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Abstract

Psychiatric disorders show high rates of co-morbidity and non-specificity of presenting clinical 

symptoms, while at the same time demonstrating substantial heterogeneity within diagnostic 

categories. Notably, many of these psychiatric disorders first manifest in youth. Here we review 

progress and next steps in efforts to parse heterogeneity in psychiatric symptoms in youth by 

identifying abnormalities within neural circuits. To address this fundamental challenge in 

psychiatry, a number of methods have been proposed. We provide an overview of these methods, 

broadly organized into dimensional vs. categorical approaches and single-view vs. multi-view 

approaches. Dimensional approaches including factor analysis and canonical correlation analysis 

aim to capture dimensional associations between psychopathology and brain measures across a 

continuous spectrum from health to disease. In contrast, categorical approaches such as clustering 

and community detection aim to identify subtypes of individuals within a class of symptoms or 

brain features. We highlight several studies that apply these methods to samples of youth, and 

discuss issues to consider when using these approaches. Finally, we end by highlighting avenues 

for future research.

Corresponding author: Theodore D. Satterthwaite, M.D., Richards Building, 5th Floor, Suite 5A, 3700 Hamilton Walk, Philadelphia, 
PA 19104-6085, sattertt@pennmedicine.upenn.edu, Phone: (215) 662-2915, Fax: (215) 662-7903. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered 
which could affect the content, and all legal disclaimers that apply to the journal pertain.

DISCLOSURES
Dr. Shinohara has received legal consulting and advisory board income from Genentech/Roche. All other authors (Dr. Kaczkurkin, Dr. 
Moore, Dr. Sotiras, Dr. Xia, and Dr. Satterthwaite) report no biomedical financial interests or potential conflicts of interest.

HHS Public Access
Author manuscript
Biol Psychiatry. Author manuscript; available in PMC 2021 July 01.

Published in final edited form as:
Biol Psychiatry. 2020 July 01; 88(1): 51–62. doi:10.1016/j.biopsych.2019.12.015.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

heterogeneity; neurobiology; imaging; psychopathology; Youth; adolescents

1. Introduction

Youth, which we define broadly as childhood, adolescence, and young adulthood, is a period 

during which many psychiatric disorders first manifest (1, 2). It is also a time of marked 

development in brain structure and function (3, 4). Despite dramatic advances in 

neuroimaging methodology that have made it possible to measure the structure and function 

of neural circuits, attempts to isolate neurobiological substrates of psychopathology have 

been hampered by the simultaneous comorbidity among and heterogeneity within 

psychiatric diagnoses. For example, psychiatric disorders share many presenting clinical 

symptoms (5) which likely contributes to the apparent non-specificity of neural mechanisms 

associated with psychopathology (6–13). At the same time, there is considerable 

heterogeneity in the presentation of clinical symptoms (14–17). There is increasing interest 

in understanding clinical heterogeneity in psychopathology in terms of underlying biological 

mechanisms (18), which may provide the basis for a biologically-based nosology for mental 

disorders. However, thus far, the majority of this work has been restricted to adult samples.

The goal of this review is to introduce different approaches to understanding neurobiological 

heterogeneity within psychiatric disorders, with a focus on studies using these approaches in 

samples of youth. Specifically, we concentrate on methods for defining common and 

dissociable neurobiological deficits associated with psychopathology. Notably, the focus of 

this review is not on trajectories of developmental change or theoretical nosological debates. 

For an overview of patterns of brain development using longitudinal studies, we refer to the 

review by Becht and Mills in this special issue. For current nosological debates, 

Bornovalova et al. in this special issue provide a comprehensive review of issues concerning 

the bifactor model. Instead, our goal is to introduce the reader to a range of approaches for 

parsing common and dissociable neurobiological heterogeneity, while highlighting the 

similarities and differences between the methods. Of note, we focus only on methods that 

have been applied in samples of youth. While we do not provide a comprehensive tutorial on 

any particular method, we refer the reader to more detailed treatments of these methods 

when available. We organize this review according to two axes that aim to understand the 

complex mapping between neural deficits and clinical symptoms: dimensional vs. 

categorical approaches and single-view vs. multi-view approaches. We begin by defining the 

four broad approaches, and then highlight studies that apply these methods to samples of 

youth. We follow this with a discussion of the issues to consider when using these 

approaches, and end by discussing considerations for future research.

