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Abstract
Addiction is characterized by an erosion of cognitive control toward drug taking that is accentuated by negative emotional
states. Here we tested the hypothesis that enhanced interference on cognitive control reflects a loss of segregation between
cognition and emotion in addiction. We analyzed Human Connectome Project data from 1206 young adults, including 89
with cannabis dependence (CD). Two composite factors, one for cognition and one for emotion, were derived using principal
component (PC) analyses. Component scores for these PCs were significantly associated in the CD group, such that negative
emotionality correlated with poor cognition. However, the corresponding component scores were uncorrelated in matched
controls and nondependent recreational cannabis users (n = 87). In CD, but not controls or recreational users, functional
magnetic resonance imaging activations to emotional stimuli (angry/fearful faces > shapes) correlated with activations to
cognitive demand (working memory; 2-back > 0-back). Canonical correlation analyses linked individual differences in
cognitive and emotional component scores with brain activations. In CD, there was substantial overlap between cognitive
and emotional brain–behavior associations, but in controls, associations were more restricted to the cognitive domain.
These findings support our hypothesis of impaired segregation between cognitive and emotional processes in CD that
might contribute to poor cognitive control under conditions of increased emotional demand.
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Introduction
Cannabis is the most commonly used illicit drug, with rising
prevalence in parallel to increases in its legalization across most
states in the United States of America (Blanco et al. 2016; Hasin
et al. 2017). The addictive potential of cannabis is well known,
but it remains unclear to what extent cannabis dependence (CD)
interferes with the function of the human brain. Of particular
interest are the effects of cannabis on 3 broad functional brain–
behavior domains: reward/motivation, emotion, and cognition
(Volkow et al. 2016). Current addiction models suggest a relaps-
ing cycle in these domains such that the drug is first taken for

its rewarding/motivating properties; after cessation, a state of
negative emotionality related to drug withdrawal emerges; and
attempts to use cognitive control to curb cravings and perform
daily tasks are impaired by preoccupation with the drug of
choice (Koob and Volkow 2010).

Here we hypothesize that a consequence of this repeating
cycle is that the brain–behavioral domains become increasingly
intertwined in addiction. As a result, emotional state, cogni-
tive performance, and reward-driven behaviors would be linked
to a higher degree in addicted than in nonaddicted individ-
uals. While motivation, emotion, and cognition are often dis-
cussed as separate constructs, an extensive literature highlights
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that they are intrinsically related (Phelps 2006; Pessoa 2009;
Inzlicht et al. 2015) though these studies primarily focus on
acute, short-term challenges. For example, prior work illustrated
how the immediate prospect of reward alters attention (Krebs
et al. 2011; Boehler et al. 2014; Chiew and Braver 2016) and
how viewing negative emotional images impacts working mem-
ory (WM) performance on a trial-to-trial basis (Kensinger and
Corkin 2003; Dolcos and McCarthy 2006). In contrast, there is
much less evidence for robust associations between trait-level
measures of emotion, reward-based decision making, and cog-
nition. Numerous studies in healthy adults found that individual
differences in trait personality measures of positive and neg-
ative emotionality (extraversion and neuroticism, respectively;
Costa and McCrae 1980) are associated with brain activations
during various tasks, but critically, these traits were not signifi-
cantly associated with behavior. Extraversion and neuroticism
did not predict high- versus low-risk gambling (Cohen et al.
2005), inhibitory control (Rodrigo et al. 2015), response conflict
(Yücel et al. 2007), or WM performance (Kumari et al. 2004; Gray
et al. 2005). However, these factors may associate with behavior
when the task itself includes emotional stimuli: extraversion
correlated with emotional Stroop reaction time (Haas et al.
2006). In sum, while acute manipulations have revealed inter-
actions between emotion, cognition, and reward, there may not
be strong links between longer-term trait behaviors in these
domains in healthy adults.

Emerging evidence suggests that these trait measures may
be more strongly associated with behavior in adults with
drug addiction than in nonaddicted individuals. Although self-
reported personality measures are uncorrelated with behavioral
measures of impulsivity in healthy adults (Reynolds et al. 2006),
these measures are all heightened and associated in drug
addiction (Chaarani et al. 2017). Trait-level emotion regulation
has been associated with cognition in tobacco use disorder (Fillo
et al. 2016) and with cognition and decision making in gambling
disorder (Navas et al. 2016). Moreover, altered awareness of
current affective state (i.e., interoception) is associated with
aberrant reward and punishment processing and executive
function in methamphetamine use disorder (Stewart et al.
2014). Further, trait-level neuroticism was associated with
poor cognitive performance in a sample of young adults with
heavy cannabis use (Huijbregts et al. 2014). While studies have
demonstrated altered brain function in cannabis users related
to processing of rewarding (van Hell et al. 2010; Martz et al.
2016) and emotional stimuli (Phan et al. 2008; Wesley et al. 2016)
and during cognitive processing (Nader and Sanchez 2018), the
interrelationships of these domains and their neurobiological
underpinnings remain largely unknown.

