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Abstract

Aims: A close and bidirectional relationship between alcohol consumption and pain has been

previously reported and discussed in influential reviews. The goal of the present narrative review is

to provide an update on the developments in this field in order to guide future research objectives.

Methods: We evaluated both epidemiological and neurobiological literature interrogating the

relationship between alcohol use and pain for the presence of significant effects. We outlined

studies on interactions between alcohol use and pain using both self-reports and objective

experimental measures and discussed potential underlying mechanisms of these interactions.

Results: Epidemiological, preclinical and clinical literature point to three major interactions

between alcohol use and pain: (a) alcohol use leading to hyperalgesia, (b) alcohol use moderating

pain and hyperalgesia and (c) chronic pain as a risk factor predisposing to alcohol relapse.

Neurobiological studies using animal models to assess these interactions have transitioned from

mostly involuntary modes of experimenter-controlled alcohol administration to self-administration

procedures, and increasingly indicate that neuronal circuits implicated in both withdrawal and

anticipation stages of alcohol use disorder also have a role in chronic pain. Mechanistically,

alterations in GABA, glutamate, the corticotropin-releasing factor system, endogenous opioids and

protein kinase C appear to play crucial roles in this maladaptive overlap.

Conclusions: Many of the principles explaining the interactions between alcohol and pain remain

on a strong foundation, but continuing progress in modeling these interactions and underlying

systems will provide a clearer basis for understanding, and ultimately treating, the damaging

aspects of this interaction.

INTRODUCTION

Physicians recognized the ability of alcohol to act as an analgesic
agent thousands of years ago and offered it to patients for this
purpose during medical procedures (Horn-Hofmann et al., 2015).
The more general idea that pain and alcohol use are intertwined is
substantiated by epidemiological studies showing that alcohol use
disorder (AUD) is often comorbid with chronic pain (for reviews,
see Egli et al., 2012; Apkarian et al., 2013; Witkiewitz and Vowles,

2018). For example, older problem drinkers report increased disrup-
tion in daily activities because of pain and more frequent alcohol use
to manage pain compared with non-problem drinkers (Brennan et al.,
2005). Over half of individuals seeking treatment for an AUD report
significant recurring pain, with a greater prevalence in women (63%)
compared with men (54%) (Boissoneault et al., 2018). Chronic pain
is also a strong predictor of relapse in problem drinkers (Egli et al.,
2012; Witkiewitz and Vowles, 2018). Thus, the relationship between
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alcohol use and pain appears to be bidirectional: on one hand, alcohol
intake modulates pain, and on the other hand, acute and chronic pain
influence alcohol-related behaviors.

The comorbidity of AUD and chronic pain is likely a manifes-
tation of common neuronal circuits and neurochemical mechanisms
(Egli et al., 2012; Apkarian et al., 2013; Witkiewitz and Vowles,
2018). Given the growing sophistication of neuroscience methodolo-
gies and the increased attention to pain management as a consequence
of the ongoing opioid epidemic (Rudd et al., 2016; Yeung et al.,
2017), the goal of this review is to provide an update on current
understanding of the relationship between alcohol use and pain in
order to guide future research objectives. We outline the mechanisms
regulating excessive alcohol use and hyperalgesia, highlight the over-
lapping neural circuits involved in the different phases of addiction
and chronic pain and touch on major molecular mechanisms. Finally,
we outline missing information on the interactions between alcohol
and pain, so that readers can draw conclusions on where gaps need
to be filled.

OVERLAPPING DYSFUNCTION IN AUD AND PAIN

AUD is defined as a chronic relapsing brain disease characterized by
compulsive alcohol use, loss of control over alcohol intake and neg-
ative emotional state when not using alcohol (American Psychiatric
Association, 2013). In 2017, ∼20.2 million adults aged 18 years or
older were diagnosed with a substance use disorder. Among all adults
diagnosed with a substance use disorder (including AUD and illicit
drug use disorder), 4 of 5 are diagnosed with AUD, as compared with
3 out of 10 diagnosed with an illicit drug use disorder (Lipari and Van
Horn, 2017). Moreover, AUD has a 29% lifetime prevalence (Grant
et al., 2015) and only a 35–40% long-term remission rate (Finney
and Moos, 1991). AUD prevalence in men has long been greater than
that in women, but the number of women diagnosed with AUD is
increasing (Agabio et al., 2017; Grant et al., 2017).

While multiple theories have been proposed to explain the devel-
opment of addiction, including AUD (Wise and Bozarth, 1987;
Robinson and Berridge, 1993; Koob and Le Moal, 2008; Nutt et al.,
2015), the opponent process theory of motivation highlights the
critical importance of a motivational shift in drinking behaviors
from positive to negative reinforcement (Koob, 2003). In brief, the
individual becomes tolerant to the initial rewarding, positively rein-
forcing effects of alcohol, while gradually becoming sensitized to the
non-rewarding, negatively reinforcing aspects of drinking, including
withdrawal symptoms and preoccupation with alcohol. As the influ-
ence of the non-rewarding, negatively reinforcing aspects of alcohol
use increases, the balance between the two types of reinforcement
is disrupted. Drinking then becomes driven by the motivation to
prevent or alleviate negative affective consequences and/or physical
withdrawal symptoms experienced upon alcohol intake cessation,
thus feeding ‘the dark side’ of addiction (Koob, 2015).

A similar disruption of the typically cautionary function of acute
pain is found in patients with chronic pain. Approximately 11%
of adults in the USA suffer from daily chronic pain (Nahin, 2015),
which is defined as pain that persists for at least 3–6 months (Treede
et al., 2015). In healthy individuals, acute pain serves as a salient
(meaning important and notable) stimulus that activates sensing, inte-
grating and stabilizing physiological mechanisms to allow the body
to respond through homeostatic and allostatic modifications. The
power of this ability to re-establish nociceptive balance is illustrated
by human and animal studies showing that only a small proportion
of individuals who have sustained an injury develop chronic pain

(De Felice et al., 2011; Staud, 2012; Heinricher, 2016). Conversely,
prolonged use of analgesic drugs—including but not limited to opi-
oids—leads to potentiated pain, as observed by the occurrence of
medication-overuse headache and opioid-induced hyperalgesia upon
extended use (Compton et al., 2001; Diener et al., 2016; Roeckel
et al., 2016). It is now therefore thought that aberrant process-
ing observed in chronic pain states involves both ‘sensitization’
of pain-transmission systems and dysfunction in descending mod-
ulatory mechanisms, including those activated by analgesic drugs
(Woolf, 2011; Borsook et al., 2013; Bannister and Dickenson, 2016;
Arendt-Nielsen et al., 2018).

