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Abstract

The CHARMM Drude-2013 polarizable force field (FF) was developed to include the explicit 

treatment of induced electronic polarizability, resulting in a more accurate description of the 

electrostatic interactions in molecular dynamics (MD) simulations. While the Drude-2013 protein 

FF has shown success in improving the folding properties of α-helical peptides and to reproduce 

experimental observables in simulations up to 1 μs, some limitations were noted regarding the 

stability of β-sheet structures in simulations longer than 100 ns as well as larger deviations from 

crystal structures in simulations of a number of proteins compared to the additive CHARMM36 

protein FF. The origin of the instability has been identified and appears to be primarily due to 

overestimated atomic polarizabilities and induced dipole-dipole interactions on the Cβ, Cγ and Cδ 
side chain atoms. To resolve this and other issues, a number of aspects of the model were re-

visited, resulting in Drude-2019 protein FF. Backbone parameters were optimized targeting the 

conformational properties of the (Ala)5 peptide in solution along with gas phase properties of the 

alanine dipeptide. Dipeptides that contain N-acetylated and N’-methylamidated termini, excluding 

Gly, Pro and Ala, were used as models to optimize the atomic polarizabilities and Thole screening 

factors on selected Cβ, Cγ and Cδ carbons by targeting quantum mechanical (QM) dipole 

moments and molecular polarizabilities. In addition, to obtain better conformational properties, 

side chain χ1 and χ2 dihedral parameters were optimized targeting QM data for the respective 

side chain dipeptide conformations as well as PDB survey data based on the χ1, χ2 sampling 

from Hamiltonian replica-exchange MD simulations of (Ala)4-X-(Ala)4 in solution, where X is the 

amino acid of interest. Further improvements include optimizing nonbonded interactions between 

charged residues to reproduce QM interactions energies of the charged-protein model compounds 
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and experimental osmotic pressures. Validation of the optimized Drude protein FF includes MD 

simulations of a collection of peptides and proteins including β-sheet structures, as well as 

transmembrane ion channels. Results showed that the updated Drude-2019 protein FF yields 

smaller overall RMS differences of proteins as compared to the additive CHARMM36m and 

Drude-2013 FFs as well as similar or improved agreement with experimental NMR properties, 

allowing for long timescale simulation studies of proteins and more complex biomolecular 

systems in conjunction with the remainder of the Drude polarizable FF.

Graphical Abstract

INTRODUCTION

Proteins are one of the most abundant organic molecules in biological systems. They have a 

variety of functions, acting as enzymes, receptors, transporters, regulatory proteins, and so 

on.1 To date, many proteins serve as therapeutic targets, being important in a wide range of 

disease-related processes.2–3 While proteins are polymers of the 20 amino acids arranged in 

a specific primary sequence, their tertiary and quaternary structures vary greatly. Therefore, 

a large percentage of the experimental and theoretical studies of proteins have focused on 

their structural and dynamical properties and relate them to their biological functions.4–5 

Among those, molecular dynamics (MD) simulations are commonly used to explore the 

structure and motion of proteins, with the forces required for the MD simulations typically 

based on classical molecular mechanics (MM),6–7 such that a highly accurate force field 

(FF) is critical to ensure the accuracy of simulations.8 Most MD simulation studies to date 

have been based on nonpolarizable, additive FFs, where the partial atomic charges are fixed 

and the electronic polarization is treated in a mean-field manner.9 The widely used additive 

models include CHARMM,10–13 AMBER,14–16 OPLS,17–18 and GROMOS.19 However, to 

achieve a more accurate description of the response of the charge distribution to variations in 
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the surrounding electrostatic field, the explicit inclusion of electronic polarizability in the 

model is essential.20

Multiple polarizable FFs have been developed for proteins, including Drude,21 AMOEBA,22 

CHARMM fluctuating charge,23–24 and AMBER ff02,25 among others.26–29 In the classical 

Drude polarizable model, explicit polarization is introduced by attaching a charged auxiliary 

Drude oscillator with a harmonic spring to the atomic core, which allows the induced atomic 

dipole to adjust in response to the surrounding electronic field.30–31 According to equation 

1, the induced atomic dipole, μ, in the presence of an electric field, E, is calculated as:

μ =
qD

2

kD
E Equation 1

where kD is a harmonic spring force constant, and the atomic polarizability, α, will 

determine the charge of the Drude oscillator, qD, according to equation 2.

α =
qD

2

kD
Equation 2

For hydrogen bond acceptors, anisotropic atomic polarizability as well as virtual particles 

representative of lone pairs are included to improve the treatment of nonbonded interactions.
32 Induced dipole-dipole interactions for atoms within two covalent bonds (e.g. 1–2 and 1–3 

relationship as defined by the atomic nuclei) are calculated explicitly with a shielding 

treatment proposed by Thole,33 such that the Coulomb energy between the charge-charge 

interaction is damped by a Thole-like screening function, Sij, as shown in equation 3:

Sij rij = 1 − 1 + ti + tj rij

2 αiαj
1 6

exp − ti + tj rij

αiαj
1 6

Equation 3

In equation 3, rij is the distance between atoms i and j, αi and αj are respective atomic 

polarizabilities according to equation 1, ti and tj are the respective atomistic Thole screening 

factors that dictate the degree of scaling. This is different from additive FFs where the 

nonbonded interactions between 1–2 and 1–3 atom pairs are excluded. Thus, the Drude 

model incorporates a more physically correct treatment of electronic polarizability compared 

with the additive FFs.

Development of the Drude polarizable force field has been ongoing since 2000, and the first 

generation Drude polarizable protein force field was released in 2013 (denoted as 

Drude-2013 FF in the following content).21 The Drude-2013 FF has been applied to a 

variety of peptides and proteins,34–35 ions-proteins,36 ligand-proteins,37 with simulation 

times ranging from nanoseconds to a microsecond.38 Results have shown that backbone and 

side-chain dipole moments have large variability relevant to the environment, and larger 

values of the dielectric constant were observed for the protein interior as compared to the 

additive CHARMM36 FF.38 These indicate that the inclusion of explicit electronic 

polarizability leads to significant differences in the physical forces affecting the structure 

and dynamics of proteins.
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While the Drude-2013 FF has shown success in reproducing experimental observables in 

simulations up to one microsecond, there were also some limitations. In particular, β-sheet 

structures in simulations longer than 100 ns displayed some instability in simulations in our 

laboratory (Figure 4 below) as well as in a published study39. Additionally, MD simulations 

for a number of proteins based on the Drude-2013 model typically yielded larger RMS 

differences relative to crystal structures as compared to the additive CHARMM36 FF.21 

Analysis indicates that the issue was primarily due to overestimated atomic polarizabilities 

and induced dipole-dipole interactions on the Cβ, Cγ and Cδ side chain atoms. To obtain 

more stable structures, selected aspects of the Drude-2013 FF are re-optimized in this work. 

This includes optimizing the backbone parameters to improve the conformational properties. 

Several side chain parameters were updated based on recent improvement in the parameters 

for molecular ions40 and imidazole and its derivatives41 that yield more accurate hydration 

free energies. As an overestimation of the atomic polarizability and the treatment of induced 

dipole-dipole moment interactions on selected side-chain aliphatic carbons was observed in 

the Drude-2013 FF, selected electrostatic parameters on these atoms were optimized. 

Additional parametrization includes adding atom pair-specific parameters to better treat the 

salt-bridge interactions among the charged protein functional groups. The resulting force 

field was examined and validated by simulating a number of peptide and protein systems in 

solution and comparison with experimental crystallographic and NMR data. Optimization of 

polypeptide backbone parameters Compared with the additive CHARMM36 and 

Drude-2013 FFs, the updated protein FF, referred to as the Drude-2019 protein FF, yields 

more stable structural properties based on RMSD analysis over 1 μs simulations, and 

generally improved agreement with experimental NMR data was obtained. Accordingly, the 

Drude-2019 FF yields a more accurate representation proteins in various environments, 

making it more applicable in simulation studies of proteins as well as other complex systems 

in conjunction with the remainder of the Drude polarizable force field.