Based on these findings, we hypothesized that emotion, cog-
nition, and reward-based traits would be largely orthogonal to
each other among generally healthy young adults, but that these
domains would show heightened associations in CD. To test for
this possibility, we conducted a principal component analysis
(PCA) on a broad array of emotion, cognition, and reward-based
measures in over 1200 young adults in the Human Connectome
Project (HCP) (Van Essen et al. 2012). We expected to find sep-
arable components for each domain in the general population
that would be uncorrelated in matched control subjects but
significantly correlated in CD. We then sought to find parallel
evidence for this phenomenon in brain responses to stimuli
in each of the 3 domains. To this end, we used the emotion,
cognition, and reward functional magnetic resonance imaging
(fMRI) tasks collected in the HCP. Finally, we used canonical

correlation analysis (CCA) to examine brain–behavior relation-
ships that might link these 2 findings and describe individual
differences in behavioral outcomes in CD.

Materials and Methods
Participants

The participants in this study provided written informed
consent at Washington University in St. Louis after receiving
a complete description of the study. We used all partici-
pants (n = 1206; aged 22–35) from the young adult HCP final
release (https://www.humanconnectome.org/study/hcp-young-
adult/document/1200-subjects-data-release; Van Essen et al.
2012). From this larger cohort, 109 individuals had imaging data
and met the DSM-IV criteria for CD, based on an interview with a
clinical research specialist using the semistructured assessment
for the genetics of alcoholism (SSAGA) (Van Essen et al. 2013).
Individuals must meet at least 3 of the following criteria: 1)
tolerance to cannabis; 2) using cannabis in larger amounts or
over a longer period than intended; 3) inability to cut down
or reduce cannabis use; 4) spending large amounts of time to
obtain, use, or recover from the effects of cannabis; 5) giving
up important social, occupational, or recreational activities
in favor of using cannabis; and 6) continued use of cannabis
despite its adverse consequences. Although our hypothesis was
not specific to cannabis and is related to addiction in general,
the sample size of cannabis-dependent individuals in the HCP
(without comorbid alcohol dependence) was much greater than
for alcohol dependence (n = 39) or tobacco dependence (n = 35),
which is why we chose to focus on CD.

After excluding individuals with comorbid alcohol depen-
dence, or outliers on DSM levels of anxiety and depression
(>3 SD from the mean of all 1206 HCP participants), the final
sample was n = 89 CD and n = 562 healthy controls that self-
reported ≤ 10 lifetime uses of cannabis. Recent studies have
indicated that it is critical in studies of cannabis use disorders
to select a well-matched control group, e.g., (Weiland et al. 2015).
Therefore, we attempted to find a subset of the 562 controls that
was well matched with the CD group on age, sex, education,
BMI, and alcohol and tobacco usage (we calculated composite
tobacco/alcohol usage the same way as in recent studies using
HCP data; see Orr et al. 2016; Manza et al. 2018). To find a matched
control group, we used the matchControls function in R (library
e1071), which calculates a dissimilarity matrix between groups
to find the closest match on multiple variables, and critically,
can handle numeric, nominal, and ordinal variables in the same
model (Kaufman and Rousseeuw 1990). This provided a control
group (n = 89) that was well matched on all variables (P’s > 0.30)
except tobacco usage, which was lower than for the CD group
(P < 0.001). Subsequent analyses were performed with tobacco
usage as a confound regressor to ensure results were not driven
by tobacco.

Finally, to examine if any measures might be specifically
related to the state of addiction rather than a general feature of
individuals who are predisposed to use cannabis, we included a
group who reported frequent use of recreational cannabis (REC;
> 100 lifetime uses of cannabis without symptoms of depen-
dence). Because there were fewer REC subjects in the database,
we included all possible subjects without attempting to match
the groups (REC n = 87 were used in behavioral analysis; a subset
of n = 67 also had imaging data and were additionally used in
fMRI analysis). Notably, the REC group was not matched on sex,
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having a significantly greater proportion of females (45%) than
the CTL or CD groups (28%).