2. Dimensional vs. categorical and single-view vs. multi-view approaches

When reviewing methods for parsing heterogeneity, one important distinction is between 

dimensional vs. categorical approaches. Here. we are referring to whether the approach 

produces dimensions (continuous variables) or categories (clusters or subtypes) of the 
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measure of interest. Specifically, dimensions represent the loadings onto symptoms and each 

individual receives a dimensional score, while categories represent subtypes of people who 

share features in common and each individual is classified into a category. Research has 

shown that many psychiatric symptoms exist on a continuum, with diagnosable 

psychopathology being an extreme phenotype of variation that is present in the general 

population (19). Dimensional approaches are able to account for this continuous spectrum 

from health to disease including subthreshold levels of psychopathology. However, multiple 

mechanisms may drive the extreme phenotypes of psychopathology and one can also use 

categorical approaches to identify subtypes of psychopathology.

A second important distinction is between single-view and multi-view methodological 

approaches. This refers to the nature of the input data, which can be symptoms, brain 

features, or both. Any data type can be considered, but here we limit our review to clinical 

symptoms and neuroimaging measures given our focus on neurobiological heterogeneity in 

psychopathology. Single-view approaches consider data from a single feature set (e.g., 

symptoms). The output can be dimensional (a spectrum of symptoms) or categorical 

(subtypes of people), but the input reflects a single data type. In contrast, multi-view 

approaches use input data from multiple feature sets, such as integrating both symptoms and 

brain features (20). Again, the output can be dimensional (continuous dimensions 

representing combinations of symptoms and brain features) or categorical (subtypes 

characterized by different combinations of symptoms and brain features). Collectively, we 

can organize the approaches discussed into this dimensional vs. categorical and single-view 

vs. multi-view framework.

2.1. Single-view dimensional approaches

Single-view dimensional approaches take as input a single feature set (clinical symptoms or 

brain measures) and produce dimensional output. One use of this approach is to reduce a 

large feature set into a smaller number of latent summary variables for discovery of hidden 

relationships and/or for data reduction. For example, approaches such as independent 

component analysis (ICA), principal component analysis (PCA), and non-negative matrix 

factorization (NMF) can be used to reduce high-dimensional symptoms or brain features 

into a smaller number of components (21–31). Another common approach involves factor 

analysis, which summarizes a large number of psychiatric symptoms into latent dimensions 

that can then be related to various neurobiological measures (32–39). Two models for this 

purpose include correlated traits and bifactor models (40). Correlated traits models (e.g., 

factors from an exploratory factor analysis) produce correlated symptom factors. In contrast, 

bifactor models reveal a hierarchical structure of symptoms including a general 

psychopathology (p) factor that represents the overall burden of psychopathology across 

disorders (Figure 1) (41). Akin to the “g” factor in general intelligence, the p factor 

represents the symptoms that psychiatric disorders share in common (42). In addition to p, a 

bifactor model identifies uncorrelated subfactors of psychopathology, such as factors for 

internalizing/fear, anxious-misery/distress, externalizing/behavioral, and psychosis/thought 

disorder (32–39).
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The p factor has been associated with a number of neurobiological measures in youth, 

including reduced gray matter volume (22, 43), reduced activity in executive regions (44), 

elevated resting-state CBF (45), reduced fractional anisotropy (46), and delay in connectome 

distinctiveness (47) (Figure 2). In addition, there also exist dissociable deficits specific to the 

symptom domains of fear, anxious-misery/distress, behavioral/externalizing, and psychosis/

thought disorder. For example, factors related to internalizing symptoms are associated with 

reduced gray matter volume in specific regions (43), widespread hyperactivation of the 

executive network (44), reduced cortical thickness (22), and specific abnormalities in CBF 

(45). The bifactor model is useful for summarizing symptoms into dimensions that capture 

common variance across disorders (p factor) and unique variance within specific classes of 

symptoms. The studies applying this method to samples of youth and then relating these 

factors to neuroimaging measures suggest that there may exist both common and dissociable 

neurobiological substrates of psychopathology in youth.