COMPUTATIONAL METHODS

The backbone electrostatics parameters, including partial atomic charges, atomic 

polarizabilities and Thole screening factors were optimized by a reweighting approach using 

NMR J couplings of the solvated (Ala)5 peptide as target data42–45. The reweighting 

approach allows estimation of the effects of changes in parameters on the targeted 

condensed phase observables by directly computing the partial derivatives of the J couplings 

and is effective to explore the parameter space.13 The conformational ensemble of (Ala)5 

used for reweighting was generated with Hamiltonian replica exchange MD simulations (H-

REMD)46 performed as described in our previous study.21 However, the system consisted of 

12 replicas instead of 8, where the potential function was perturbed using a biasing potential 

grid correction energy map (bpCMAP)47 applied to the φ, ψ backbone dihedrals with 

scaling factors being 0, 0.03, 0.13, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.95 and 1.0 throughout 

the replicas. The scaling factor of 1.0 corresponds to a flat φ, ψ potential energy surface. The 

values of J couplings and their derivatives with respect to backbone electrostatics parameters 

obtained from the H-REMD simulations were then subjected to Monte Carlo simulated 

annealing (MCSA) to adjust the force field parameters for better agreement between 

computed and experimental J couplings.13
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Treatment of the φ, ψ conformational energies of the protein backbone is performed in part 

using the CMAP approach, as previously described48–49. Due to the intrinsic coupling 

between the backbone nonbond parameters and the CMAP potential in protein FFs, generic 

CMAPs had to be generated for each new version of the backbone nonbond parameters 

generated in the MCSA. These were generated by taking the difference between QM and 

MM φ, ψ PES of the gas phase N-acetylated and N’-methylamidated alanine dipeptide 

(ALAD) and used throughout the refinement. The MM surfaces were computed with 2D 

scan of the φ, ψ dihedral angles ranging from −180 to 180° in 15˚ increments for both 

dihedrals with no CMAP potential imposed, while the reference QM surface was computed 

at the MP2/6–311G(d,p)//RIMP2/CBS model chemistry by Q-CHEM.50–51 This QM surface 

was obtained from our previous work.21 Thus, for each change of the electrostatic backbone 

parameters generated during MCSA, a new generic CMAP is generated and its contribution 

to the partial derivative of the J-couplings is computed numerically and included in the 

reweighting calculations. Thus, the underlying conformational properties of the peptide 

backbone directly reproduce the gas phase QM MP2/6–311G(d,p)//RIMP2/CBS 

conformational energies based on the alanine, glycine and proline dipeptides.

MCSA fitting of alpha and Thole parameters for the Cβ and Cγ atoms of the amino side 
chains

Dipeptides that contain N-acetylated and N’-methylamidated termini were used as models 

for optimization of the electrostatic parameters of selected Cβ/Cγ/Cδ atoms in the amino 

acid side chains. Additional optimization of Gly, Pro and Ala was not performed as 

instabilities were not present in these amino acids. QM single point calculation of dipole 

moments and molecular polarizabilities were performed at B3LYP/aug-cc-pVDZ model 

chemistry, as previously used for the Drude force field52, using the Gaussian 03 program53 

on a set of dipeptide conformations obtained from Zhu et. al.54 These dipeptide 

conformations include varying the χ1 and χ2 dihedral angles by starting at −180° and −180° 

and incrementing them by 120° with the dipeptides constrained to three different backbone 

conformations (αR, β, and αL), with ϕ, ψ angles of αR (−60.0°, −45.0°), β (−120.0°, 

120.0°), and αL (63.5°, 34.8°), resulting in 48 conformations for each dipeptide except the 

valine dipepetide, which has 12 conformations by changing χ1 dihedral angles with the 

increments of 120°. A MCSA algorithm55 was used with CHARMM56–58 to optimize the 

alpha and Thole screening parameters21, 59–60 on the Cβ carbons for Asn, Asp, Ile, Cys, Thr, 

Met, Ser, Hsd, Hse, Hsp, and Trp, the Cβ and Cγ carbons for Gln, Glu, Arg, Leu) and the 

Cβ, Cγ, and Cδ carbons for Lys on side chains. The target data were the QM calculated total 

dipole moments and the x, y, and z components as well as the total molecular polarizabilities 

and the diagonal xx, yy, zz components, resulting in eight target values used in the MCSA 

for each dipeptide conformation. The scoring function for the MCSA was the root-mean-

square (RMS) differences between the MM and QM dipole moments and molecular 

polarizabilties over all the dipeptide conformations. During the fitting, a weighting factor of 

5 was assigned for αR and β backbone conformations and 1 for those from αL. In MCSA, 

the Drude dipole moments and molecular polarizabilities are obtained by reading the QM 

coordinates described above followed by relaxation of the Drude particles via a 

minimization by steepest-descent (SD) algorithm for 200 steps and then the adopted-basis 
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Newton-Raphson (ABNR) algorithm to a final gradient of 10−5 kcal·mol−1·Å−1 with the 

atomic positions restrained with a force constant of 107 kcal/(mol·Å2).

The molecular polarizabilities in the Drude force field are scaled to better reproduce 

experimental dielectric constants, with scaling factors ranging from 0.6 to 1.020, 61. As 

dielectric constants are not available for dipeptides, to determine their molecular 

polarizability scaling factors, systematic MCSA fittings were performed with five different 

random seeds and five different initial parameters (e.g. (Cβalpha, CβThole) = (−0.6, 0.6), 

(−0.8, 0.8), (−1.0, 1.0), (−1.2, 0.4), and (−1.2, 0.8)) to target the QM molecular 

polarizabilities. This procedure was repeated with the QM molecular polarizabilities scaled 

by 0.70, 0.80, 0.85, 0.90, 0.95 and 1.00. The resulting alpha and Thole screening parameters 

obtained from MCSA for dipeptides in the Drude model yield QM/Drude molecular 

polarizability ratios in the range of 0.7–0.8 for Glu, Met, Asp, and Cys, 0.8–0.9 for Arg, 

Ans, Gln, Hsd, Hse, Leu, Lys, Ser, and Thr, and 0.85–0.95 for Ile, Hsp, and Tyr. Note that 

the polarizabilities for remaining side chain moieties were the published scaled values 

ranging from 0.6–1.0 relative to the QM data. For example, 0.6 for sulfur containing groups, 

0.85 for nitrogen-containing heteroaromatics and 1.0 for the aliphatics. Additionally, using 

the MCSA fitted parameters obtained from targeting QM molecular polarizabilities scaled 

by 0.85 would yield the ratio of MM/QM molecular polarizabilities around 0.85 (as shown 

in Table S1) except the results for Glu and Asp, which is 0.76~0.77. Accordingly, the 

molecular polarizability scaling factor of approximately 0.85 is considered acceptable for 

the resulting Drude model.

χ1 and χ2 dihedral parameter fitting

Side chain χ1 and χ2 dihedral parameters for amino acids, excluding Ala, Gly and Pro, 

were initially fitted to target QM potential energy surfaces for the χ1 and χ2 torsions in 

amino acid dipeptides, where the same set of QM surfaces of the 2D dipeptide 

conformations obtained from Zhu et. al were used.42 Here, a linear least squares (LLS) 

automated fitting program62 was used to optimize the side chain dihedral parameters. 

Similar to the previously reported optimization scheme,21 a higher weighting factor of 5 was 

assigned for energies from αR and β backbone conformations and 1 for those from αL 

conformation due to the greater sampling of the former conformations in protein structures. 

For neutral side chains, an energy cutoff of 12 kcal/mol was applied, while all the energies 

higher than the cutoff were not used to avoid the fitting being biased by these high-energy 

regions. For charged side chains, higher energy cutoffs of 20 kcal/mol were used for Arg and 

Lys and 25 kcal/mol for Asp, Glu and protonated His. Amino acids sharing the same χ1 or 

both χ1 and χ2 parameters (Thr/Ile/Val, Lys/Arg/Met and Tyr/Phe) were fitted together. The 

multiplicities (n) in the dihedral parameters were limited to the combination of 1, 2 and 3 

and the phases (δ) were restricted to either 0 or 180°.