These parallels in the disruption of balance during the progression
to AUD from otherwise non-problematic alcohol use or to chronic
pain from acute pain suggest potential common underlying mech-
anisms and an intersection of relevant nuclei and neural circuits.
Possible areas of overlapping circuitry and areas of activation are
depicted in Fig. 1 and discussed below.

NEURONAL ACTIVATION AND CIRCUITRY IN

BOTH AUD AND PAIN

Neuronal activation and circuitry implicated in AUD

The escalation of non-problematic alcohol use to AUD can be
described in three repeating yet escalating stages: (a) binge/intoxi-
cation, (b) withdrawal/negative affect and (c) preoccupation and/or
anticipation (or craving) (Koob and Volkow, 2010). Brain regions
associated with each of these stages have been identified through
brain mapping studies of immediate early gene (IEG) expression at
various stages of alcohol exposure (for a full review, see Vilpoux
et al. (2009)).

The first stage, binge/intoxication, is best modeled by voluntary
alcohol self-administration. Mapping of the IEG c-Fos following
voluntary alcohol self-administration has demonstrated inhibition
of hippocampus (Hipp) and activation of the centrally projecting
Edinger–Westphal nucleus (EWcp) following acute alcohol exposure.
The IEG responses in these two regions appear to be specific to the
actions of alcohol rather than general novelty, stress, or any other
non-specific aspects of the behavioral paradigm (Ryabinin, 1998;
Ryabinin and Giardino, 2017). In some (but not all) voluntary alco-
hol drinking paradigms, the central nucleus of amygdala (CeA) and
nucleus accumbens (NAC) have also been reported to be activated
(Bachtell et al., 1999; Anacker et al., 2011). The EWcp and CeA
have been the only two regions exhibiting c-Fos induction following
alcohol exposure in anesthetized animals (Smith et al., 2016b) and
thus are linked to alcohol exposure per se rather than to alcohol cues
or perception of alcohol intoxication. Additional nuclei are activated
during acute, experimenter-administered alcohol exposure and may
also relate to intoxication. These include the ventral tegmental area
(VTA), prefrontal cortex (PFC), dorsal striatum (DS), globus pal-
lidus, bed nucleus of the stria terminalis (BNST) and subregions of
thalamus (Thal) (Hitzemann and Hitzemann, 1997; Ryabinin et al.,
1997; Thiele et al., 1997; Bachtell and Ryabinin, 2001). Although
it is acknowledged that the non-voluntary exposure paradigms may
engage circuits not normally activated during voluntary consumption
of alcohol, it has been hypothesized that the regions outlined above
comprise an interconnected network activation that is recruited in
the first stage of alcohol use, underlying the first stage of addiction
(Koob and Volkow, 2010) (Fig. 1A).

The second stage of escalating alcohol use is withdrawal and
negative affect in the absence of alcohol. Again considering IEG as
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Fig. 1. Neurocircuitry activated during alcohol use or pain. Reward, emotional and nociceptive systems contribute to alcohol intoxication (A), alcohol withdrawal

(B), alcohol anticipation (C) and pain (D). Anterior cingulate cortex (ACC), amygdala (Amg), bed nucleus of the stria terminalis (BNST), centrally projecting

Edinger-Westphal nucleus (EWcp), dorsal striatum (DS), globus pallidus (GP), hippocampus (Hipp), hypothalamus (Hyp), insula (INS), nucleus accumbens

(NAC), periaqueductal gray (PAG), parabrachial nucleus (PB), prefrontal cortex (PFC), thalamus (Thal), substantia nigra (SN), primary somatosensory cortex

(S1), secondary somatosensory cortex (S2). Bold names indicate overlap between nuclei recruited in both alcohol and pain systems.

indicators of relevant brain regions, the VTA, Hipp, lateral septum,
insula (INS), anterior cingulate cortex (ACC), subregions of the
amygdala (Amg), EWcp, substantia nigra (SN), globus pallidus,
medial habenula, locus coeruleus, cerebellum and dorsomedial
hypothalamus (Hyp) are hypothesized to form a network associated
with withdrawal and negative affect that drives further alcohol intake
via negative reinforcement (Fig. 1B) (Putzke et al., 1996; Kozell
et al., 2005; Chen et al., 2009; Smith et al., 2017). In this stage, the
VTA, NAC, habenula and extended Amg are assumed to generate a
negative emotional state and stress responses that coincide with an
elevated reward threshold, referred to as anhedonia (Garavan et al.,
2000). Increased activity of the hypothalamic–pituitary–adrenal axis
[including modulations in the corticotropin-released factor (CRF)
system], as well as increased dynorphin release (an endogenous
kappa-opioid agonist), is observed during this period, resulting in
an anxiogenic state (Koob, 2008).

The third stage of AUD is preoccupation, or anticipation.
IEG mapping studies have confirmed the PFC, NAC, subregions
of Amg and Hipp, BNST, the paraventricular nucleus of Hyp
and VTA as regions activated upon exposure to cues predicting
alcohol self-administration (Harlan and Garcia, 1998; Zhao et al.,
2006; Hill et al., 2007; Vilpoux et al., 2009). Human and rodent
studies investigating either cue- or stress-induced reinstatement

further implicate three pathways in this response: (a) glutamatergic
projections from the PFC, basolateral Amg and Hipp onto the NAC;
(b) dopaminergic modulation in the basolateral Amg and DS and
(c) increased CRF system activity in the extended Amg and VTA
(Valdez et al., 2002; De Witte et al., 2005; Kalivas, 2009) (Fig. 1C).