2.2. Multi-view dimensional approaches

While single-view dimensional approaches only consider a single data type as input, multi-

view dimensional approaches take as input two or more feature sets (symptoms and brain) 

and produce dimensional summaries of the interrelationships between the feature sets. Two 

commonly used multi-view dimensional methods are partial least squares (PLS) regression 

and canonical correlation analysis (CCA) (48–51). Both methods seek to find linear 

combinations of brain features that predict linear combinations of clinical symptoms (Figure 

1). A growing number of studies have used PLS regression and CCA to link neurobiological 

measures to psychopathology in adults (52–66).

In youth, CCA has been used to link functional connectivity patterns to behavioral measures 

including demographics, IQ, and a variety of self-report measures (67). However, the 

participants of this study included healthy youth (n=281) and a much smaller number with 

major depression (n=25); as a result, there was relatively limited psychopathology present. It 

should also be noted that the assumptions of CCA often do not hold in high-dimensional 

imaging data (68). Alternative methods such as sparse CCA (sCCA) are able to overcome 

these limitations in high-dimensional data by simplifying the model to avoid overfitting and 

increase interpretability (69–71). Our group has used sCCA to link dimensional 

psychopathology symptoms to functional connectivity measures in a large sample of 663 

youth (72). The results revealed that mood, psychosis, fear, and externalizing behavior were 

associated with distinct patterns of connectivity, while loss of network segregation between 

the default mode and executive networks was common across these dimensions (72) (Figure 

3). Methods such as PLS regression and CCA are useful for measuring brain-behavior 

relationships. However, compared to adults, there have been relatively few studies applying 

these methods in younger populations, suggesting the need for additional studies in samples 

of youth in order to replicate these results.

2.3. Single-view categorical approaches

Single-view categorical approaches take a single modality as input (symptoms or brain 

features) and produce clusters or subtypes of individuals. Notably, these techniques may also 

be used to discover clusters of variables; however, here we focus on the use of these methods 
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to reveal clusters of individuals with common features. While many studies have clustered 

on psychiatric symptoms, behavioral measures, or neuropsychological performance in both 

adults and youth (73–93), here we focus on studies that cluster based on imaging measures. 

A number of studies have identified subtypes based on imaging features in adults (60, 94–

108).

Neurobiological subtypes of internalizing/externalizing symptoms have been identified in 

samples as young as infants (109). Additionally, community detection has been used to 

identify subtypes of youth with ADHD using measures of intrinsic functional connectivity 

(110, 111). Our group has used a recently developed machine learning method, HYDRA 

(94), in 1,141 youth to identify two subtypes of internalizing youth differentiated by 

abnormalities in brain structure, function, and white matter integrity, with one subtype 

showing poorer functioning across multiple domains (112) (Figure 4). Unlike many 

clustering approaches, HYDRA accounts for variability in the controls while uncovering 

subtypes in the symptomatic group. These approaches are potentially useful because they 

seek to identify subtypes that “carve nature at its joints” based on underlying neurobiology, 

rather than relying on symptom measures. Studies using this approach in samples of youth 

are just beginning to emerge.

2.4. Multi-view categorical approaches

Multi-view categorical approaches take as input two or more feature sets (e.g., symptoms 

and brain measures) and produce clusters or subtypes characterized by different 

combinations of those features (20). Biclustering clusters on both rows (subjects) and 

columns (features) simultaneously to generate clusters representing subsets of subjects 

related to subsets of features (113). While still a single-view approach, this method can be 

adapted to be multi-view by including more than one feature set. Multi-view biclustering has 

been used to simultaneously cluster symptoms and brain features in adults with a range of 

psychopathology (114–116). There are currently no studies applying multi-view biclustering 

to samples of youth, suggesting a promising area for future work.