To reproduce their dihedral distributions from a crystallographic survey of the PDB,42 χ1 

and χ2 dihedral parameters optimized to target the dipeptide gas phase QM surfaces were 

subsequently adjusted to reproduce the survey dihedral distributions using condense phase 

simulations. The condense phase simulation system included the 9-mer peptide (Ala)4-X-

(Ala)4 solvated in a 32 Å cubic water box with the backbone restrained to the C7eq 
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conformation (−82.8°, 77.9°) conformation for each type of amino acid X. Hamiltonian 

replica exchange with the solute scaling method (REST2) was used as described previously 

to enhance sampling efficiency.21 In REST2, four replicas were used, and the potential 

energy of the replica Em computed according to equation 4, which includes the scaling of 

the peptide intramolecular energy (Epp), scaling of the peptide-water interaction energy 

(Epw) and the unscaled interaction energy between the water molecules (Eww), where T0 = 

300 K for the 0th replica and the effective Tm = 329 K, 363 K, and 400 K for the other 

replicas. Note that all replicas were run at the same temperature T0, and only the 0th replica 

corresponds to the desired equilibrium distribution at T0. A 10 ns solute scaling simulation 

with an exchange attempt frequency of 0.1 ps−1 was conducted for each (Ala)4-X-(Ala)4 

system. Probability histograms of the χ1 and χ2 distributions from MD simulations were 

generated using a bin size of 15° and the overlap coefficient (OC) between two probability 

distributions and those from the crystallographic survey42 were calculated as shown in 

equation 5. To improve the OC, manual adjustment as well as the reweighting method 

(Figure S1) based on the condensed phase (Ala)4-X-(Ala)4 simulations were performed.

Em = T0
Tm

Epp + T0
Tm

Epw + Eww Equation 4

OC = ∑ pmpn

∑ pm2 ⋅ ∑ pn2
Equation 5

Optimization of interactions between charged protein model compounds

Atom pair-specific non-bonded parameters63 were introduced targeting the QM interaction 

energies between charged protein model compounds. The charged protein model compounds 

are methylammonium (MAMM), methylguanidinium (MGUAN) and imidazolium (IMIM) 

that represent the positively charged side chains and termini, and acetate (ACET) that 

represents the negatively charged side chains and termini. In preparation of QM target data, 

the gas phase geometries of the monomer model compounds were optimized at the MP2/

aug-cc-pVDZ level with the Gaussian 03 program.64 Interaction energies between the 

positively and negatively charged model compounds were performed using the QM gas 

phase model compound at the MP2/cc-pVQZ model chemistry including the basis set 

superposition error correction of Boys and Bernardi.65 In the MM calculation performed by 

CHARMM,56–58 relaxation of the Drude particles was performed via minimization by the 

steepest-descent (SD) and adopted-basis Newton-Raphson (ABNR) algorithms to reach a 

gradient of 10−5 kcal·mol−1·Å−1 while the atomic positions were restrained with a force 

constant of 107 kcal/mol/Å2. This step was performed for the individual monomers and then 

for the complex from which the total energies were obtained to calculate the interaction 

energy.

Osmotic pressure was calculated for guanidinium-acetate (GUAN-ACET) solution systems 

where their experimental values is available.13 Calculation of osmotic pressure was based on 

the algorithm described by Luo and Roux.66 In this approach, the effect of ideal 
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semipermeable membranes was modeled by two virtual walls, separating a region that 

contains a high concentration of the ions from a pure water region. The mean force on the 

virtual walls placed by the ions is directly correlated to the osmotic pressure, as defined in 

equation 6. Systems with given concentrations were built by randomly placing the ions 

within the central part of a rectangular cell box of 45×45×90 Å3. The z-axis was aligned 

with the longest axis of the rectangular cell box with the center located at the coordinate 

origin (x=0, y=0 and z=0). During the simulation, the ions were constrained by the virtual 

walls that were defined as a half-harmonic planar restraint at zwall = ±22.5 Å with a force 

constant of 10 kcal mol−1Å−2 , such that ions were kept confined in the central region of the 

rectangular cell box while water molecules were allowed to freely pass through these walls.

Fwall = k 1 N ∑N ∑i zi − zwall Equation 6

According to equation 6, the osmotic pressure was calculated as Fwall /A, where A is the 

cross-sectional area (452 = 2025 Å2), 〈Fwall〉 is the restraint force exerted on the wall by the 

ions, k is the force constant, N is number of frames, and I is the index of the ions. 

Simulations were carried out in NAMD using the extended Lagrangian integration method 

implemented in NAMD.67–68 The Langevin dynamics parameters, the treatment of Lennard-

Jones (LJ) potential and electrostatic forces parameters for NAMD are the same as described 

for the NAMD simulations in the next paragraph. Pressure coupling using Langevin piston 

pressure control was applied along the z-axis while the x- and y-dimensions were fixed to 

maintain a constant area for each virtual wall. Following a 1 ns equilibration simulation, 

production simulations were carried out at each concentration for 50 ns with coordinates 

saved every 10 ps. The mean force was further averaged between the two half-harmonic 

walls. Finally, osmotic pressure values were subsequently calculated according to equation 6 

using CHARMM.56–58 Three concentrations of the guanidinium acetate solution studies 

were 0.3, 0.4 and 0.5 M, in which cases 16, 22 and 27 guanidinium and acetate ion pairs 

were included in the simulation systems, respectively.

Molecular dynamics of validation systems

Validation systems are summarized in Table 1 with their backbone 3D structures shown in 

Figure S2. Starting coordinates for all the peptide/protein structures were taken from the 

Protein Data Bank.69 The protein coordinate and structure files were initially prepared in 

CHARMM additive formats using the Solvator module in the CHARMM-GUI.70 The 

resulting additive coordinate and structure files were then submitted to the Drude Prepper 

module in the CHARMM-GUI to obtain files in Drude format. Each system was solvated in 

a cubic box with a 10 Å minimum distance between the edge of the box and the protein. The 

SWM4-NDP model71 was used for water and Na+ or Cl− ions72–73 were added to neutralize 

the systems (Table 1). Equilibrations were carried out using NAMD.51,52 The extended 

Lagrangian approach with a dual-Langevin thermostat was used for integrating the equations 

of motion, where the temperature was maintained at 300 K for real atoms and at 1 K for 

Drude oscillators with thermostat friction coefficients of 5 ps−1 and 20 ps−1 respectively.51 

SHAKE was used to fix covalent bonds involving hydrogen atoms.74 Short-range LJ forces 

were potential switched to zero from 10–12 Å.75 Electrostatic interactions were computed 

with the smooth particle mesh Ewald (PME) method with a real space cutoff of 12 Å, a 
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kappa factor of 0.34 and a 6-order spline.76–77 The Drude Hardwall constraint was set at 0.2 

Å to prevent polarization catastrophe78 and analysis was undertaken to assure that the 

nuclei-Drude particle distances were not reaching 0.2 Å during the simulations. Each system 

was equilibrated under an isothermal-isobaric (NPT) ensemble, where the pressure was set 

at 1 atm using Langevin piston pressure control79 with a piston oscillation period of 200 fs 

and a relaxation time of 100 fs. A 100 ps equilibration was performed with a 0.5 fs time step 

with all heavy atom restrained using a harmonic force constant of 1 kcal/mol·Å2. Following 

equilibration, restraints were removed and production simulations were carried out using 

OpenMM.80–82 The parameters for production simulations were similar to those used in 

equilibration with the following differences. The simulations were carried out for 1μs with 

the Drude Langevin integrator using a 1 fs time step.68 The pressure was maintained at 1 

atm using the Monte Carlo barostat83–84 with pressure changes attempted every 25 steps. 

The Drude Hardwall constraint was set at 0.25 Å78. All analyses were carried out using 

facilities within CHARMM.53–55 Analysis of protein secondary structures were performed 

using the DSSP program.85 Dipole moment analysis of the peptide backbone included the 

charges on the following atoms and their Drude particles (C,O,N,H,Cα and Hα atoms, the 

sum of whose charges are neutral) following alignment of the non-hydrogen atoms to the 

corresponding atoms from the crystal structures.

Molecular dynamics simulations using the additive model were performed as well for 

comparison. Simulation procedures were in a similar manner as those for the Drude 

calculations with the following exceptions. The CHARMM36m force field13 was used for 

the protein. In equilibration using NAMD,52 LJ forces were force switched to zero from 10–

12 Å.62 Pressure control was based on a Nosé–Hoover Langevin piston algorithm.79, 86 A 

100 ps equilibration was performed with a 1 fs time step. In production using OpenMM,66,67 

the velocity Verlet integrator used a 2 fs time step, and the Andersen thermostat87 was used.