Circuits implicated in chronic pain

Having both sensory-discriminative and affective dimensions, acute
pain serves as a useful warning of impending or actual tissue dam-
age, and its affective aspect motivates escape from the damaging
stimulus and supports learning to avoid such stimuli in the future.
This adaptive value is not evident in chronic pain. Here, pain is
evoked by innocuous sensory inputs that are neither damaging nor
normally painful. This latter observation is at least in part due to
‘sensitization’ of pain-processing circuitry, including primary afferent
nociceptors, central pain transmission pathways and alterations in
descending modulatory systems (Ji and Woolf, 2001; Heinricher,
2016; Thompson and Neugebauer, 2018). The neural circuitry asso-
ciated with chronic pain has been assessed not using IEG mapping
(because expression of these genes tends to habituate with chronic
stimulation (Melia et al., 1994)) but instead by a combination of
electrophysiological, pharmacological, behavioral, anatomical and,
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more recently, optogenetic and chemogenetic approaches in a range of
animal models. This large body of evidence points to somatosensory
pathways with ascending pathways relaying information to retic-
ular formation in the brainstem, Hyp, Amg and cortex (including
somatosensory cortex, INS and ACC). These ascending signals engage
structures important in motivation and emotion, including mesolim-
bic dopaminergic systems implicated in salience encoding (Berridge,
2018). Given the increased salience of pain-related information in
chronic pain states (Borsook et al., 2013; Kucyi and Davis, 2015),
it should not be surprising that alterations in neuronal activation
following painful stimuli and alterations in functional connectivity
between mesolimbic structures and a number of cortical regions
have been observed in functional imaging studies of patients with
chronic pain (Apkarian et al., 2005; Baliki and Apkarian, 2015).
Increased functional connectivity between the NAC and the PFC
predicts pain persistence in patients with chronic lower back pain
(Baliki et al., 2012), and painful stimuli evoked increased activity in
the PFC and decreased activity in the ACC, primary somatosensory
cortex (S1), secondary somatosensory cortex (S2), insular cortex
and Thal in patients with clinical pain conditions (Apkarian et al.,
2005). Interestingly, in individuals with acute low back pain, acti-
vation was concentrated in sensory regions such as the Thal and
INS, whereas in patients with chronic back pain, it was focused
in emotion-related circuitry (medial PFC, Amg) (Baliki et al., 2006;
Hashmi et al., 2013), an observation consistent with an increasing
contribution of motivational circuits in chronic pain. The circuitry
recruited in both the sensory and affective responses to pain is
illustrated in Fig. 1D.

Intersection of circuits implicated in AUD and pain

The idea that the comorbidity between AUD and chronic pain could
be the result of a network overlap between regions engaged by
excessive alcohol use and pain has been proposed previously (Egli
et al., 2012). Further analysis of the neuronal circuits engaged during
chronic pain (Fig. 1D) suggests a resemblance to those involved
in the withdrawal and preoccupation/anticipation stages of AUD
(Fig. 1B and C), reflecting the centrality of incentive salience in both
behavioral states and the importance of the emotional components
and a potential rationale for the comorbidity of AUD and chronic
pain.

MOLECULAR RATIONALE FOR INTERSECTION

BETWEEN AUD AND CHRONIC PAIN

The intersection between pain and alcohol in the central nervous
system is also apparent due to an overlap in engaged neuronal
modulators. Earlier reviews on the interaction between alcohol
and pain focused on this overlap (Egli et al., 2012; Apkarian et al.,
2013; Witkiewitz and Vowles, 2018). However, with the progress
in understanding of these pathways, an update is in order. Here,
we emphasize four major molecular mechanisms implicated in both
pain and AUD: glutamate and gamma-Aminobutyric acid (GABA),
opioids, CRF/urocortins (Ucns) and protein kinase C-epsilon
(PKCε).

Glutamate and GABA

Alcohol inhibits the activity of ionotropic glutamate receptors
acutely, consequently decreasing excitatory neurotransmission
(Lovinger and Roberto, 2013). Alcohol also acts as a potential
positive allosteric modulator of the GABAA receptor, thereby

increasing GABA-mediated inhibition throughout the central nervous
system (Korpi, 1994; Davies, 2003; Olsen et al., 2007; Lovinger
and Roberto, 2013). This increased inhibitory effect of GABA is
associated with sedation, inhibition of memory formation, altered
reward and hypoalgesia following acute alcohol intake (Lobo and
Harris, 2008). However, chronic alcohol use is associated with a
paradoxical decrease in inhibitory GABA transmission and increase
in excitatory glutamatergic transmission, presumably representing
a compensatory response to the enhanced inhibitory tone from
continued alcohol consumption (Wang et al., 2007; Holmes et al.,
2013; Cheng et al., 2017). This disruption in the balance between
excitatory and inhibitory transmission is thought to play a role in
alcohol tolerance and dependence (defined as adaptive physiological
changes where cessation of drug causes withdrawal symptoms) and
is accentuated in alcohol withdrawal when the modulatory influence
of alcohol on GABA receptors is no longer present (Madamba et al.,
1996; Berton et al., 1998).

Altered levels of centrally acting glutamate and GABA are
also observed in chronic pain conditions. Increased glutamate
and decreased GABA levels have been observed in the anterior
INS, ACC and Thal in diabetic neuropathy patients (Petrou et al.,
2012), and increased glutamate has also been seen in the INS in
patients with fibromyalgia (Kaplan et al., 2019). These observed
changes in decreased endogenous GABAergic activity but increased
glutamatergic activity in both chronic pain and AUD suggest
that modifying the balance between these neurotransmitter levels
may reinstate proper pain modulation while decreasing alcohol
withdrawal-induced neuronal hyperexcitability. However, studies
investigating this claim pharmacologically are limited (Enna and
McCarson, 2006; Carter et al., 2014), likely because of the well-
known sedative effects of GABA receptor agonism.

Opioids

Opioid alkaloids have long been recognized as potent analgesics, and
opioids continue to be the mainstay for treatment of severe acute
pain. Endogenous opioids contribute to the rewarding properties
of natural reinforcers through their primary actions in the VTA,
resulting in disinhibition leading to increased dopamine release onto
the NAC (Fields and Margolis, 2015). It should therefore not be
surprising that endogenous opioids play a role in the rewarding
aspects of other drugs of abuse, including alcohol, and that exogenous
opioids themselves come with significant abuse potential.

The opioid receptor family contains three major subtypes—mu
(MOR), delta (DOR) and kappa (KOR) opioid receptors. Activity at
MOR is required for morphine analgesia, as demonstrated by lack
of this analgesia in MOR knockout (KO) animals (Loh et al., 1998).
While MOR agonism indeed results in rapid analgesia, tolerance also
develops quickly (Ho et al., 1973; Chavkin and Goldstein, 1984),
thus leaving MOR-targeted therapeutics a poor choice for chronic
pain conditions. Furthermore, direct administration of MOR agonists
in reward-associated regions such as the NAC is associated with
increased alcohol intake (Richard and Fields, 2016). Conversely,
MOR-KO mice do not readily self-administer alcohol (Roberts et al.,
2000). Therefore, while MOR agonists provide acute pain relief,
they may also increase the risk of AUD, rendering MOR-targeted
therapeutics a hazardous choice for those with comorbid chronic
pain and AUD (further discussed under ‘AUD and opioid use disorder
comorbidity’).