Behavioral Measures of Interest: PCA

The HCP contains a comprehensive neuropsychological battery
that includes over 80 measures of cognition and emotion/per-
sonality, but unfortunately only a few on reward-based deci-
sion making. To first identify broad, aggregate measures, we
z-transformed the data and reduced data dimensionality by
performing probabilistic PCA on the data of all 1206 HCP partic-
ipants, as implemented with the ppca function in MATLAB, with
missing datapoints imputed via an expectation–maximization
algorithm. We chose PCA over other similar methods, such as
exploratory factor analysis, because PCA is a simpler approach
for data dimensionality reduction that does not have the pos-
sibility of resulting in improper solutions based on measure-
ment error (Anderson and Gerbing 1984) and one can calculate
individual component scores directly with PCA (Brown 2015).
We chose to use the entire sample of 1206 adults in the PCA
analysis so that components would reflect characteristics of
the general population. We included all primary measures (age-
adjusted , where possible) in these domains (Supplementary
Table 1). These assessments were selected for the HCP based on
a comprehensive process to identify valid and reliable measures
of behavior (for details, see Barch et al. 2013). These measures,
including the NIH Toolbox and the NEO-FFI, have been widely
used in the past and shown excellent validity/reliability in other
samples, as well (McCrae and Costa 2004; Salsman et al. 2013;
Heaton et al. 2014).

The first 2 components accounted for 45.3% of the variance
across all measures and all 1206 participants. A third component
loaded heavily on reaction time (not shown); subsequent com-
ponents were heavily mixed between the domains, accounted
for < 10% of the variance each, and were therefore not inter-
preted. Perhaps because there were very few behavioral mea-
sures of reward-based decision making—one was a reward task,
which required binary choices followed by explicitly random
binary win/loss outcomes, and the other was a delay discounting
task, which is often considered a measure of executive function
(e.g., Koffarnus et al. 2013; Schel et al. 2014)—this domain was
not well represented in any of the components. Thus, we only
focused on emotion and cognition in the manuscript.

We first tested whether these components were significantly
different between groups using a 2-sample t-test on the sub-
ject weights of each component. Then, to test the hypothesis
that behaviors in these domains may be more interrelated in
a drug-dependent cohort, we tested for the group interaction
of the association between PC1 and PC2 component scores.
That is, we conducted a regression of PC1 on PC2 component
scores, moderated by diagnosis (CD vs. controls), and tested
the interaction effect. Then, to characterize the nature of the
cognition–emotion associations within each group separately,
we conducted a Pearson correlation between component scores
of the first and second PCs in each group. Finally, we tested if the
PC1–PC2 correlation was stronger among the 89 CD than among
the 89 matched controls, using Fisher’s z-test.

MRI Image Acquisition and Preprocessing

Brain images were collected on a Siemens 3 T “connectome
Skyra” scanner with a 32-channel coil at Washington University
in St. Louis. T1- and T2-weighted anatomical scans were

acquired (FOV = 224 mm, matrix = 320, 256 slices, 0.7 mm
isotropic voxels). Task fMRI scans were acquired with an EPI
sequence (multiband factor = 8, time repetition = 720 ms, time
echo = 33.1 ms, flip angle = 52◦, FOV = 208 mm, 104 × 90 matrix,
72 slices of 2 mm isotropic voxels, no gap). We used all fMRI
data in the “grayordinates” fMRI pipeline, that is, both cortical
surface and subcortical volume representations are included
in the same image. All images were “minimally preprocessed”
including gradient unwarping, motion correction, EPI distortion
correction, registration to T1-weighted scans, grand-mean
intensity normalization, and smoothing with a 2-mm isotropic
FWHM. Images were cross-registered across subjects using
the multimodal surface matching (“MSMall”) algorithm, which
provides superior registration performance over legacy pipelines
(Robinson et al. 2014; Glasser et al. 2016).

We utilized task fMRI scans within the 2 domains of
interest: for emotion, an emotional face matching task, with
the “angry/fearful faces–shapes” contrast (Hariri et al. 2002);
and for cognition, a 2-back WM task with the “2-back–0-back”
contrast (Drobyshevsky et al. 2006). We used the “CIFTI” files
in the minimally preprocessed pipeline. We then parcellated
each individual’s contrast file using the -cifti-parcellate com-
mand in Connectome Workbench version 1.2.3 (https://www.
humanconnectome.org/software/connectome-workbench). For
a complete description of images and preprocessing, see Barch
et al. (2013) and Glasser et al. (2013).

fMRI Analyses

For each task, we parcellated each individual’s contrast file by
taking the average contrast value of all surface vertices within
each of 360 cortical regions in an HCP atlas (Glasser et al. 2016)
and, for subcortical regions, the average value of all voxels
within 19 regions in the Gordon atlas (Gordon et al. 2016), for
a total of 379 parcels/individual. To examine group differences
in emotion or cognitive task activation, we performed a whole-
brain (parcel-wise) 2-sample t-test of these contrasts; t-tests
were family-wise error corrected using 5000 permutations with
PALM (Winkler et al. 2014) https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
PALM. Because the HCP data includes related family members,
we maintained the family structure while permuting the data,
to ensure the null distribution was valid (Winkler et al. 2015).