A method conceptually to related multi-view biclustering is Similarity Network Fusion 

(SNF). SNF is a multi-view approach that creates networks of individuals based on each 

feature set separately and then integrates these into a single network (117). SNF has 

identified clusters of youth with schizophrenia-spectrum, autism-spectrum, or bipolar 

disorder using demographics, brain imaging, and behavioral data (118). Methods that 

consider multiple features sets will likely better represent the complex interactions that exist 

between clinical symptoms and biological data; as such, this approach may have great 

relevance to studies of brain development in youth.

3. Methodological considerations in studies of heterogeneity

3.1. Data and subject inclusion

Single-view and multi-view approaches share several issues in common across both 

dimensional and categorical methods. First are the issues of which subjects and what data 

(imaging features or symptoms) to include. This is especially important since the results will 
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inevitably depend heavily on the input data. For example, bifactor studies that do not 

measure psychosis-spectrum symptoms will not find a thought disorder factor. Any variance 

associated with psychosis-spectrum symptoms may be aliased into the remaining factors, 

possibly impacting the dimensions or clusters discovered. Likewise, many clustering 

methods require defining a patient group for clustering; thus, how the sample is defined 

(e.g., transdiagnostic or only a particular disorder) will have a large impact the clusters 

found. Specific to clustering, there is also debate as to whether healthy participants should 

be clustered separately or in combination with patients (19, 79). Despite evidence of 

neurobiological heterogeneity within healthy controls (79, 110, 111, 119), they are often 

treated as a homogeneous group (120). Taken together, it is important to carefully consider 

which individuals and measures will be included for all methods discussed.

3.2. Choice of approach

A second common issue across approaches is the existence of multiple ways to parse 

heterogeneity in clinical groups depending on the approach chosen (19). While this was 

noted by Marquand et al (19) in regard to clustering methods, this issue also applies to 

dimensional approaches as well. There are many supervised, semi-supervised, and 

unsupervised algorithms for clustering, and while beyond the scope of this review, each has 

its own strengths and limitations (121). Different algorithms may suggest different clustering 

solutions, and there is currently no strong consensus on the best method for choosing the 

optimal number of clusters (19). Similarly, there is considerable debate regarding the 

appropriate method to delineate psychopathology factors using dimensional approaches. 

These methods differ to the degree to which they are theory-driven (confirmatory) or data-

driven (exploratory), which will impact the interpretation of the resulting factors. 

Bornovalova et al. provide a comprehensive review of these issues as they relate to the 

bifactor model in this special issue. As Feczko and colleagues (119) point out, the goal or 

question at hand should drive methodological choices, as different approaches may be valid 

for different purposes (e.g., differentiating subtypes of patients, investigating symptom latent 

structure, predicting treatment response, etc.).

3.3. Consideration of covariates

Also related to the approach used is the issue of whether or not to control for covariates. 

This is not commonly discussed in single-view dimensional approaches such as factor 

analyses of symptom data, and it remains an open question as to whether it is necessary or 

even desirable to consider covariates in approaches that only examine symptoms. However, 

controlling for covariates in multi-view approaches that include both symptoms and 

neurobiological measures is important, as there are known confounds associated 

neuroimaging measures. In cross-sectional data spanning a large age range in youth, both 

age and sex are commonly controlled for (see Future Directions for a discussion on the need 

for longitudinal designs), as well as motion or data quality. Controlling for covariates may 

be especially important for methods that cluster based on neurobiological measures, as 

clustering algorithms may inadvertently produce clusters based on irrelevant variables with 

known relationships with brain features (e.g., clusters separated by younger and older 

individuals, or by females and males). For many approaches, covariates can simply be 

regressed out of the features of interest prior to clustering or subject-level weighting can be 

Kaczkurkin et al. Page 6

Biol Psychiatry. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



used to address confounds (122). Additionally, multi-view factor analytic approaches that 

consider covariates have been developed (123).