RESULTS AND DISCUSSION

The optimization of the Drude-2013 protein force field included further adjusting selected 

backbone, side chain and atom pair-specific parameters (NBFIX in CHARMM53–55). To 

ensure more stable protein/peptide secondary structures, including both α-helices and β-

sheets, efforts have been made to optimize the backbone electrostatic parameters based on a 

reweighting protocol that targeted the conformational properties of the (Ala)5 peptide in 

combination with a CMAP based on the alanine dipeptide that reproduces a QM gas phase 

2D φ, ψ potential energy surface (PES). To achieve better reproduction of experimental 

hydration free energies of selected protein functional groups, parameters for histidine were 

updated based on recent improvements to imidazole and the 4-methylimidazole tautomers,40 

and charged moiety parameters were updated based on results for representative molecular 

ions.39 Other improvements in the nonbond parameters included recently published 

improvements in NBFIX parameters between both positive and negative groups and ring 

systems, including cation-π interactions.104 As the electrostatic parameters on the aliphatic 

groups, particularly with Cβ or Cγ carbons, required adjustments, a systematic 

parametrization of these terms was performed. Following the change of the backbone and 

side chain parameters, the χ1 and χ2 dihedral parameters were fitted to obtain 

conformational properties that better mimic those occurring in full proteins. Finally, NBFIX 

Lin et al. Page 9

J Chem Theory Comput. Author manuscript; available in PMC 2021 May 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



parameters were included between charged moieties to improve the salt-bridge interactions 

among protein functional groups. The resulting protein FF, referred to as Drude-2019, was 

applied in MD simulations of a series of peptide and protein systems to examine their 

stability and the ability of reproducing experimental NMR properties.

Optimization of the protein backbone electrostatic parameters

Alanine peptides have been used widely for the study of peptide conformation.105–106 In this 

study, the widely studied (Ala)5 peptide was used to optimize the peptide backbone 

electrostatic parameters with the CMAP adjusted to reproduce the QM gas phase alanine 

dipeptide 2D potential energy surface. 500 ns simulations of (Ala)5 were performed from 

which the backbone dihedral distributions were obtained and used to calculate the J-coupling 

constants. The same χ2 calculation as performed by Best et al.107 was applied to evaluate 

the deviation of the J-coupling constants from the experimental values. Table 2 shows the 

comparison of the computed J-coupling constants between the experimental data and the 

Drude-2013 and Drude-2019 models. With the final optimized backbone and CMAP 

parameters, i.e. Drude-2019 FF, the RMS is 0.85 and χ2 is 5.90 (or 2.28 excluding the J 
3(C,C) of residue index 2), while using the Drude-2013 FF the RMS is 0.93 and χ2 is 7.41 

(or 3.23 excluding the J 3(C,C) of residue index 2). Although the χ2 is still larger than the 

values reported by other models,22,91 the improvements associated with re-optimization of 

the backbone in conjunction with a CMAP that reproduces gas phase QM MP2/6–

311G(d,p)//RIMP2/CBS energetics of the alanine dipeptide 2D φ, ψ PES are evident with 

respect to the experimental NMR values.

Optimization of the protein side chain parameters

Molecular dipole moments and polarizabilities—In the original Drude-2013 protein 

FF, the amino acid parameters were built using parameters initially optimized targeting the 

model compounds that represent individual side chain functional groups and the peptide 

bond model compound N-methylacetamide (NMA). This led to the electrostatic parameters 

of the linking aliphatic carbons (e.g. Cβ and Cγ) being derived from the terminal methyl 

groups on the side chain model compounds. However, as the electronic response in the 

terminal methyl carbons (-CH3) are different from those of the -CH2- carbons in the 

proteins, this led to overestimation of the atomic polarizabilities and Thole screening factors. 

For example, the original Cβ derived from the methyl carbon (-CH3) has relatively larger 

alpha and Thole parameters (−1.804 and 2.080 respectively), which results in higher atomic 

polarizability and induced dipole-dipole interactions with adjacent atoms. This is not 

unexpected as a higher alpha parameter will result in a larger Drude charge (qD), yielding a 

larger induced atomic dipole. On the other hand, a higher Thole screening factor will result 

in higher values of S in equation 3, such that the Coulomb interactions will be less damped 

(Figure S3). This leads to larger nuclei-Drude particle distances, leading to multiple 

encounters with the Drude Hardwall (Figure S4). The presence of the Drude Hardwall is to 

avoid polarization catastrophe due to low probability displacements of the Drude that may 

occur during long MD simulations. However, if the Drude particles are encountering the 

Hardwall at a high frequency, the ensemble of the polarized states is not correct, leading to 

an improper electronic response and incorrect thermodynamics of the system. Therefore, to 

obtain a balanced electronic response it was necessary to correct the overestimation of the 
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polarizabilities and Thole screening factors by application of MCSA fitting of electrostatic 

parameters for the problematic side chain aliphatic carbons targeting dipeptide dipole 

moments and molecular polarizabilities. Computed average difference between the Drude 

gas phase molecular dipole moments and the QM values as well as the average ratio of the 

gas phase molecular polarizabilities over the QM values are summarized in Table 3. Overall, 

the final electrostatic parameters obtained from the MCSA fitting of the selected Cβ, Cγ, 

and Cδ carbons of the dipeptides yield better agreement with the target QM molecular 

dipole moments and the polarizabilities, with smaller averaged dipole moment differences 

among all types of dipeptides (−0.04 Debye) and the averaged ratio of the MM and QM 

molecular polarizabilities of 0.83 being close to the target scaling of 0.85. These results 

indicate that the optimized model is capable of capturing polarization response more 

consistently over different types of dipeptides. Importantly, when these parameters were 

applied in MD simulations, the nuclei-Drude distances systematically stayed under the value 

of 0.2 Å (Figure S4), thereby correcting the inappropriate electronic response obtained with 

the Drude-2013 force field.

Side chain χ1 and χ2 dihedral parameter optimization—Re-optimization of χ1 

and χ2 parameters was required due to the change in the sidechain electrostatic parameters. 

Proper treatment of the χ1 and χ2 conformational properties is important as they impact the 

conformational distribution of the polypeptide backbone.108–110 χ1 and χ2 parameter 

optimization was performed by initially targeting QM potential energy surfaces for the 

respective side chain dipeptides. Then, these parameters together with the optimized 

backbone parameters were used in H-REMD simulations of (Ala)4-X-(Ala)4 in solution and 

optimized targeting the χ1 and χ2 dihedral distributions from a crystallographic survey.42 

Presented in Table 4 are the RMSDs between the MM and QM 2D potential energy 

surfaces42 for the χ1 and χ2 torsions in the amino acid dipeptides. Table 5 shows the 

overlap coefficients (OC) for χ1 and χ2 distributions from the (Ala)4-X-(Ala)4 in the C7eq 

conformation with those from a crystallographic survey.42 Optimization of χ1 and χ2 

parameters based only on the gas phase dipeptides resulted in good agreement with the 

target QM potential energy surfaces (Initial w/Cutoff in Table 4), with RMSDs below 2.0 

except for the Glu dipeptide. However, to fit to aqueous phase conformational properties that 

are representative of full proteins, χ1 and χ2 parameters were further adjusted 

compromising the level of agreement with the target QM data (Table 4, Final/w Cutoff) 

leading to an increase in the RMSD from 1.43 to 1.84. Nevertheless, the final χ1 and χ2 

parameters still yield improved overall agreement with the QM data as compared to 

Drude-2013 as well as overall better OC values, that are typically higher than 0.8 (Table 5).

Optimization of interaction energies between charged protein model 
compounds—Salt bridges represent one of the strongest non-covalent interactions in 

proteins, requiring that careful attention be placed on their modeling. The optimization 

included introducing atom pair-specific LJ parameters (NBFIX) to target the QM interaction 

energies between selected model compounds with different interaction geometries (Figures 

1, 2 and 3). The interaction energies with Drude-2013 FF displayed poor agreement with the 

QM target data (Figures 1, 2 and 3 in red), whereas the optimized Drude-2019 FF yielded 

significant improvement in the balance of these interaction energies (Figures 1, 2 and 3 in 
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blue). Note that as the atom types in GUAN and MGUAN are shared together, their NBFIX 

parameters for the interactions with ACET must be compromised. Accordingly, emphasis 

was placed on obtaining better agreement with the MGUAN-ACET QM interactions Figure 

2a as MGUAN is more representative of the side chain of Arg. The optimized NBFIX 

parameters for GUAN and ACET were also validated in osmotic pressure simulations, where 

their agreement with the experimental values were deemed acceptable (Table 6).