Then, similar to the behavioral analysis, we examined if
brain responses to emotion and cognition were more inter-
related in the CD group than the controls. We performed a
PCA on the z-transformed brain imaging data from parcels that
showed a large effect size (Cohen’s D > | ± 0.8|) for the contrasts
of interest across all HCP participants with complete imaging
data (n = 1005). We again examined the group interaction of the
association between the “cognition fMRI” and “emotion fMRI”
component scores. Finally, we tested the correlation between the
cognition fMRI and emotion fMRI component scores within each
group separately and tested if the slopes of these correlations
were significantly different between the groups using Fisher’s
z-test.

Brain–Behavior Associations

To examine comprehensive brain–behavior associations across
all behavioral and imaging measures of interest, we conducted
CCA using MATLAB’s canoncorr function. Each component, or
mode, produced by this analysis represents a linear combina-
tion of behavioral and imaging measures that are maximally
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correlated across participants. In this analysis, we included the
87 behavioral measures of interest described previously and the
contrast values of the 379 parcels for the 2 fMRI tasks.

Following the example of previous work (Smith et al.
2015) and extant research on confounding influences on the
blood oxygen level-dependent response (Anderson et al. 2006;
Gonzales et al. 2010; Murphy et al. 2013), we first determined the
following measures as confounds to control for: 1) age, 2) sex,
3) height and weight, 4) systolic and diastolic blood pressure,
5) blood levels of hemoglobin A1C, 6) cube root of FreeSurfer-
estimated brain volume (with and without ventricles), and
7) tobacco and alcohol composite z-scores. All continuous
measures were also demeaned and squared, to help control for
possible nonlinear effects, as in previous work (Smith et al. 2015).
These confounds were regressed out of both the behavioral and
imaging matrices. We then used PCA on the behavioral and
imaging measures separately to reduce data dimensionality,
because CCA is prone to overfitting (Egloff et al. 2005). We
retained enough components to capture close to half of the
variance in each modality: 2 components for the behavioral
measures and 4 for the imaging measures (although slightly
different numbers of components yielded highly similar results,
see “Reliability” section in Results). Thus, the CCA included
an 89 × 2 matrix of subject-weight eigenvectors of behavioral
data and an 89 × 4 matrix of subject-weight eigenvectors
of imaging data. To assess the significance of each brain–
behavior association (mode), we used permutation testing. Rows
representing the individual subject weights for the behavioral
and imaging measures were permuted 10 000 times, and CCA
was rerun after each permutation. The significance threshold
was the number of permutations with a stronger correlation
than the observed mode from the original data, divided by
the total number of permutations. Again, we maintained
family structure while permuting the data, to ensure the null
distribution was valid (Winkler et al. 2015).

Reliability Testing

To examine if any significant CCA modes were reliable, we
performed split-half analysis with train-test sets. We randomly
permuted the data 5000 times, performing the CCA on the
first half (training set) and applying the weights to the second
half (test), as in previous work (Moser et al. 2017). In addition,
although we chose a very small number of components to
reduce overfitting, we also tested our CCA analysis with different
numbers of inputs to ensure that our results were not unique to
the chosen number of components. We reran the CCA with 4,
6, 8, 10, and 12 components each for behavior and fMRI. Then,
for each of these analyses we correlated the subject weights for
the behavior variate and imaging variate of the first CCA mode
with our original analysis (2 behavior components and 4 fMRI
components as inputs), to determine how much changing the
input parameters would affect the CCA results.

Results
Demographics, Behavioral Measures, and Structural
MRI Results

Demographics and lifestyle factors with descriptive statistics
for each group are presented in Table 1. The CD and matched
CTL groups did not significantly differ on many of the DSM-
oriented scales, including depression, anxiety, attention deficit

hyperactivity disorder (ADHD), aggression, panic disorder,
intrusive thinking, internalizing problems, agoraphobia, and
somatic problems (all P’s > 0.05), although the CD group reported
higher levels of thought problems (P = 0.04), externalizing prob-
lems (P = 0.02), antisocial behavior (P = 0.03), childhood conduct
problems (P = 0.003), and rule-breaking behavior (P < 1 × 10−7)
than controls. (Supplementary Material). Two individuals in
the CD group showed outlier levels of self-reported ADHD
symptomatology (>3 SD above the population mean); when
excluding those individuals, results are essentially unchanged,
and therefore we only report the analyses with these individuals
included.

Behavioral Analysis Linking Cognition and Emotion

We first conducted PCA across all 1206 HCP participants to get
aggregate measures of cognition, emotion, and reward-based
decision making. The first 2 components accounted for 45.3% of
the variance and loaded rather distinctly on cognitive task per-
formance and self-reported emotionality, respectively (Fig. 1b).
Figure 1c shows the top component loadings; for a complete list
of loadings see Supplementary Table 2.