3.4. Issues regarding sample size

An additional consideration that applies to all approaches is the issue of adequate sample 

size. The methods reviewed typically require very large sample sizes to increase the stability 

of the results. Some methods are constrained by sample size. For example, factor analytic 

approaches and CCA are limited by the ratio of observations (subjects) to model features 

(variables), with more observations than variables required (51). While clustering methods 

and multi-view techniques like PLS may produce results in smaller samples that have many 

features, the results may have poor stability, generalizability, or both. Cross-validation and 

replication in independent samples can increase our confidence in the results, but may 

require even greater sample sizes and access to independently collected datasets with 

comparable measures. Leveraging large, publicly available neuroimaging studies will be 

especially helpful moving forward. Available resources include the NKI-Rockland Sample 

(124), the Philadelphia Neurodevelopmental Cohort (125), the Pediatric, Imaging, 

Neurocognition, and Genetics study (126), the Human Connectome Project-Lifespan studies 

(127), the Healthy Brain Network (128), and the Adolescent Brain Cognitive Development 

Study (129).

3.5. Interpretation issues

There are a number of interpretation issues to take into consideration for the methods 

discussed. For single-view dimensional approaches such as factor analysis, methodological 

choices for addressing correlations between factors will impact the interpretation of the 

results. For example, while correlated traits models allow resultant factors to be highly 

correlated with one another resulting in a high degree of overlap between these factors (40), 

bifactor models produce orthogonal (uncorrelated) factors (40). The symptom factors in a 

bifactor model represent the specific variance not accounted for by general psychopathology 

(e.g., the fear factor represents the unique fear symptoms not shared across disorders). Thus, 

the presence or lack of orthogonality needs to be taken into consideration when interpreting 

these symptom factors. Likewise, interpretability is also an important issue in categorical 

approaches. The progress in developing and implementing different clustering algorithms 

has out-paced the research on evaluating the validity of the results (130). Notably, some 

clusters may be so smallas to no longer be meaningful and some individuals may not fit into 

any cluster (19). Finally, for both dimensional and categorical approaches, it is also unclear 

whether data reduction for high-dimensional data will help or hinder interpretability. Data 

reduction is widely used, but few studies address its impact on the results. Validation on an 

independent dataset or feature type will be useful for evaluating whether the results are 

biologically meaningful.

3.6. Reproducibility and generalizability

Finally, it is important to consider the reproducibility and generalizability of results in 

studies that attempt to parse heterogeneity. While there are varying opinions in the field as to 

the definition of reproducibility as opposed to replicability (131), here we take Plesser’s 

recommendation to adapt Goodman’s definitions of: 1) methods reproducibility - providing 
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sufficient detail about procedures and data so that the same procedures could be exactly 

repeated; 2) results reproducibility - obtaining the same results from an independent study 

with procedures as closely matched to the original study as possible; and 3) inferential 

reproducibility - drawing the same interpretive conclusions (132). Results reproducibility 

and inferential reproducibility are both related to the generalizability of the results. 

Importantly, the stability of subgroups derived from clustering methods over time has been 

brought into question (19), and generalizability to new samples remains challenging for all 

methods discussed (133). Reproducibility and generalizability may be improved when out-

of-sample validation methods are employed using best practices (119, 134). While the 

reproducibility crisis in the field is not exclusive to the methods covered in this review (135), 

the high-dimensional, multivariate nature of the data in conjunction with relatively small 

sample sizes inevitably reduces reproducibility. Thus, it will be important for researchers to 

provide transparent documentation of the decisions made at each step and to validate their 

results using appropriate methods.

4. Considerations for future research

4.1. The importance of considering brain maturation in youth

As should be apparent from this review, there are only a limited number of studies that have 

applied these approaches to samples of youth, suggesting a potential area growth for the 

field. Additionally, the studies reviewed have relied primarily on cross-sectional data 

spanning wide age ranges, which has clear limitations for studying development. Currently, 

most cross-sectional studies simply control for age effects, either by including age as a 

covariate in the model, or by removing age effects before clustering. Treating age as a 

confound – rather than the primary effect of interest – is not ideal for approaching primary 

developmental questions of interest. Longitudinal designs have long been considered the 

gold standard in developmental research (136) and the dynamic nature of longitudinal 

trajectories of brain development are well illustrated in the review by Becht and Mills in this 

special issue. Thus, it will be important for future work to apply the approaches reviewed to 

longitudinal samples to determine whether neurobiological patterns change throughout 

development. Future work that capitalizes on large, longitudinal studies such as the ABCD 

study (129) will be extremely useful in this regard.