Validation of the optimized Drude-2019 force field in peptide and protein 
simulations—Simulations were performed on the peptides and proteins listed in Table 1 to 

validate the optimized Drude-2019 FF. A majority of the peptides/proteins were small, being 

less than 150 amino acids (aa), as they are more computationally expedient to test the ability 

of the force field to maintain their folded structures as compared to larger protein systems. 

Additional validation calculations were performed on two membrane-bound ion channels as 

described below. All systems in Table 1 were run with the additive CHARMM36m (C36m) 

and polarizable Drude-2013 FFs along with the newly optimized Drude-2019 model. RMSD 

analysis was performed on all the peptides and proteins based on the backbone Cα atoms 

(Table 7) and on the backbone and side chain non-hydrogen atoms in Table S2–S3. The 

Drude-2019 FF yields overall improvements with respect to both additive C36m and 

Drude-2013. For the small systems with less than 50 residues the backbone RMSDs with the 

optimized Drude-2019 FF are consistently smaller than Drude-2013 and smaller or similar 

to those from the additive CHARMM36m FF. Notable are 1U0I, 1EJG, and 2EVQ which 

largely unfold in the C36m FF (Figure S18) but are stable with the Drude-2019 on the 

microsecond time scale. Similar results occur with the larger validation proteins. Systems 

1QX5, 1MJC and 2IGD all show large RMSD with the additive C36m FF with the RMSD 

being significantly smaller with 1MJC and 2IGD with Drude-2019. 1QX5, apocalmodulin, 

normally binds Ca2+ ions and has a totally charge of −24; a small improvement is seen in 

both Drude models, though the RMSD values are still large, which is associated with 

domain motions in the protein, with those individual domains maintaining their overall 

structures with the polarizable FFs (Figure S19). Several other proteins including 4IEJ, 

2QMT, 1IFC, 6LYT, 135L and 1P7E have smaller RMSDs with C36m as compared to 

Drude-2019. Thus, Drude-2019 overall maintains the folded state of both small and larger 

proteins as compared to C36m with the additive model showing smaller RMSD with some 

proteins that are stable with both the additive and polarizable FFs. While not analyzed in 

detail, the RMS fluctuations for the additive and Drude-2019 FFs were similar for those 

proteins that maintained their folded states throughout the MD simulations.

The proteins crambin (PDB: 1EJG), ubiquitin (PDB: 1UBQ), and lysozyme (PDB: 6LYT) 

have also been studied using the AMOEBA protein FF.22 The reported backbone RMSDs 

were approximately 1, 2, and 2 Å for the three proteins, respectively, within 30 ns 

simulations. As seen in Table 7 and Table S2 the Drude-2019 FF yields Cα RMSDs of 1.28, 

2.45, and 2.08 Å and backbone RMSDs of 1.37, 2.40, 2.05 averaged over 1 μs simulations. 

Thus, the new Drude-2019 yields similar RMS difference as compared to AMEOBA in 

simulations of significantly longer duration with Drude-2019.

Notably, the optimized Drude-2019 model in general reduces the flexibility and yields more 

stable β sheet structures as compared to Drude-2013. This is evidenced in simulations of the 
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GB3 domain (PDB: 2IGD) and the stable hairpin HP7 peptide (PDB: 2EVQ) (Figure 4). In 

these simulations, the Drude-2013 does not yield stable structures for either protein. 

Simulations using a variant of Drude-2013 that only included the optimized backbone 

parameters, Drude-2013-opt-backbone, yielded structures closer to the experimental 

structures, though significant differences are evident. With the GB3 protein the hydrogen 

bonds within the β-hairpin structure are still disrupted (Figure S5b) leading to the larger 

RMS differences. These results indicate that while the updated backbone parameters 

facilitated the stabilization of the hydrogen bond within the β-hairpin structures, additional 

optimization was required. Accordingly, the optimization of the selected side chain 

parameters in the Drude-2019 FF leads to the simulated GB3 protein becoming more stable 

(Figure 4a, blue) due to the β-hairpin hydrogen bonds being maintained (Figure S5d). 

Similar behavior is also found in the HP7 peptide system where the optimized Drude-2019 

FF significantly stabilized the β-sheet structure throughout the 1 μs simulation (Figure 4b, 

blue). Note that a stable simulated β-sheet structure is expected as the melting temperature 

of the HP7 peptide is 66°C,78 and thus the folded state should dominate at 300 K. It should 

be noted that more stable β-sheet structures were obtained simply after re-optimizing the 

electrostatic parameters of the selected side chain aliphatic carbons (e.g. Cβ, Cγ, or Cδ, not 

shown). Therefore, better treatment of their atomic polarizabilities and Thole screening 

factors leading to lower induced dipole moments serves as an important step toward 

reaching the optimized Drude-2019 FF.

Further investigation into the structural properties of the optimized model involved analysis 

of the ϕ, ψ distributions in the larger proteins having more than 50 amino acids. Presented in 

Figure 5 are the ϕ, ψ inverted Boltzmann weighted distributions over the large (a.a. > 50) 

protein simulations reported in Table 1. Both the Drude-2013 and optimized Drude-2019 

models populate regions consistent with those obtained in protein crystal structures (shown 

as black dots), with the location of the minima in all the models consistent with the reported 

survey data.21 Notably, the optimized Drude-2019 model exhibits a more defined β region 

(Figure S6, −180° < φ < −90° and 50° < ψ < 180° plus −180° < φ <−90° and −180° <ψ < 

−120 or 160°<φ< 180° and 110° < ψ < 180° ), while the original Drude-2013 model samples 

a slightly overall wider range of ϕ, ψ space.

With respect to C36m, the Drude models both sample a wider region around the basin 

defining the extended, β-type secondary structures. This includes the region around ψ = 60–

100˚ between the α-helical and extended regions (φ ~ −90˚); this region is sampled less in 

Drude-2019. Another region is at a lower φ values from −120 to −150˚. Importantly, these 

regions are sampled in the crystal structures, though it is not possible to robustly compare 

the amount of sampling in the simulations with the available experimental data.

NMR Analysis—NMR observables contain valuable information about the conformational 

properties of proteins in solution. To evaluate the behavior of the optimized Drude-2019 

model in solution conditions, NMR properties from MD simulations were computed for the 

proteins ubiquitin (PDB: 1UBQ), protein GB1 (PDB: 2QMT), cold shock protein A (PDB: 

1MJC), apocalmodulin (PDB: 1QX5), intestinal fatty acid binding protein (PDB: 1IFC), and 

hen lysozyme (PDB: 6LYT). These systems were selected as they served as model systems 

in evaluating the C36 force field.111 The NMR properties computed in this study include the 
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hydrogen bond scalar coupling, h3JNC, which represents the coupling between N and C 

nuclei across N-H···O=C hydrogen bonds through space.112–114 As their magnitudes are 

correlated with hydrogen bond geometries115 and are sensitive to hydrogen bonding network 

dynamics and cooperativity in proteins,42–44 they are informative to assess the force field 

quality in reproducing the hydrogen bonds across backbones. A summary of the h3JNC 

couplings is shown in Table 8. Comparison of individual calculated and experimental h3JNC 

values are shown in Figure S7. With the optimized Drude-2019 FF, most of the correlations, 

average differences and RMS differences between the calculated and experimental h3JNC 

couplings are improved as compared to the Drude-2013 FF. When compared to the C36m 

model, the Drude-2019 FF shows poorer agreement with respect to the correlation with the 

experimental data, though the average and RMS differences are similar. These results 

suggest that specific structural features being monitored in Drude-2019, such as those 

associated with specific residue types, may be problematic, with additional studies required 

to investigate this in more detail.

Additional NMR analysis includes the calculation of peptide backbone N-H order 

parameters, S2. The S2 value represents the internal re-orientational motions, with the 

magnitude ranging from 0 to 1. Typically, the lower S2 value corresponds to larger internal 

motions, while the higher S2 value corresponds to a more rigid structure.116 Therefore, the 

calculated S2 from MD simulations provides a way to measure the rigidity of each protein 

residue. Analysis involved comparisons of the average order parameters for each protein 

(Table 9) and the correlations and differences as a function of the residues in each of the 

proteins (Table 10). In Table 9, the calculated S2 for all protein systems with Drude-2019 FF 

are improved versus both the additive C36m and Drude-2013 FF results, which 

underestimate the S2 values. With C36m poor agreement is observed with 1MJC and 1QX5 

associated with the instability of these proteins based on the RMSD analysis (Table 7). 