We used 2-sample t-tests on the component scores of each
principal component (PC) to examine group effects and found
no significant differences between CD and control groups:
PC1 [“cognition”; t(178) = 0.30, P = 0.76] and PC2 [“emotion”;
t(178) = −1.49, P = 0.14]. Then, to assess if PC1 and PC2 scores were
differentially associated in the CD versus control groups, we
conducted a regression of PC1 on PC2 scores, with a categorical
moderator (CD vs. controls), and tested the interaction effect,
which was significant [F(1) = 14.18; P = 2.3 × 10−4]. To further
characterize these associations, we ran a correlation between
the scores of PC1 and PC2 within each group, removing outliers
> 3 SD from the mean (2 CD outliers; 2 REC outliers; 0 control
outliers). Results showed that while these PCs representing
cognition and emotion were not significantly correlated in
control [r(89) = −0.05, P = 0.56) or REC (r(87) = −0.03, P = 0.53]
groups, they were significantly associated in the CD group
[r(87) = 0.40, P < 0.001], such that higher cognitive performance
was correlated with higher positive emotionality and poorer
performance with lower positive emotionality (Fig. 1d). The
difference in slopes between CD and control (z = 3.51, P < 0.001)
or between CD and REC groups (z = 3.36, P < 0.001) were
significant.

Brain Imaging Analysis Linking Cognition and Emotion

We first tested main effects of group on brain activations via 2-
sample t-tests of the cognition (WM: 2-back > 0-back) and emo-
tion (angry/fearful faces > shapes) contrasts; results showed no
significant differences between groups (Supplementary Fig. 1).
Although the interaction effect between the first cognition fMRI
component and the first emotion fMRI component did not reach
significance [F(1) = 2.42; P = 0.12], follow-up analysis revealed
that, similar to the behavioral results, the component scores
of the first cognition fMRI component and the first emotion
fMRI component were significantly correlated in the CD group
[r(88) = 0.29, P = 0.007], but not in the REC group [r(67) = 0.058,
P = 0.64], or in the matched control group [r(87) = 0.059, P = 0.59].
The regions with the strongest component loadings contributing
to this result included the following: for the WM task, the
dorsolateral/dorsomedial prefrontal, visual, anterior insular,
and lateral parietal cortices, caudate, thalamus, and cerebellum;
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Table 1 Demographics and clinical characteristics for each group

CTL CD REC All other CD versus CTL: t (P)

Age 28.6 ± 3.9 28.6 ± 3.5 28.3 ± 3.9 28.9 ± 3.7 0.02 (0.98)
Sex (% male) 64/89 (72%) 64/89 (72%) 48/87 (55%) 375/941 (40%)
BMI 27.5 ± 5.2 26.8 ± 4.8 26.6 ± 6.0 27.1 ± 6.0 −0.96 (0.34)
Edu 14.3 ± 1.8 14.3 ± 1.8 13.9 ± 2.0 15.1 ± 1.8 −0.04 (0.97)
DSM depression 53.6 ± 5.5 54.3 ± 7.0 54.3 ± 6.1 54.0 ± 5.7 0.73 (0.47)
DSM anxiety 53.1 ± 5.1 53.7 ± 6.3 53.7 ± 5.4 53.3 ± 5.2 0.80 (0.43)
Alcohol (composite Z) 0.17 ± 0.42 0.22 ± 0.46 0.14 ± 0.42 −0.05 ± 0.53 0.80 (0.43)
Tobacco (composite Z) −0.19 ± 0.56 0.79 ± 1.02 0.69 ± 1.07 −0.12 ± 0.80 7.94 (<0.001)
Externalizing problems 49.4 ± 7.8 52.7 ± 10.2 53.1 ± 8.5 48.1 ± 8.8 2.46 (0.02)
Antisocial behaviors 53.0 ± 4.5 55.1 ± 7.4 54.7 ± 5.6 52.8 ± 4.5 2.22 (0.03)
Rule-breaking behavior 53.0 ± 4.2 57.9 ± 7.7 57.3 ± 6.0 53.4 ± 4.7 5.28 (<.001)
Childhood conduct problems 0.6 ± 0.7 1.0 ± 1.0 0.7 ± 0.9 0.5 ± 0.7 2.94 (0.004)

Note: CTL means control (n = 89); CD, cannabis dependent (n = 89); REC, recreational cannabis users (n = 87); all other = all remaining participants in the HCP (n = 941).
CTL and CD are the only 2 groups that are matched, so the 2-sample t-test is reported only for the comparison between these 2 groups. Note that the CTL group is well
matched on all variables except for tobacco usage; therefore, tobacco usage was used as a confound regressor in the primary analyses. The externalizing problems,
antisocial behaviors, and rule-breaking behaviors are reported as age- and gender-adjusted percentile scores; the childhood conduct problems are scored as part of
the SSAGA.