In contrast to the abuse liability concerns of MOR, DOR agonists
do not produce potent analgesia in acute pain states, and activation
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of DOR is not commonly associated with reward (Do Carmo et al.,
2009; Pradhan et al., 2014). However, DOR agonists can produce
analgesia in persistent pain states (Pradhan et al., 2011; Vicente–
Sanchez et al., 2016; Abdallah and Gendron, 2018). Exogenous DOR
agonists can also differentially affect voluntary alcohol intake and
alcohol reward (van Rijn et al., 2012a; Chiang et al., 2016) and
decrease alcohol withdrawal-induced anxiety-like behaviors in mice
(van Rijn et al., 2012b). Moreover, DOR-KO mice display greater
anxiety-like behavior, increased alcohol intake (Roberts et al., 2001)
and increased hyperalgesia following inflammation (Gaveriaux-Ruff
et al., 2008), suggesting that endogenous DOR activity is protective
in both alcohol-related behaviors and chronic pain.

While MOR and DOR have roles in both pain relief and reward,
KORs in the mesolimbic reward system contribute to the aver-
sive affective components of drug withdrawal and chronic pain
(Walker et al., 2012; Karkhanis et al., 2017). Increases in the endoge-
nous KOR agonist dynorphin lead to decreased dopamine release in
regions such as the NAC, resulting in dysphoria and stress (Goldstein
et al., 1979; Anderson and Becker, 2017). Taken as a whole, these
finding might suggest that KOR antagonists would be beneficial
in treating negative affect in both alcohol withdrawal and chronic
pain (Walker et al., 2012; Liu et al., 2019; Massaly et al., 2019).
However, KOR antagonists have thus far largely failed in clinical
trials for the treatment of drug dependence or depression (Ror-
ick-Kehn et al., 2014; Buda et al., 2015), although investigations
are ongoing.

Corticotropin-releasing factor and urocortins

Both injury and AUD engage the CRF system (Vale et al., 1981;
Heilig and Koob, 2007). The components of this system in mam-
mals include four ligands (CRF, Ucn1, Ucn2 and Ucn3), two main
receptors (CRFR1 and CRFR2) and the CRF-binding protein (Dedic
et al., 2018). CRF primarily targets CRFR1, Ucn2 and Ucn3 target
CRFR2, while Ucn1 targets both CRFR1 and CRFR2 (Pal et al.,
2010). Genetic deletion or pharmacological blockade of CRFR1
can interfere with total fluid consumption, suggesting non-specific
regulation of motivated behavior (Giardino and Ryabinin, 2013;
Giardino et al., 2017). In contrast, genetic deletion of Ucn1 or short
hairpin RNA interference with Ucn1 expression selectively suppresses
the escalation of alcohol drinking to excessive drinking in mice
(Giardino et al., 2017). Enhanced alcohol consumption in models of
severe physiological alcohol dependence selectively depends on CRF
acting on CRFR1 receptors (Chu et al., 2007; Heilig and Koob, 2007;
Roberto et al., 2010).

There is also evidence that the CRF system contributes to
interactions between stress and both pain and AUD. The interactions
between stress and pain are complex, with mild stress inducing
hyperalgesia and intense stress producing analgesia (Amit and
Galina, 1988; Martenson et al., 2009). CRFR1 antagonists interfere
with anxiety-like behaviors as well as hyperalgesia in rodents
subjected to a chronic inflammatory pain state, and there is emerging
evidence that this effect is because of interference with CRFR1-
mediated sensitization of nociresponsive neurons in the CeA (Ji
et al., 2007; Liang et al., 2007; Fu and Neugebauer, 2008). CRFR1
antagonists can also attenuate hyperalgesia associated with alcohol
withdrawal, presumably a form of stress-induced hyperalgesia
(Edwards et al., 2012). Stress can also induce alcohol-seeking in
rodents with established alcohol dependence. This behavior, which
can be considered a model of ‘relapse’ in abstinent individuals
with AUD, is reduced by CRFR1 antagonism (Le et al., 2000;

Liu and Weiss, 2002). There is thus substantial evidence that
peptides acting on the CRFR1 receptor (CRF and Ucn1) could
play a role in the chronic pain-AUD comorbidity. Nevertheless,
CRFR1 antagonists failed to decrease subjective alcohol-induced
cue and stressor craving in human subjects (Kwako et al., 2015;
Schwandt et al., 2016). More studies are required to evaluate whether
this failure may reflect additional factors brought into play in
human populations with AUD.

Protein kinase C-epsilon

Changes in PKCε activity correspond with changes in activity
throughout the central nervous system and associated behaviors,
including alcohol consumption and pain. For example, inhibition
of PKCε kinase activity by small molecule inhibitors decreases
alcohol intake and preference in C57Bl/6 mice with no changes in
ethanol clearance (Blasio et al., 2018). These effects are in line with
genetic studies reporting that PKCε KO mice consume less alcohol
than wild-type mice (Hodge et al., 1999) and display aversion to
alcohol (Newton and Messing, 2007). PKC inhibitors also decrease
alcohol neuropathy-induced hyperalgesia in rats (Dina et al., 2000).
Conversely, PKC activators such as 12-myristate 13-acetate increase
nociception upon intraplantar injection in mice (Ferreira et al., 2005).
As inhibitors of isozymes such as PKCε decrease alcohol-related
behaviors and additionally decrease pain responses, inhibitors of
PKCε may be central point of molecular convergence between AUD
and chronic pain signal transduction, consequently providing a
potential therapeutic option for treating comorbid pain and AUDs.

ALCOHOL USE AND POTENTIATED PAIN

Epidemiological studies indicate that AUD is associated with an
increased prevalence of chronic pain. In a 2007 study assessing pain
persistence in detoxified patients, 73% of patients who identified
alcohol as their drug of choice (as compared with opioids or cocaine)
reported moderate-to-severe pain in the previous month and 24%
reported pain throughout the duration of the 2-year study period
(Larson et al., 2007). Another study noted that ∼30% of employed,
alcoholic patients attending a drug and alcohol treatment program
reported severe chronic pain (Sheu et al., 2008). Problem drinking
is also associated with increased prevalence of moderate-to-severe
pain among older adults (Brennan et al., 2005). Increased complaints
of pain in AUD are likely because of multiple factors occurring at
distinct time scales. These include not only acutely enhanced pain
associated with acute alcohol withdrawal and AUD but also chronic
pain due to peripheral neuropathic effects of alcohol (Monforte
et al., 1995) (Fig. 2), and perhaps, an increased susceptibility for
chronic pain as a result of altered brain circuits associated with
AUD progression (as suggested by the overlap in neuronal circuitry
in Fig. 1).