Concerning the simulated and experimental S2 values for each residue in the proteins (Table 

10), the correlations are similar for C36m and Drude-2019, with the polarizable model 

giving improved average and RMS differences, again due to the problematic 1MJC and 

1QX5 proteins. The performance of Drude-2019 is clearly improved over Drude-2013 

across the board.

Further analysis includes the calculation of S2 order parameters, RMS fluctuation, and 

secondary structures as a function of each residue (Figure S8–S13). It is possible that the 

lower S2 values in all three FF models as compared to experiment (Table 9) is due to the 

residues not in helix or sheet secondary structures, as seen in the secondary structure 

analysis and a corresponding larger RMSF of those residues (Figure S8–S13). Notably, 

while in the regions of secondary structure the RMSF of Drude-2013 and Drude-2019 are 

similar, the Drude-2013 shows significantly large RMSF and lower S2 values in the random 

coil regions. This suggest that the instability caused by the overestimated dipole-dipole 

interactions from the Drude-2013 FF could be from the more flexible residues in random 

coil regions (or loops). Thus. for the small peptide systems where the loop regions dominate, 

the impact of the instability was more obvious as reflected in the RMSD analyses (Table 7).

Validation of the optimized Drude-2019 in membrane protein simulations—
Membrane proteins ion channels pose special challenges for any force field. The narrow 
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permeation pore represents a singular environment where strong interactions between ions, 

water molecules and proteins play a critical role. Induced polarization associated with the 

permeant ions in these systems has long been thought to be important117–118. To ascertain 

the accuracy of the Drude-2019 FF in the treatment of membrane-bound proteins as well as 

ion channels simulations were performed on bacterial potassium KcsA channel and the 

gramicidin A channel. The KcsA channel (~400 aa) is comprised of four identical subunits 

with two transmembrane α-helices (TM1 and TM2) separated by a long pore (p) loop 

forming a narrow pore allowing the selective permeation of K+ in single file. The gramicidin 

channel (34 aa) is formed by head-to-head dimerization of single-stranded, right-handed 

beta β6.3 helices. The wealth of experimental and computational information about these 

proteins make them excellent prototypical model systems for investigating the relationship 

between structure and function of ion channels. Two high-resolution structures for the KcsA 

channel representing conductive (PDB: 1K4C)119 and inactive (PDB: 1K4D)119 states, were 

simulated. All systems were simulated with the additive C36m and the optimized 

Drude-2019 model for 250 ns. In addition, the 1K4C system was simulated for 100 ns using 

the Drude-2013 FF. RMSD analysis was performed on all the proteins based on the non-

hydrogen backbone atoms for the entire proteins and, for 1K4C and 1K4D, residues defining 

the selectivity filters, the narrowest part of the KcsA channel formed by the highly 

conserved amino-acid sequence TTVGYGD.

For the KcsA channel, the conformational behavior for the whole protein with the optimized 

Drude-2019 FF are consistently similar with the additive C36m FF for both 1K4C and 1K4D 

structures. As shown in Figure 6A and 6C, the Drude-2019 FF yields backbone RMSDs of 

1.67 Å (1K4C) and 1.62 Å (1K4D) averaged over the 250 ns, whereas the average backbone 

RMSDs using C36m FF is 1.72 Å (1K4C) and 1.64 Å (1K4D). In terms of the whole 

protein, Drude-2019 yields similar, even slightly smaller RMS difference as compared to 

C36m. From a functional point of view, the selectivity filter is critical for the selective 

conduction of K+ ions. Furthermore, this region of the KcsA channel corresponds to an 

atypical backbone secondary structure. Several consecutive backbone carbonyls are pointing 

toward the central pore axis in the conductive conformation (Figure 6B) whereas the pore is 

tightly constricted at its center in the non-conductive inactivated conformation (Figure 6D). 

The stability of these selectivity filter conformations, maintained by a combination of 

hydrogen bonding and packing interactions, can be very sensitive to the accuracy of the 

force field in MD simulations. During the 250 ns simulations using Drude-2019 FF without 

any restraint, the selectivity filter maintains a conformation very similar to that in the crystal 

structures (Figure 6B and 6D). In addition, the K+ ions occupancy also maintains canonical 

configurations in both conductive and inactive states (Figure 6B and 6D). While only 

simulated for 100 ns with the 1K4C structure, the Drude-2013 FF shows larger RMSD value 

for the filter as compared to both C36m and Drude-2019, indicating the improvements in the 

polarizable model associated with the additional optimization.

The gramicidin A channel exhibits a similar structural stability in the simulations using the 

Drude-2019 FF and C36m FF. Although the Drude-2019 simulation displays slightly higher 

RMSD than the C36m simulation in the first 130 ns, it drops to approximate 0.5 Å as in the 

C36m simulation in the last 120 ns (Figure 6E). Occupancy of water molecules in single-file 

along the narrow pore is a sensitive feature for the gramicidin channel revealed by a previous 
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computational study121. This single-file water is also reproduced by the Drude-2019 

simulation, with a complete hydrogen-bonded water chain shown as the predominant 

configuration in the pore region of the gramicidin channel (Figure 6F and 6G). Reproducing 

detailed conformational properties of the KcsA and gramicidin A channels and providing 

accurate water interaction energies in the simulations, the polarizable Drude-2019 FF 

promises to enable a more accurate description of the key functional processes for these 

important membrane proteins and how electronic polarizability contributes to those 

processes.

Analysis of variations in peptide bond dipole moments—The central motivating 

factor for the development of a force field that explicitly treats electronic polarizability is the 

presence of variations of the electronic structure as a function of environment. To illustrate 

this the dipole moment characteristics of peptide bonds associated with different types of 

secondary structure were investigated by performing MD simulations using the Drude-2019 

FF for MBH12 (PDB ID: 1K43, type: β-sheet), HP7 (PDB ID: 2EVQ, type: β-sheet), and 

Trp-cage (PDB ID:1L2Y, type: α-Helix) at 370 K, 370 K, and 400K, respectively. This 

allowed for the peptides to initially sample their folded structures and then unfold to varying 

degrees, thereby sampling different types of secondary structure based on DSSP analysis in 

the same peptides.

The MBH12 protein unfolded quickly at 370 K at around 30 ns as seen by RMSD values 

(Figure 7). The DSSP analysis highlighted the unfolding of the beta-sheet structure, which 

was accompanied by the loss of the H-bond interactions between the peptide bond carbonyl 

oxygens and nitrogen hydrogens of the THR4-TYR11 and TYR6-ILE9 residue pairs. Loss 

of the secondary structure is accompanied by higher fluctuation in dipole moment 

components and total values as may be seen in the distributions shown in Figure S17. The 

probability distributions of the peptide bond dipole moment components and total values for 

the residues in β-sheet region of the folded state (THR4-TYR11 and TYR6-ILE9) depends 

on the occupied secondary structure (Figure 8). When they are in the β-sheet conformation, 

indicated by DSSP state E, there tends to be an increase in the total dipole. However, the 

variations in the individual dipole components are less consistent. For example, in residue 4 

there is a shift to more negative values in the x and y component while there is an shift 

towards more positive values in residue 11. This indicates the sensitivity of the local 

electronic structure to the environment in the context of both secondary structure and 

sequence. For HP7 the peptide unfolds after 270 ns simulations as evidenced by the RMSD 

analysis (Figure S14). DSSP analysis showed this to correspond to the unfolding of the β-

sheet structure and the loss of the H-bond interactions between the backbones of residue 

pairs THR2 - THR11 and ASN4 - LYS9. This is associated with a general increase in the 

fluctuations of the dipole moment indicating that the peptide bond dipole moments are 

impacted by the type of secondary structure (Figure S14d–e). This is shown in more details 

in Figure S15 where the probability distribution of the peptide bond dipole components and 

total values for the different types of secondary structure are shown for the β-sheet sheet 

residues; variations in the distributions for the particular secondary structure are evident in 

the dipole components as well as the total dipole moments. The third system studied, the 

Trp-cage protein, includes a two turn α-helix. At 400 K the peptide unfolded rapidly by ~30 
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ns, coinciding with the loss of (i, i+4) hydrogen bond interactions between ILE4-LYS8 and 

GLN5-ASP9 (Figure S16). This behavior was similar to the cooperative unfolding of an 

amyloid helix previously reported by our lab122. Interestingly, partial refolding of the helix 

occurs at ~200ns and then again at ~450 ns with the helical content being largely maintained 

out to 700 ns. Analysis of the dipole components again show variations as a function of 

secondary structure and of sequence. In general the probability distributions of the dipole 

moment components showed wider distribution for the random-coil state and there tended to 

be a decrease in both the components and total dipole moments in the helical versus the turn 

or random-coil structures, with the difference typically larger with respect to the random-coil 

conformations (Figure S17). However, variations in behavior are again evident, with the x 

component of residue 5 shifted to slightly larger values in the helical state relative to random 

coil in contrast to the majority of the remaining residues. These results further indicate the 

sensitivity of the peptide bond dipole moments to both type of secondary structure and 

amino acid sequence, phenomena that are not accessible to additive force fields.