Figure 1. Behavioral results. (a) Example measures from a principle component analysis (PCA; n = 1206) that reduced data dimensionality across 87 measures of
cognition, emotion, and reward-based decision making. (b) Scree plot showing that the top 2 components accounted for over 45% of the variance in all measures.
(c) Loadings for the top 2 components. Because these measures loaded very heavily on measures of cognitive function and emotionality, respectively, we call these the

“cognition”and “emotion”components. (d) Scatter plots of the PC scores for the 2 components. While a matched control group (CTL) and a group of recreational cannabis
users (REC) did not show a significant correlation between the cognition and emotion PCs, the cannabis-dependent group (CD) showed a positive correlation such that
strong cognitive performance was associated with higher positive emotionality. This result was highly similar when including 2 outliers: (r(89) = 0.45, P < 0.00001). The
difference in slopes between the CD and CTL, as well as the CD and REC groups, was significant (∗, z’s > 3.30, P’s < 0.001).
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Figure 2. fMRI results. (a) Component loadings from a principle component analysis (PCA; n = 1005) that was used to reduce data dimensionality across parcels of
brain activation for the emotion task (angry/fearful faces > shapes) and the WM task (2-back > 0-back). One component loaded mostly on activations for the emotion
task (“emotion fMRI PC”) and one loaded mostly on activations for the WM task (“cognition fMRI PC”). (b) Scatter plots of the subject-weight eigenvectors for the 2

components. While a matched control group (CTL) and a group of recreational cannabis users (REC) did not show a significant correlation between the cognition and
emotion fMRI PCs, the cannabis-dependent group (CD) showed a positive correlation such that activations to emotional stimuli were associated with activations to
cognitive demand. This association was virtually identical when including one outlier: (r(89) = 0.29, P = 0.006).

and for the emotion task similar regions were observed, with a
lesser contribution from the lateral parietal regions (Fig. 2). The
difference in slopes between CD and controls showed a trend
for significance (z = 1.50, one-tailed P = 0.08).

Brain–Behavior Associations

To link results from behavioral and fMRI analysis and identify
modes of population covariation in cognitive and emotional
function, we performed CCA. In the CD group, one significant
mode emerged [r(89) = 0.52, PFWE < 0.001] that was associated
with both cognitive performance and self-reported emotional-
ity; this mode loaded heavily onto the cognitive task activations
but also substantially on the emotion task activations (Fig. 3). In
particular, loadings on both imaging tasks were strong in lateral
and medial frontoparietal regions, anterior insula, and caudate.
To examine if this finding was similar among controls, we
applied the CCA weights from the CD group to the control group.
Using this approach, the first control mode was of comparable
strength to the CD mode [r(89) = 0.52] but it was primarily associ-
ated with cognitive performance and cognitive task activations
(Fig. 4). A highly similar pattern emerged when conducting a
separate CCA analysis on the control group (i.e., conducting
CCA only on control data without applying the CD weights first;
Supplementary Fig. 2). For a complete list of behavioral loadings
from these analyses, see Supplementary Table 3. Because the CD
group showed significantly higher ratings of childhood conduct

problems, externalizing symptoms, and thought problems than
the CTL group, we conducted additional analyses using these
ratings as additional covariates; these results were virtually
identical (for the correlation between individual subject scores
with and without these covariates, all r’s > 0.97), and we there-
fore only report the former analysis. Finally, we also conducted
CCA analysis on the REC group. In line with the behavioral and
brain imaging analyses, these results looked fairly similar to the
control group results (i.e., one significant CCA mode emerged
with top loadings primarily on the cognitive performance and
cognitive task activations). However, this should be interpreted
with caution, because CCA is highly sensitive to sample size
and prone to overfitting (Egloff et al. 2005), and the REC group
had 25% fewer individuals with imaging data. Indeed, reliability
testing indicated that these results were less reliable than the
primary CCA analysis, and therefore these results are reported
in Supplementary Figure 4.

Reliability Testing

Split-half train-test analysis indicated that the CCA only mildly
overfit the data (median training r = 0.56, median test r = 0.40,
Supplementary Figure 3); these results are comparable to recent
studies using CCA that performed extensive reliability testing
(Moser et al. 2017, 2018). In addition, when testing the CCA with
different numbers of brain and behavior component inputs (4, 6,
8, 10, and 12) the correlations for the behavioral variate subject
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Figure 3. CCA results for the cannabis-dependent group. (a) Scatter plot of CCA mode 1, showing the correlation of the individual subject weights between the imaging
and behavioral variates, color-coded by trait neuroticism, as an example measure. (b) Behavioral loadings for the CCA mode. Gold arrows indicate the measures of
emotion. (c) Imaging loadings for the CCA mode. Note the mixture of cognitive task performance and self-reported emotionality among the top weights, as well as the

overlapping weights for brain activation in both the emotion and WM cognitive fMRI task.

weights (0.99, 0.97, 0.90, 0.87, and 0.81) and imaging variate
subject weights (0.99, 0.94, 0.88, 0.84, and 0.75) with the original
analysis were very high, indicating that different numbers of
CCA inputs would yield very similar results.