Acute hyperalgesia and allodynia associated

with withdrawal from alcohol

Cessation of occasional binge alcohol consumption is followed by a
hangover (Slutske et al., 2003; Verster, 2008; Penning et al., 2012).
During the development of AUD, hangovers increase in frequency
and severity. Despite common knowledge linking hangovers with
increased pain, surprisingly few studies have investigated the hyper-
algesic effect of alcohol withdrawal in humans. In one experimental
study, male patients with a history of alcohol dependence undergoing
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Fig. 2. Evolution of pain’s influence on alcohol use during progression from binge drinking to AUD to alcoholic neuropathy. Following cessation of acute binge

drinking, hangover causes pain during the acute withdrawal phase, which can increase time between drinking events. In AUD, cessation of alcohol use also

causes pain; however, subjects may continue to drink alcohol to alleviate this withdrawal pain or other pain causes. When alcohol use is long-term and chronic,

alcoholic neuropathy can develop, where alcohol use no longer provides analgesia and further alcohol intake can increase pain sensation.

alcohol withdrawal displayed reduced tolerance for noxious thermal
stimuli (Jochum et al., 2010), with no change in thermal pain thresh-
old. Potentiated pain during hangover is thus documented primarily
by anecdote.

By contrast with limited data in humans, alcohol withdrawal-
induced hyperalgesia (increased pain evoked by normally painful
stimuli) and allodynia (decrease in threshold so that innocuous stim-
uli are perceived as painful) have been amply demonstrated in labo-
ratory animals. Different models of alcohol exposure have been used
to assess hyperalgesia during withdrawal (Table 1). Experimenter-
controlled or no-choice procedures of alcohol administration have
allowed researchers to control the amount of administered alcohol
and have documented significant hyperalgesia during acute with-
drawal. Early studies used liquid diet-based approaches to study
alcohol-induced hyperalgesia in rats, where 4–10 days of no-choice
exposure to a 6.5% ethanol liquid diet or 72-day exposure to
escalating 2–5% ethanol liquid diet resulted in hyperalgesia upon
withdrawal (Gatch and Lal, 1999; Dina et al., 2006; Gatch, 2006;
Narita et al., 2007b). More recently, mechanical hyperalgesia in
rats has also been reported after prolonged alcohol vapor exposure
(Edwards et al., 2012; Avegno et al., 2018). Alcohol administered by
oral gavage (2 or 3 g/kg over the course of 3 weeks) has been shown
to induce mechanical allodynia 24 hours following last alcohol
exposure in mice (Alongkronrusmee et al., 2016).

Despite the robust effects of experimenter-administered alcohol,
these strategies provide less translation to human studies where sub-
jects consume alcohol voluntarily. Comparison of alcohol withdrawal
in mice after alcohol gavage vs. voluntary drinking (via a two-bottle
choice procedure) for 3 weeks resulted in a more pronounced (and
longer-lasting) mechanical allodynia in gavaged animals, suggesting
either that the rate of alcohol administration or the interaction with
stress induced by the mode of administration affects the develop-
ment of allodynia (Alongkronrusmee et al., 2016). Nevertheless, it is
reassuring that withdrawal-induced hyperalgesia has been observed
in this and other rodent models of self-administration. Mechan-
ical hyperalgesia was observable 24 hours following 4 days of
alcohol exposure in a model of exposure using a drinking-in-the-
dark protocol between water and 20% alcohol in mice (Bergeson
et al., 2016). Additionally, alcohol-induced mechanical, thermal and
chemical hyperalgesia has been observed in C57Bl/6J male mice at
24 hours of ethanol withdrawal after continuous access to 10%
ethanol and water for 6 days (Smith et al., 2016a). Longer exposure
strategies, such as 12 weeks of intermittent access to a two-bottle
choice (water vs. 20% alcohol) resulted in very robust hyperalgesia,

as assessed through thermal or mechanical hyperalgesia/allodynia, as
well as other withdrawal symptoms including tail stiffness, decreased
ambulation and lower-limb flexion. Mechanical hypersensitivity was
evident for up to 7 days post-withdrawal (Fu et al., 2015). One
caveat with prolonged exposures to alcohol is that this strategy might
also give rise to peripheral neuropathy, also known as alcoholic
neuropathy.

Alcoholic neuropathy

Following years of heavy drinking, AUD patients may be diagnosed
with alcoholic neuropathy. Alcoholic neuropathy is estimated to
affect 25–66% of AUD patients in the United States and is most
common in frequent, heavy drinkers compared with episodic drinkers
(Monforte et al., 1995). It is also more common in women than in
men (Ammendola et al., 2000). Alcohol-induced neuropathy man-
ifests as pain and abnormalities in sensory, motor and autonomic
functions (Chopra and Tiwari, 2012), and these clinical features are
associated with axonopathy and reduced nerve fiber density (Koike
et al., 2001). The exact cause of alcoholic neuropathy is unknown,
and no effective therapeutics are currently available. Patients are
nevertheless counseled to decrease and/or cease further alcohol use
to prevent disease progression.

One potential mechanism of alcohol-induced neuropathy is
thiamine (vitamin B1) deficiency, as ethanol decreases thiamine
absorption in the intestine and thus depletes stores of thiamine
and thiamine phosphorylation (Singleton and Martin, 2001).
This decrease in cellular thiamine levels is proposed to disrupt
carbohydrate metabolism, leading to increased oxidative stress or
mitochondrial load, resulting in apoptosis or necrosis, respectively
(Singleton and Martin, 2001). An additional suggested mechanism
for alcoholic neuropathy is increased acetaldehyde accumulation
as the result of ethanol metabolism, which can lead to enhanced
cytokine production, potentiated oxidative stress and/or increased
mitogen-activated protein (MAP) kinase or PKC signaling (Chopra
and Tiwari, 2012). Microglial activation and hypertrophy have
also been reported (Narita et al., 2007c). These observations
raise the possibility that the axonopathy and functional changes
with prolonged alcohol consumption reflect a neuroinflammatory
insult. Consistent with this, rolipram, a selective phosphodiesterate-
4 (PDE4) inhibitor that can reduce levels of proinflammatory
cytokines, decreases mechanical allodynia in male ethanol-exposed
rats (Pearse et al., 2004; Han et al., 2012).