4.2. Considering circularity in data-driven approaches

One of the primary goals of data-driven approaches that aim to reconceptualize 

psychopathology is to provide an alternative to clinically-defined DSM categorical 

diagnoses. However, many of the methods reviewed still rely to varying degrees on DSM 
defined symptoms, introducing potential circularity into the data-driven discovery of brain-

behavior relationships. For example, the clinical symptoms used in a bifactor analysis or 

CCA often come from clinical interviews or self-report measures based on symptoms 

established by the DSM. Likewise, many clustering methods require defining a patient group 

to cluster on beforehand, which is typically defined using DSM criteria. If our input 

symptom measures or patient groups are heavily influenced by DSM defined diagnoses, then 

it is possible that our output may broadly align with these DSM categories. Such circularity 

may conflict with the goal of identifying underlying heterogeneity in order to redefine 
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traditional diagnostic categories. Importantly, it is possible the that symptoms defined by the 

DSM through years of observation and scientific study could be the most relevant for data-

driven exploration. Future work may be able to mitigate this circularity to some degree by 

applying these methods to representative samples that 1) do not exclude comorbidity, 2) 

include symptoms spanning the continuum from health to disorder, 3) assess the full range 

of psychiatric symptoms, and 4) include atypical or less common symptoms. Additionally, 

alternatives to using DSM-defined constructs should be explored, including studies framed 

around longitudinal functional outcomes (137) and treatment response across disorders (60).

4.3. The utility of modeling symptoms and neurobiology simultaneously

Studies that employ data-driven approaches to drive discovery of neural circuits associated 

with psychopathology represent a potential advance over the traditional case-control 

approach that dominated the field for years. The approaches discussed have propelled 

research beyond simple group differences to consider common circuit-level deficits which 

drive co-morbidity, and heterogenous biological mechanisms within clinical syndromes. 

Methods that take into account more than one feature set at the same time may be 

particularly valuable. While single-view approaches that consider a single set of features 

remain useful for specific goals (e.g., redefining the classification of psychopathology 

symptoms), modeling more complex relationships between symptoms and biological 

measures will necessitate the development and further refinement of methods that can 

consider multiple features sets simultaneously. Moving forward, it will be important to 

assess for convergence using multimodal data including clinical symptoms, neuroimaging 

features, neuropsychological measures, genetics, as well as cellular and molecular measures. 

Thus, future work would benefit from the application of advanced methods such as multi-

kernel learning, generalized CCA, and multi-view biclustering to integrate these increasing 

numbers of data types.

5. Conclusion

Taken together, the approaches reviewed here can be useful for redefining our understanding 

of heterogeneity in psychopathology. A reconceptualization of psychiatric disorders using 

these data-driven methods may move the field forward beyond traditional symptom-defined 

categories. Critically, additional research is needed using these methods in younger samples 

with longitudinal designs. Parsing heterogeneity in youth is a critical first step to advancing 

interventions that target the pathophysiological mechanisms underlying psychopathology.
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Figure 1. Examples of representative approaches: single-view vs. multi-view and dimensional vs. 
categorical.
Schematic illustrating the four broad approaches surveyed in this review. A) The input data 

for each approach may include clinical symptoms, imaging features, or a combination of the 

two. B) Each approach is illustrated with an exemplar technique (note that many other 

methods are available as well). Single-view dimensional approaches (e.g., bifactor model) 

take as input a single data type, such as clinical symptoms, and output latent dimensions that 

summarize the data. Multi-view dimensional approaches (e.g., CCA) take as input two data 

types and identify linear combinations of the two. Single-view categorical approaches (e.g., 

clustering) find subtypes based on a single feature set. Multi-view categorical approaches 