CONCLUSIONS

Presented is an updated polarizable empirical FF based on the classical Drude oscillator for 

the modeling and simulation of peptides and proteins. The optimization included optimizing 

the backbone parameters, selected side-chain functional groups, electrostatic parameters of 

aliphatic carbons (e.g. Cβ, Cγ or Cδ), side-chain χ1 and χ2 dihedral parameters, and salt-

bridge interactions among protein charged residues. The optimized backbone parameters 

result in better treatment of the hydrogen bond and ϕ, ψ conformational properties. The 

optimized charged functional groups derived from the updated molecular ion force field are 

expected to have more accurate water interaction energies and hydration free energies.39

While the protein FF is typically constructed from small model compounds representative of 

the all relevant protein functionalities, we found that direct use of the electrostatic 

parameters of aliphatic Cβ, Cγ or Cδ carbons was not appropriate. In Drude-2013 this 

yielded high atomic polarizability and Thole screening factors leading to overestimation of 

the atomic polarization and induced dipole-dipole moment interaction resulting in the local 

nuclei-Drude particle distance encountering the Drude hardwall used to avoid polarization 

catastrophe in Drude-2013 simulations at a high frequency. This results in non-adiabatic 

conditions that do not yield correct ensembles. To correct this, we systematically optimized 

those electrostatic parameters for the linking aliphatic carbons, yielding better treatment of 

the electronic response. As the side chain χ1 and χ2 parameters will affect the backbone 

torsional conformational properties and vice versa, additional optimization of these 

parameters was performed, yielding better agreement with the χ1/χ2 probability 

distributions from a crystallographic survey. Finally, the salt-bridge interactions were 

investigated and optimized by introducing the atom-pair specific LJ (NBFIX) parameters for 

the charged functional groups.

The resulting optimized model, referred to as Drude-2019, was validated in explicit solvent 

MD simulations on the 1 μs time scale for a collection of peptides and proteins. Overall, the 

Drude-2019 model displays a reduced conformational flexibility as compared the 

Drude-2013 model as estimated from RMS differences with respect to crystal structures and 
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computed NMR properties while, interestingly, the flexibility was typically slightly smaller 

than the additive C36m model. Such reduced flexibility could be attributed to the optimized 

treatment of the polarization and induced dipole-dipole interactions on the side chains. 

Improved agreement over the additive and Drude-2013 models was also observed in 

simulations of two prototypical ion channels with narrow pores, indicating the utility of the 

force field in more complex, heterogeneous systems.

An important outcome of the Drude-2019 force field is its ability to account for and to 

specifically investigate variations in electronic structure as a function of environment. 

Analysis of three peptides simulated at high temperatures allowing them to sample both 

folded and unfolded states showed the ability of the force field to model changes in the 

electronic structure based on the dipole moments of selected peptides bonds. Notable is the 

heterogeneity of the changes in the dipole moments both as a function of secondary structure 

and of primary sequence. These results are consistent with previous studies using the Drude 

FFs for lipids78, 123, proteins21, 124, nucleic acids125–128 and carbohydrates,59, 129–131 

indicating the power of the Drude, as well as other polarizable force fields in accounting for 

explicit changes in electronic structure as a function of environment in condensed phase 

macromolecular simulations.

In summary, the optimized Drude-2019 model provides a greatly improved picture of the 

structure and function of peptides and proteins. Since 2013, efforts have been towards the 

further optimization of the Drude polarizable FF, including updating the nucleic acids,
125–128 lipids,78, 123 carbohydrates,59, 129–131 and ion36, 132 parameters. Recent 

implementation of the Drude model in NAMD,67–68 OpenMM,82 and GROMACS133–134 

will facilitate the application of the Drude polarizable force field in simulations up to 

hundreds of nanosecond or microsecond time scales. The current enhancements and 

capabilities will allow for wider computational studies of heterogeneous systems based on 

this optimized Drude-2019 model in conjunction with the remainder of the polarizable 

Drude FF.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Interaction energies between methylammonium (MAMM) and acetate (ACET) in a) to c) 

using the QM (blue), Drude-2013 (red) and optimized Drude-2019 (black) model 

chemistries. Hydrogens (H) are white, carbons (C) are green, nitrogens (N) are blue, and 

oxygens (O) are red. Distances, d(x…y) Å, are measured between the interacting atom x and 

y, where x are H or N, and y are O or C.
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Figure 2. 
Interaction energies between methylguanidinium (MGUAN) and acetate (ACET) in a) to c) 

and between guanidinium (GUAN) and acetate (ACET) in d) to f) using the QM (blue), 

Drude-2013 (red) and optimized Drude-2019 (black) model chemistries. Hydrogens (H) are 

white, carbons (C) are green, nitrogens (N) are blue, and oxygens (O) are red. Distances, 

d(x…y) Å, are measured between the interacting atom x and y, where x are H, N or C, and y 

is O.
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Figure 3. 
Interaction energies between imidazolium (IMIM) and acetate (ACET) with different 

interaction geometries of a) to f) using the QM (blue), Drude-2013 (red) and optimized 

Drude-2019 (black) model chemistries. Hydrogens are white, carbons (C) are green, 

nitrogens (N) are blue, and oxygens (O) are red. Distances, d(x…y) Å, are measured 

between the interacting atom x and y, where x is O and y is N or C.

Lin et al. Page 29

J Chem Theory Comput. Author manuscript; available in PMC 2021 May 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
RMSD analyses based on the Cα atoms for a) protein GB3 system (PDB: 2IGD) and b) HP7 

peptide (PDB: 2EVQ), using the original Drude-2013 protein FF (Drude-2013, in black), 

Drude-2013 with optimized backbone parameters only (Drude-2013-opt-backbone, in 

green), and final optimized Drude-2019 protein FF (Drude-2019, in blue). Structures 

obtained at the end of the simulations are shown in cyan, indicated with the corresponding 

colored arrows.
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Figure 5. 
Overall ϕ, ψ distributions for the a) C36m, b) Drude-2013 and c) optimized Drude-2019 

models. Results are included from PDB: 1QX5, 4IEJ, 1MJC, 1UBQ, 2QMT, 1IFC, 6LYT, 

135L, 1P7E, and 2IGD. Simulation results are presented as inverted Boltzmann distributions 

which are free energies (FE, kcal/mol) obtained from Boltzmann weighting, FE = kTln(P), 

of the population, P, in 1˚x 1˚ bins summed over all the proteins where k and T are the 

Boltzmann constant and temperature, 298˚, respectively. Experimental data from the crystal 

structures are presented as black dots.
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Figure 6. 
Simulations of ion channels to validate the optimized Drude 2019 FF. (A) and (C) RMSD 

analyses based on the backbone non-hydrogen atoms of the whole KcsA channel and the 

selectivity filter in simulations, respectively, using the additive C36m (red), Drude-2019 

(blue) and Drude-2013 (green) FFs. The references for backbone RMSD measurements are 

the initial crystal structures 1K4C (conductive) and 1K4D (constricted). (B) and (D) The 

overlay of 5 snapshots (one frame for every 50ns in the 250ns trajectory) and the crystal 

structures (orange) of the selectivity filter. (E) Time series of the backbone RMSD of two 

monomers (top and middle) and the whole protein (bottom) of gramicidin (reference PDB: 

1JNO120). (F) The histogram of the number of water molecules in gramicidin during the 

whole trajectory. (G) A representative snapshot with a single-file water wire in the 

gramicidin A channel.