In addition to neuroimmune mechanisms, alterations in gluta-
mate receptor phosphorylation have been observed in alcoholic
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Table 1. Reported rodent models assessing alcohol-induced hyperalgesia/allodynia

Rodent models of alcohol-induced hyperalgesia/allodynia

Model Timeline Species/strain/sex Analgesic test performed Reference

Self-administration
Continuous access
two-bottle choice (water
vs. increasing
concentrations of alcohol,
3–6–10%)

6 days of alcohol exposure/week
Analgesic response measured
24 hours following alcohol removal

Mouse
C57Bl/6J
Male only

Mechanical (von Frey)
Thermal (heat, tail-flick)
Inflammatory (formalin)

Smith et al.
(2016a)

Drinking-in-the-dark
two-bottle choice (water
vs. 10% alcohol)

3 weeks of alcohol exposure
(4 hours/5 days a week)
Analgesic response measured 1, 2,
4, 7 and 14 days following alcohol
removal

Mouse
C57Bl/6
Male only

Mechanical (von Frey)
Alongkronrus-
mee et al.
(2016)

Drinking-in-the-dark
(water vs. 20% alcohol)

4 days of alcohol exposure
(4 hours/day)
Analgesic responses measured 1,
5–11 days following alcohol
removal

Mouse
C57Bl/6
Male and female

Inflammatory (formalin)
Mechanical (von Frey)
Thermal (cold, acetone
evaporation)

Bergeson et al.
(2016)

Intermittent access,
two-bottle choice (water
vs. 20% alcohol)

12 weeks of alcohol exposure
(24 hours/5 days a week)
Analgesic responses measured after
4, 8 or 12 weeks of alcohol
exposure

Rat
Sprague-Dawley
Male only

Mechanical (von Frey)
Thermal (heat, radiant
heat)

Fu et al. (2015)

No-choice self-administration
Liquid diet containing
ethanol (6.5%)

10 days of liquid diet exposure
Analgesic response measured 3, 6,
12 and 36 hours following ethanol
removal

Rat
Long–Evans
Male only

Thermal (heat, tail-flick)
Gatch, (2006),
Gatch and Lal
(1999)

Liquid diet containing
ethanol (6.5%)

4 days of liquid diet, 3 days of
standard chow (‘4 days on/3 days
off’) for 5 weeks
Analgesic response measured 3 days
following alcohol removal

Rat
Sprague-Dawley
Male only

Mechanical
(Randall–Selitto) Dina et al.

(2006)

Liquid diet containing
ethanol (escalating, 2.5%
to 5%)

72 days of alcohol exposure
Analgesic response measured once
every 5 days after 7 days following
alcohol removal

Rat
Fischer 344
Male

Mechanical
(Randall–Selitto) Narita et al.

(2007b)

Experimenter-controlled
Chronic intermittent
alcohol vapora

11–12 weeks of alcohol vapor
(14 hours/day)
Analgesic response measured
during withdrawal period (8 hours
after vapor off)

Rat
Wistar
Male only

Mechanical (von Frey)
Edwards et al.
(2012)

Chronic intermittent
alcohol vapor

4–9 weeks of alcohol vapor
(14 hours/day)
Analgesic response measured
during withdrawal period
(6–8 hours after vapor off), twice
weekly

Rat
Wistar
Male only

Thermal (Hargreaves’)
Avegno et al.
(2018), Roltsch
Hellard et al.
(2017)

Oral gavage (2 or 3 g/kg
ethanol)

3 weeks of alcohol exposure (5
consecutive days/week)
Analgesic response measured
24 hours after final alcohol
exposure

Mouse
C57Bl/6
Male only

Mechanical (von Frey)
Alongkronrus-
mee et al.
(2016)

Models described assessed acute withdrawal-induced hyperalgesia or allodynia. Does not include models of alcoholic neuropathy.
aAnimals also exposed to two-bottle choice (10% ethanol vs. water) and ethanol operant self-administration (12 hours/session, 12 sessions) prior to vapor exposure.
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neuropathy, and these may contribute to alcoholic neuropa-
thy symptomatology (Bu et al., 2015). Male Fischer 344 rats
exposed to an ethanol-containing liquid diet for 70 days displayed
mechanical allodynia that persisted for at least 14 weeks after
alcohol was removed. There was a significant increase in phos-
phorylation of the Ser-13030 site of the N-methyl D-aspartate
receptor subtype 2B (NR2B) subunit for the N-methyl D-aspartate
(NMDA) receptor in the spinal cord of ethanol-fed mice compared
with non-ethanol-fed controls (Narita et al., 2007a). It is possible that
this phosphorylation is the result of increased PKC activity, since
increased phosphorylated-PKC immunoreactivity was observed in
the spinal cord of rats fed ethanol chronically (Narita et al., 2007b).
These authors also reported dysfunction of MORs. Overall, a host
of direct and indirect factors may contribute to the pathogenesis
of alcoholic neuropathy and resulting hyperalgesia, although future
studies are necessary to assess the causal role of each component.

PAIN GIVING RISE TO INCREASED ALCOHOL

USE

As already noted, alcohol has long been used as an analgesic. Alco-
hol administration has been reported to increase pain tolerance,
even at non-intoxicating doses (Woodrow and Eltherington, 1988;
Horn-Hofmann et al., 2015). Acute ethanol administration can also
relieve hyperalgesia, as described, for example in a study investigating
the effect of ethanol on capsaicin-induced hyperalgesia in human
volunteers (Arout et al., 2016). These effects of alcohol on acute and
potentiated pain raise the possibility that hyperalgesia could drive
consumption of alcohol. Consistent with this idea, many drinkers
indicate that they consume alcohol to moderate pain (Brennan et al.,
2005; Riley and King, 2009).