(e.g., multi-view biclustering) find subtypes based on multiple views of the data, where the 

input is two or more feature sets.
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Figure 2. General psychopathology is associated with common neurobiological deficits in youth.
Single-view dimensional approaches that identify a general factor common across disorders 

in youth reveal: A) globally reduced gray matter volume (22); B) bilateral gray matter 

volume reductions in regions chosen a priori including dorsal prefrontal cortex (DPFC), 

ventrolateral prefrontal cortex (VLPFC), and orbitofrontal cortex (OFC) (43); C) reduced 

activation in regions within the cingulo-opercular control network during an N-back working 

memory task (44); D) reduced fractional anisotropy in the genu and body of the corpus 

callosum (46); E) elevated cerebral blood flow in the dorsal and rostral anterior cingulate 

(45); and F) delay in connectome distinctiveness compared to healthy controls across the 

whole brain (47). All figures reprinted with permission (Copyright ©2017, Nature 

Neuroscience, Springer Nature; Copyright ©2019, Behavioural Brain Research, Elsevier; 

Copyright ©2017, Clinical Psychological Science, SAGE Publications; Copyright ©2016 
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and ©2019, American Journal of Psychiatry, American Psychiatric Association. All Rights 

Reserved).
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Figure 3. Sparse CCA links dimensions of psychopathology to functional connectivity patterns in 
youth.
A) sCCA reveals three symptom dimensions (mood, psychosis, and fear) that were 

statistically significant, with the fourth dimension (externalizing behavior) showing an effect 

at uncorrected thresholds. B) Scatter plots showing linear combinations of functional 

connectivity and psychiatric symptoms demonstrate the correlated multivariate patterns of 

connectomic and clinical features. C) Connectivity-informed dimensions of 

psychopathology cross clinical diagnostic categories. Specifically, the mood dimension was 

composed of a mixture of depressive symptoms, suicidality, irritability, and recurrent 

thoughts of self-harm. The psychotic dimension was composed of psychosis-spectrum 

symptoms, as well as two manic symptoms. The fear dimension was comprised of social 

phobia and agoraphobia symptoms. The externalizing behavior dimension showed a mixture 

of symptoms from attention-deficit/hyperactivity and oppositional defiant disorders, as well 
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as irritability from the depression section (72). Reprinted with permission (http://

creativecommons.org/licenses/by/4.0/).
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Figure 4. HYDRA identifies two neurostructural subtypes of internalizing youth.
A) A linear support vector machine (SVM) is a discriminative classifier defined by a 

separating hyperplane, shown here as a gray line. Linear SVMs fail to capture the 

heterogeneity that exists in the patients, indicated by blue, green, and purple subtypes within 

the cases. B) Conversely, methods such as HYDRA (94) can estimate multiple linear 

hyperplanes (green lines) whose segments separate the clusters of cases from the controls. 

This approach makes HYDRA more flexible than SVMs, facilitating the identification of 

heterogeneous subtypes of patients. C) HYDRA identified two subtypes of internalizing 

youth with a high degree of reliability. Subtype 1 and 2 both showed significant 

psychopathology compared to typically developing youth. D) Subtype 1 showed 

significantly worse performance than the other two groups on cognitive measures, especially 

executive functioning tasks. E) In terms of structural measures, subtype 1 showed smaller 

volumes than the other two groups consistently across the brain. F) Subtype 1 also showed 

Kaczkurkin et al. Page 23

Biol Psychiatry. Author manuscript; available in PMC 2021 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



reduced cortical thickness in most regions. G) Subtype 1 demonstrated reduced resting-state 

ALFF (amplitude of low-frequency fluctuations) in frontal regions, the right amygdala, and 

the right hippocampus. H) Finally, subtype 1 showed reduced fractional anisotropy in a 

number of white matter tracts. Taken together, this study showed that clustering approaches 

can be used to identify reliable subtypes of internalizing youth, with subtype 1 showing 

greater deficits across symptoms, cognition, and brain structure (112).
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