Discussion
Here we investigated the relationship between cognition and
emotion in a relatively large sample of young adults with CD. We
found behavioral and neural evidence that these processes are
less segregated in CD than in healthy young adults. These results
may be more related to neuropsychological features of addiction
rather than a general feature of individuals who are predisposed
to use cannabis, for the heightened cognition–emotion link was
not present among a sample of frequent cannabis users (>100
self-reported lifetime uses) without symptoms of dependence.
These data have implications for the therapeutic management
of cognitive and emotional dysfunction in CD.

We found that aggregate measures of strong cognitive per-
formance and trait positive emotionality were more correlated
among CD than controls, suggesting that these domains may
be linked in CD. Though a large literature describes the strong
interplay between emotion and cognition in healthy adults in
an acute, trial-to-trial fashion (Verbruggen and De Houwer 2007;
Inzlicht et al. 2015), little is known about how long-term mea-
sures of emotion and cognition are interconnected. Chepenik
et al. (2007) induced a prolonged sad mood state by asking
healthy young adults to vividly imagine the death of a loved
one and found that, in line with the current results, standard
measures of nonemotional cognition (e.g., response inhibition
and WM) were not affected by the mood manipulation in healthy
young adults. In CD, the link between emotion and cognition
may be partially driven by anxiety. Anxiety is associated with
negative emotionality (Kotov et al. 2010) and cognitive dysfunc-
tion (Eysenck et al. 2007; Bishop 2009; Basten et al. 2011), and
individuals who are anxious develop CD faster than others,
perhaps because they use cannabis to self-medicate (Buckner
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Figure 4. CCA results for the healthy control group. (a) Scatter plot of CCA mode 1, showing the correlation of the individual subject weights between the imaging and
behavioral variates, color-coded by WM task accuracy, as an example measure. (b) Behavioral loadings for the CCA mode. (c) Imaging loadings for the CCA mode. Note
the top measures are all related to cognitive task performance, and the top weights for brain activation are more restricted to the WM cognitive task activations than

the cannabis group CCA analysis.

et al. 2012). Thus, the subgroup of individuals with CD who are
high on trait negative emotionality may also have higher anxiety
and impaired cognitive performance. In contrast, the subgroup
with more positive emotionality may be less anxious and less
vulnerable to the detrimental effects of anxiety on cognitive
performance (for an exploratory analysis demonstrating partial
support for this theory, see Supplementary Material). In line with
these findings, we must consider that the reduced segregation
between cognition and emotion might be predominantly driven
by negative emotions, rather than general emotionality per se.
This is supported by the brain imaging results to the emotion
fMRI task, which specifically probed brain responses to faces
expressing anger or fear. This interpretation is also consistent
with the “dark side” theory of addiction, in which loss of cog-
nitive control is specifically triggered by negative emotionality
(Koob 2015).

Poor sleep quality may also contribute to the cognition–
emotion association in CD. Daily cannabis users report poorer
sleep quality than nondaily users and nonusers (Conroy et al.

2016), and chronic sleep problems are associated with a state
of “hyperarousal” that is linked to emotional distress and cog-
nitive dysfunction (Wassing et al. 2016). In regular cannabis
users, both high doses of acute THC (Feinberg et al. 1975) and
withdrawal from cannabis (Vandrey et al. 2011) are associated
with poor sleep efficiency (percentage of time asleep while in
bed) and shorter rapid eye movement sleep duration as assessed
by polysomnography, even in carefully selected cohorts that
have minimal comorbid alcohol and drug use (Bolla et al. 2008).
These sleep disturbances mirror those observed in individuals
with chronic anxiety (for a review, see Cox and Olatunji 2016).
Critically, there are substantial individual differences in vulner-
ability to the negative effects of poor sleep (Van Dongen et al.
2011), in line with the wide variability in cognitive and emotional
outcomes observed here.

