several cellular responses
Considered together, ruxolitinib has potential in the treatment of
COVID-19 infection; however, adverse effects such as opportunistic
infections as a result of immune suppression must also
be considered.
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Table 2

Genetic alterations are directly targeted by ruxolitinib in COVID-19.

Reference

Effects of ruxolitinib

Reference

Regulation in COVID-19

Genes

[90]
[91]

Inhibits CBL mutant Pluripotent Stem Cells

[14]

Downregulated after treatment in severe cases (PBMC)
CXCL10 Upregulated in COVID-19 patients PBMC (compared to normal PBMC) and elevated blood level

CBL

Downregulates the expression level in macrophages

[32,49,52]

in severe patients

[92]

Decreases secretion in macrophages

[10,11,49,50,53,14,15,16,18,19,24,27,31]

Upregulated in COVID-19 patients PBMC (compared to normal PBMC)and elevated blood level

in severe patients

IL10

[69]

Downregulates IL18 expression levels in lymphoblasts

Reduces IL2 levels in T cells

[49]
[31]
[14]
[14]

Upregulated COVID-19 patients PBMC (compared to normal PBMC)

Elevated blood level in severe patients

IL18

[73]

L2

[93]

Inhibits JAK/STAT pathway activating IL2RB mutant Ba/F3 cells

Downregulates expression level in lymphoblasts

Decreases PDCD1 levels in T cells

Downregulated after treatment in severe cases (PBMC)

IL2RB

[94]

Downregulated after treatment in severe cases (PBMC)

Increased levels on T cells

MCL1

[95]

PDCD1
CCL2

[96]

Reduces secreted protein levels in bone marrow mesenchymal

stromal cells

[32,49]

Upregulated COVID-19 patients BALF (compared to normal BALF) Elevated blood level in severe

patients

[97]

Reduces CRP level

[10,12,13,18,29]
[11,15,27]

[27]

Elevated blood level in severe patients

CRP

IL1B
L4

[98]

Downregulates expression in T cells

Reduces IL4 levels in patients

Elevated blood level in severe patients

[99]
[69]

Elevated blood level in severe patients

Downregulates IL6 expression level in lymphoblast

Reduces the expression in mast cells

[10,11,29,31,32,50,53,66,100,13-17,19,24,27]

[11,15,32]

Elevated blood level in severe patients

IL6

[101]

Elevated blood level in severe patients

TNF

PBMC peripheral blood mononuclear cells; BALF bronchoalveolar lavage fluid cells.
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