Acute experimental pain can motivate alcohol consumption.
Moderate-to-heavy drinkers report a greater urge and intention
to drink when subjected to an experimental hyperalgesia protocol
(Moskal et al., 2018). Importantly, however, this study was conducted
in individuals exposed to acute pain (apparently otherwise pain-
free), and the results do not necessarily reflect alcohol’s effects on
chronic pain. A 2015 UK study found a strong correlation between
alcohol consumption and reported level of chronic widespread
pain. Participants with chronic pain were less likely to report pain
symptoms as debilitating if they also reported consuming alcohol
regularly (Macfarlane and Beasley, 2015). Similarly, participants
who consumed elevated levels of alcohol were also less likely to
report chronic widespread pain symptoms in general. In patients
with fibromyalgia, low and moderate alcohol consumption was
associated with higher quality of life and lower symptom reporting
compared with those who did not consume alcohol (Kim et al.,
2013). However, a positive relationship between chronic pain and
alcohol intake is not a uniform finding. Adolescents with chronic
pain were less likely to use alcohol compared with adolescents
without chronic pain (Law et al., 2015). Swedish adults diagnosed
with long-term musculoskeletal pain reported a lower level of
alcohol intake compared with an age-matched control group.
Patients with chronic pain drank less often, in small quantities,
and became intoxicated less frequently than those without chronic
pain (Thelin Bronner et al., 2012). Finally, although alcohol use
was associated with a decrease in the frequency of reported pain in
individuals with orofacial pain or arthritis, there was no correlation
with reduced intensity or chronicity of pain (Riley and King,
2009). These disparate findings may reflect that while alcohol

consumption is acutely analgesic, its efficacy, like that of most known
analgesic drugs, diminishes with chronic use (Gatch and Lal, 1999;
Thompson et al., 2017). A complex interplay between analgesia,
pain and other physiological, psychological and social sequelae of
alcohol consumption is likely at work in individuals with chronic
pain and AUD.

Pain relief is rewarding and produces negative reinforcement
in rodents, as shown by increased conditioned place preference to
contexts associated lidocaine administration in rats with incisional
injury-induced pain (Navratilova et al., 2012). Thus, it is conceivable
that rodents consume alcohol for analgesia as a negative reinforcer.
However, two questions must be asked regarding alcohol’s analgesic
effects: (a) does pain increase alcohol intake? and (b) is potential
increased alcohol intake the result of alcohol’s analgesic effects?

A summary of known preclinical investigations addressing
these questions is provided in Table 2. With regard to the first
question, in a model for osteoarthritis in C57Bl/6 mice, mice in
the osteoarthritis group consumed more alcohol and preferred
20% ethanol in a two-bottle choice protocol compared with
control mice (Butler et al., 2017). Furthermore, severity of the
osteoarthritis correlated with alcohol intake, thus suggesting
that the analgesic effects of alcohol led to the increased alcohol
consumption. In a different model, male C57Bl/6 mice subjected
to localized inflammation of the hind paw exhibited increased
alcohol intake in a two-bottle choice (20% alcohol vs. water),
continuous access paradigm compared with controls, further
supporting the idea that persistent pain increases alcohol intake
(Yu et al., 2018). However, it is worth noting that female mice in the
same study showed no increase in alcohol consumption in persistent
inflammation.

The two studies described above demonstrate that rodents, or at
least male rodents, in persistent pain states increase alcohol intake.
However, these studies did not determine whether the observed
increase in alcohol consumption actually produced antinociception.
CD1 mice subjected to a peripheral nerve injury consumed more
ethanol in a drinking-in-the-dark procedure compared with sham-
operated mice, yet cold hyperalgesia and depressive behaviors
were not altered by ethanol consumption (Gonzalez-Sepulveda
et al., 2016). Smith and colleagues saw no increase in mechanical
withdrawal threshold in mice with persistent inflammation that were
given access to alcohol in a two-bottle choice procedure (Smith et al.,
2015). The lack of change in thermal and mechanical responding in
these studies may be explained by low blood ethanol plasma levels,
which may have been inadequate to produce detectable analgesia
(Gatch, 2009). Nevertheless, alcohol intake did reverse ethanol
withdrawal-induced hyperalgesia, with 4-hour access to 10% alcohol
reversing mechanical hypersensitivity induced by withdrawal from a
two-bottle choice procedure (Smith et al., 2016a).

Overall, current work in animal models suggests that rodents
will consume more alcohol when in pain and that alcohol con-
sumption during pain can result in analgesia, although these find-
ings are not consistent across studies. However, whether or not
this increased alcohol intake is motivated by the desire to obtain
analgesia or provide potential affective relief has not yet been deci-
sively demonstrated. For affect, an important caveat is that anxiety-
and depression-related behaviors typically do not appear until 4–
8 weeks following neuropathic pain induction in mice (Yalcin et al.,
2011). This delayed appearance suggests that any motivation to
consume alcohol following pain induction to alleviate pain-related
changes in affect may not be apparent until at least 2–3 months
following pain inducement.
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Table 2. Preclinical reports of changes in drinking in response to pain

Model Timeline Species/strain/sex Alcohol intake procedure Changes in alcohol intake Reference

Osteoarthritis Alcohol consumption was
assessed 13 weeks after
surgical destabilization of
the medial meniscus for
24 days

Mice
C57Bl/6
Male only

Two-bottle choice (water
vs. gradual increase in
2.5–20% alcohol),
continuous access

Osteoarthritis increased
alcohol intake and
preference at 20%
alcohol; severity of
osteoarthritis correlated
with alcohol intake

Butler et al. (2017)

Hind paw
inflammation

Alcohol consumption was
assessed 3 days after
injection of complete
Freund’s adjuvant into the
hind paw; consumption
was monitored for 3
weeks

Mice
C57Bl/6
Male and
female

Two-bottle choice (water
vs. 20% alcohol),
continuous access

Increased alcohol intake
in males, no change in
alcohol intake in females

Yu et al. (2018)

Peripheral nerve
injury

Alcohol consumption was
assessed 33 days after
partial sciatic nerve
ligation for 10 days

Mice
CD1
Male only

Single bottle access (20%
alcohol), limited access
(3 hours) 3 hours into
dark/active cycle

Increased alcohol intake
Gonzalez-Sepulveda et al.
(2016)

Models described assessed how pain influences voluntary alcohol intake.

ADDITIONAL CONSIDERATIONS

As the above discussion makes apparent, there are strong, bidirec-
tional links between alcohol consumption and chronic pain, and
progress has been made in understanding of mechanisms contributing
to various aspects of these links (for example better understanding of
the relevant neural circuits and molecular mechanisms). Nonetheless,
many questions remain, including the influence of sex, social and
environmental factors, how pain alters the efficacy of treatments for
AUD and whether alcohol and opioid use disorders are related.

Sex as a biological variable

Throughout this review, the sex of the subjects assessed in each study
has been specified to emphasize sex as a potential biological variable.
Indeed, sex differences in both pain- and AUD-related behaviors are
observed in both human subjects and rodents (Wiesenfeld-Hallin,
2005; Agabio et al., 2017), where both biological and psychosocial
mechanisms presumably contribute to these assessed sex differences
(Ceylan-Isik et al., 2010; Mogil, 2012; Bartley and Fillingim, 2013;
Foster et al., 2014).