We also observed that brain responses to negative emotional
stimuli and cognitive demand were linked among the CD
group. Substantial work has been devoted to understand-
ing how different brain networks support the interplay of
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cognition and emotion (Pessoa 2018). One theory posits that
there are “bottleneck” regions, such as medial prefrontal
cortex and anterior insula, which are recruited by both
emotional manipulations and cognitive load (Tombu et al.
2011; Pessoa 2015). If simultaneous emotional and cognitive
load exceeds what these regions can process at a given time,
then performance suffers. This theory was developed based
on data using primarily acute manipulations, but it stands
to reason that longer-term negative emotional states may
also influence cognition, since for example trait anxiety is
associated with reduced efficiency in these regions during
cognitive task performance (Bishop 2009; Basten et al. 2011;
Forster et al. 2015). It is possible that in CD the function of
these regions is altered in a way that tightens the bottleneck.
Indeed, resting-state functional connectivity of the insula and
medial prefrontal cortex are altered in CD (Pujol et al. 2014),
which is associated with blunted arousal to affective images
(Blanco-Hinojo et al. 2017). Thus, the subset of CD individuals
who have high negative emotionality may already be taxing
a system with limited resources, leading to poor cognitive
performance.

Finally, CCA identified one significant brain–behavior associ-
ation in CD that ties the prior findings together: cognitive perfor-
mance and emotionality were associated with brain activations
to both cognitive demand and emotional stimuli. In contrast,
in controls the strongest associations were mostly restricted
to cognitive performance and cognitive fMRI task activations.
These data expand on prior studies using CCA in the HCP dataset
(see Supplementary Material for more discussion). Notably, the
regions that shared strong loadings on both the emotion and
the cognitive task were ones hypothesized to be bottleneck
regions as previously discussed: anterior insula, dorsomedial,
and lateral frontoparietal cortices (Tombu et al. 2011; Pessoa
2015). It remains unclear if segregation of resting-state brain
networks, a characteristic that is thought to be important for
healthy function (Chamberlain et al. 2009; Crossley et al. 2014),
is an important marker underlying segregation of cognitive and
emotional behaviors. Evidence is emerging of dedifferentiation
between functional networks with aging and neuropathology
(Grady et al. 2016; Chan et al. 2017) and that segregation of
functional networks is associated with states of consciousness
and cognitive performance (Naci et al. 2018; Wang et al. 2018). To
the extent that CD is associated with loss of segregation between
emotional and cognitive processing, future research is needed
to assess if it accelerates the effects of aging on brain network
typology.

These data highlight substantial individual differences in CD
and provide new avenues for future research and treatment.
Although attempts to improve cognition through “brain train-
ing” have been largely unsuccessful in healthy young adults
(Kable et al. 2017), it is well established that psychotherapy can
be very effective in reducing negative emotions (Leichsenring et
al. 2004). If cognitive deficits in drug dependence stem largely
from poor emotion regulation techniques (Verdejo-Garcia et al.
2012), then it is plausible that psychotherapy may be particularly
effective in counteracting negative emotionality and improving
cognitive function in CD, especially in the subset of individuals
who are struggling in both domains. Extensive training may be
necessary, for cannabis users have impaired emotion regulation
(Zimmermann et al. 2017). Still, these strategies may be well
worth the effort, since poor emotion regulation is strongly asso-
ciated with withdrawal symptom severity (Buckner et al. 2017)
and relapse (Bonn-Miller and Moos 2009). Emotion regulation

training may also be useful for the prevention of cannabis use:
higher use of emotion regulation strategies during the day was
associated with lower likelihood of cannabis use later in the
evening in a large sample of college students (Weiss et al. 2017).
Future longitudinal studies should assess whether the benefits
of emotion regulation training also extend to cognitive outcomes
in CD.

The current study has several limitations. First, the HCP
database has limited information describing detailed patterns of
cannabis use. Thus, we cannot speak to how the current findings
relate to more refined patterns of daily use, including last use of
cannabis prior to imaging. Second, these data are cross-sectional
and limited to one young adult population aged 22–35; as such,
this work is inherently correlational and should therefore be
considered exploratory. Future studies (using, e.g., confirma-
tory factor analysis) in more diverse samples are needed to
do rigorous prospective testing of the hypotheses laid out here
and to examine the trajectory of this effect over time. Third,
we were unable to identify components that distinctly loaded
on behavioral measures of motivation/reward-related behaviors,
and therefore it will be critical in future experiments to have
a rich characterization of this functional domain and how it
relates to cognition and emotion in CD. A broader battery of phe-
notypic assessments will also lend insight into whether these
findings truly represent a direct emotion–cognition association,
or if instead there is a more generalized phenomenon in CD that
underlies these findings.

In summary, convergent evidence from behavioral, neu-
roimaging, and brain–behavior association analyses consis-
tently demonstrated that cognitive and emotional processes
are linked in CD, in a way that was not present in healthy
controls or recreational nonaddicted cannabis users. These
findings suggest that, for a subgroup of individuals with CD,
poor cognitive control may stem from an inability to segregate
cognitive function from negative emotional states. Thus, in
this subgroup, training strategies on emotion regulation may
improve cognitive control and in executive function may
improve emotion regulation to enhance patient outcomes in CD.
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