For AUD, men have been historically more likely to be diagnosed
with AUD (Helzer and Pryzbeck, 1988). However, this gender
gap has recently decreased (Foster et al., 2014; Erol and Karpyak,
2015; Agabio et al., 2017). While women are more likely to seek
treatment for AUD, both sexes are vulnerable to relapse. Men most
commonly relapse because of social pressure, while women relapse
because of negative affect (Zywiak et al., 2006), and interestingly
women exhibit fewer symptoms of withdrawal (Deshmukh et al.,
2003). Sex differences are commonly observed in preclinical research
as well. Female rodents voluntarily consume more alcohol than
males in both social and isolated housing (Li and Lumeng, 1984;
Middaugh and Kelley, 1999; Yoneyama et al., 2008). Notably,
no effect of estrous cycle has been observed regardless of strain
or drinking paradigm (Priddy et al., 2017). Further investigations
are necessary to see if the sex-related differences in withdrawal,
negative affect and social support/pressure noted in humans
are maintained across species.

As for pain, sex differences in pain threshold and sensitivity
remain inadequately understood (Fillingim et al., 2009; Racine et al.,
2012a; Bartley and Fillingim, 2013), although it is clear that many
of chronic pain conditions (irritable bowel syndrome, fibromyal-
gia, migraine) are more prevalent in women than in men (Yunus,
2002; Stewart et al., 2008). A variety of biological factors likely
contribute to these differences in chronic pain prevalence, including

differences in opioid receptor expression, gonadal hormone levels
or neuroimmune responses (Bartok and Craft, 1997; Zubieta et al.,
2002; Cepeda and Carr, 2003; Loyd et al., 2008; Sorge et al., 2015;
Rosen et al., 2017; Sorge and Totsch, 2017). Differences in adap-
tive vs. innate immune responses observed in rodents in response
to pain may explain the increased prevalence of autoimmune and
inflammatory chronic pain conditions diagnosed in women com-
pared with men (Mogil, 2012; Sorge et al., 2015; White and Robin-
son, 2015; Sorge and Totsch, 2017). Further, some of the key psy-
chosocial factors identified above for AUD (negative affect, social
environment) may also influence how individuals report and cope
with chronic pain (Keogh and Herdenfeldt, 2002; Racine et al.,
2012b; El-Shormilisy et al., 2015). One study found that males are
more capable of focusing on the sensory-discriminative aspects of
pain, while women are more likely to concentrate on the affec-
tive dimension (Keogh and Herdenfeldt, 2002). Efforts are ongoing
in both animals and humans to better understand how chronic
pain expression and coping differs between the sexes and how this
relates to treatment outcomes.

Transfer of pain by signals or communication

In addition to alcohol withdrawal causing pain in the individual,
the social transfer of pain to ‘bystander’ animal has been described
following alcohol withdrawal, opiate withdrawal or inflammatory
pain in rodents housed in the same room (Smith et al., 2016a; Walcott
et al., 2018). This effect appears to be mediated by olfactory signals
in mice, although empathetic pain processing has been reported in
humans in response to visual cues (Lamm et al., 2011; Gu et al.,
2012). Furthermore, context-dependent pain hypersensitivity has
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been observed in both male mice and humans (Martin et al., 2019).
This implies that the potential effect of empathetic and/or context-
dependent pain modulation should be considered in experimental
and observational studies of pain in both animals and humans.

Influence of pain on alcohol treatment efficacy

Perceived pain can influence the efficacy of alcohol treatment out-
comes. An association between pain and heavy drinking lapses dur-
ing or after AUD treatment was observed even after controlling
for other relapse factors, such as temptation, dependence severity
and psychiatric distress (Witkiewitz et al., 2015; Jakubczyk et al.,
2016). Similarly, alcohol consumption can influence post-surgical
pain outcome. For example, 4 weeks of alcohol exposure prolonged
post-surgical pain in C57Bl/6 mice (Liu et al., 2018), and patients
with a history of AUD reported greater severity of pain 3 months
after traumatic injury than did those without AUD (Holmes et al.,
2010). These studies highlight the complexity of managing pain
in individuals with AUD and addressing AUD in individuals with
chronic pain.

AUD and opioid use disorder comorbidity

In the past few decades, abuse of both prescription and illicit opioids
has increased explosively in the USA. This has resulted in increased
opioid-related deaths, with ∼60% of drug overdose deaths involving
opioids in the USA in 2014 (Rudd et al., 2016). Alcohol is consistently
a contributing factor to many opioid overdose deaths as both alcohol
and opiates act as central nervous system depressants, thus increasing
the risk of respiratory depression (White and Irvine, 1999). A 2013
study found that ∼23% of adult patients diagnosed with opioid use
disorder were also diagnosed with AUD, and the vast majority of
these patients also had been diagnosed with a chronic pain condition
(Hser et al., 2017), suggesting that chronic pain may be an important
‘third variable’ in the co-abuse of opioids and alcohol (Witkiewitz
and Vowles, 2018). Because of the comorbidity of opioid use disorder
and the depressant effects of both alcohol and opiates, it is conceiv-
able that those recovering from opioid use disorder with chronic pain
may consume alcohol as a means of pain management. However, little
is known on the rates of use of alcohol as a substitution therapy, as no
studies have formally investigated this following treatment for opioid
use disorder. Moreover, opioid use disorder studies frequently exclude
individuals with AUD because of the overlapping use of naltrexone
for both opioid use disorder and AUD management (Witkiewitz and
Vowles, 2018).

CONCLUSIONS

It is clear from preclinical and clinical investigations that alcohol
use can lead to enhanced pain either acutely (during alcohol with-
drawal) or chronically (via alcoholic neuropathy). Animal models of
these effects are improving in sophistication, and progress in deci-
phering underlying neurocircuitry and neurochemical mechanisms
underlying AUD-related hyperalgesia has been made. Nevertheless,
this bidirectional relationship between alcohol and pain remains
poorly understood. Furthermore, while pain has been demonstrated
to increase alcohol intake, the motivation behind increased alcohol
intake in those with chronic pain requires deeper analysis, as it
could be contributed to either alcohol’s analgesic effects or affective
consequences (Koob, 2003; Egli et al., 2012). As a significant overlap
in affective responding between chronic pain and alcohol withdrawal

and preoccupation is noted (Paulus et al., 2017), studies investigating
salience processing and emotional factors in comorbid subjects are
warranted. Further studies are required to investigate these overarch-
ing questions and to interrogate developed models to help decipher
the intricate relationship between pain and alcohol use.
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