Lin et al. Page 32

J Chem Theory Comput. Author manuscript; available in PMC 2021 May 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Hydrogen-bond, structural, dipole and DSSP based secondary structure analysis of a 

simulation of the MBH 12 protein (PDB ID: 1K43) at 370 K. (a) Pictorial representation of 

crystal structure of MBH 12, with hydrogen-bond interactions between peptide bond 

carbonyl oxygen (O) and nitrogen hydrogen (HN) of residues TRP:4, TYR:6, ILE:9, and 

TYR:11. (b) Heatmap showing DSSP-defined secondary structures versus time. (c) RMSD 

with respect to the NMR structure for Cα atoms versus time. (d) Upper panel: Distance 

between TRP4:O-TYR11:HN (red) and TRP4:HN-TYR11:O atoms versus time; middle and 

lower panels: Dipole moment components (μx, μy, μz) and total dipole moment (μR) of 

peptide backbone (C,O,N,HN,Ca,Ha) for TRP4 and TYR11, respectively, versus time. (e) 

Upper panel: Distance of TYR6:O-ILE9:HN (red) and TYR6:HN-ILE9:O versus time; 

middle and lower panels: Dipole moment components (μx, μy, μz) and total dipole moment 

(μR) of peptide backbone for TRP4 and ILE9, respectively, versus time. The DSSP 

assignment codes are H: Alpha helix, B: Residue in isolated beta-bridge, E: Extended strand, 

participates in beta ladder, G: 3/10 helix, I: pi helix), T: hydrogen bonded turn and S: bend, 

while L indicates loops or irregular/random coil elements.
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Figure 8. 
Probability density distribution, using Kernel density estimate (KDE), of dipole moment 

components and total values (μx, μy, μz and μR) corresponding to the sampled secondary 

structures for (a) Ile4, (b) Tyr6, (c) Ile9, and (d) Tyr11 from the MBH 12 simulation. The 

DSSP assignment codes are E: Extended strand, participates in beta ladder, S: bend, and L 

indicates loops and irregular/random coil elements.
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Table 1.

Peptides and proteins subjected to MD simulations.
a

Peptides/proteins PDB Type Number of Ions

Amino acid < 50 aa

A) Trp-cage 1L2Y88

α-Helix
1 Cl−

B) IAAL-K3 1U0I89 3 Na+

C) Crambin 1EJG90 α-Helix/β-sheet 0

D) Cln025 (mutant of Chignolin) 2RVD91

β-sheet

2 Na+

E) MBH12 1K4392 2 Cl−

F) Tryptophan Zipper 4 1LE393 2 Na+

G) HP7 2EVQ94 1 Cl−

H) 14-residue peptide 1J4M92 2 Cl−

I) GB1 hairpin, extract from PDB: 1GB1 (residues 41–56) 1GB195 0

Amino acid > 50 aa

J)
Apo calmodulin

b 1QX596

α-Helix
24 K+

K) DNA methyltransferase 1 associated protein 1 (DMAP1) 4IEJ 1 Na+

L) Cold-shock protein A 1MJC97 β-sheet 1 Na+

M) Ubiquitin 1UBQ98

α-Helix/β-sheet

0

N) Protein GB1 domain 2QMT99 0

O) Intestinal fatty acid binding protein 1IFC100 0

P) Hen lysozyme 6LYT101 8 Cl−

Q) Lysozyme 135L102 0

R) Protein GB3 domain 1P7E103 2 Na+

S) Protein GB3 domain 2IGD 2 Na+

a
All systems were simulated for 1 μs.

b
Na+ was used as the counterion for the C36m and Drude-2013 simulations with K+ used for the Drude-2019 simulation
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Table 2.

Comparison of J-coupling values (Hz) with Drude-2013/Drude-2019 FFs and experimental data (Exp)89 for 

the (Ala)5 peptide from 500 ns simulations.

Residue index Type Exp Drude-2013 Diff2013 Drude-2019 Diff2019

2 3J(HNHA) 5.59 6.87 1.28 6.98 1.39

2 3J(HNC) 1.13 2.38 1.25 2.22 1.09

2 3J(HAC) 1.85 2.04 0.19 2.07 0.22

2 3J(CC) 0.19 2.56 2.37 2.39 2.20

2 3J(HNCB) 2.30 0.72 −1.58 0.86 −1.44

2 1J(NCA) 11.36 11.64 0.28 11.59 0.23

2 2J(NCA) 9.20 8.71 −0.49 8.71 −0.49

2 3J(HNCA) 0.67 0.84 0.17 0.82 0.15

3 3J(HNHA) 5.74 6.79 1.05 6.88 1.14

3 3J(HAC) 1.86 2.01 0.15 1.99 0.13

3 3J(HNCB) 2.24 0.99 −1.25 1.35 −0.89

3 1J(NCA) 11.26 11.56 0.30 11.45 0.19

3 2J(NCA) 8.55 8.57 0.02 8.49 −0.06

3 3J(HNCA) 0.68 0.81 0.13 0.75 0.07

4 3J(HNHA) 5.98 6.90 0.92 6.95 0.97

4 3J(HNC) 1.15 2.15 1.00 1.68 0.53

4 3J(HAC) 1.89 2.07 0.18 1.98 0.09

4 3J(HNCB) 2.14 0.96 −1.18 1.52 −0.62

4 1J(NCA) 11.25 11.52 0.27 11.25 0.00

4 2J(NCA) 8.40 8.48 0.08 8.31 −0.09

4 3J(HNCA) 0.69 0.80 0.11 0.71 0.02

5 3J(HNHA) 6.54 6.95 0.41 7.31 0.77

5 3J(HNC) 1.16 2.74 1.58 2.50 1.34

5 3J(HAC) 2.19 2.19 0.00 2.50 0.31

5 3J(HNCB) 1.96 0.24 −1.72 0.35 −1.61

5 2J (NCA) 8.27 8.40 0.13 8.01 −0.26

5 3J(HNCA) 0.73 0.86 0.13 0.77 0.04

RMS 0.93 0.85

Residue index χ2
χ2a χ2

χ2a

2 17.92 3.91 15.39 3.3

3 2.28 2.28 1.26 1.26

4 2.08 2.08 0.65 0.65

5 4.75 4.75 4.02 4.02

All 7.41 3.23 5.90 2.28

a
χ2 computed excluding the J3(C,C) of residue index 2, which yields the largest difference.
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Table 3

Average molecular dipole moment differences (MM-QM, Debye) and average molecular polarizability scaling 

(MM/QM) of dipeptides with different conformations, using the original Drude-2013 and optimized 

Drude-2019 FFs.

Drude-2013 Drude-2019

RESI Avg Dipole (MM-QM) Avg Polarizablity (MM/QM) Avg Dipole (MM-QM) Avg Polarizablity (MM/QM)

ARG −3.24 1.05 −0.02 0.83

ASN −0.11 0.89 0.05 0.85

ASP 0.85 0.83 0.65 0.75

CYS −0.30 0.78 −0.30 0.80

GLN −0.96 1.00 −0.22 0.85

GLU −2.70 1.00 0.51 0.75

HSD 0.61 0.86 −0.10 0.84

HSE 0.83 0.86 −0.15 0.84

HSP 0.25 0.92 0.69 0.86

ILE −0.69 0.91 −0.57 0.85

LEU −0.60 1.05 −0.56 0.84

LYS −3.51 1.06 0.82 0.83

MET −0.35 0.98 −0.24 0.81

THR 0.18 0.83 −0.09 0.84

TYR −0.39 0.82 −0.34 0.82

TRP −0.46 0.93 −0.33 0.84

PHE −0.46 0.85 −0.39 0.84

SER −0.06 0.83 −0.07 0.85

Average −0.62±0.30 0.91±0.02 −0.04±0.10 0.83±0.01

Errors represent standard errors over the amino acids.
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Table 4.

RMSDs between the MM and QM 2D potential energy surfaces for the χ1 and χ2 torsions in amino acid (X) 

dipeptides capped with N-acetyl and N’-methylamide moieties using the Drude-2013 and Drude-2019 FFs. 

RMSD with all conformations (RMSD-ALL) and with the conformations excluding the energy cutoff (kcal/

mol) regions (w/Cutoff) are shown. The RMSDs from the initial fitting results are shown in the Initial w/

Cutoff column, and from the final results of Drude-2019 FF are shown in the Final w/Cutoff.

Dipeptides Drude-2013 Drude-2019

X Cutoff RMSD-ALL w/Cutoff RMSD-ALL w/Cutoff Initial w/Cutoff Final w/Cutoff

ARG 20 4.57 4.35 2.43 2.38 1.95 2.38

ASN 12 2.62 2.61 1.75 1.63 1.63 1.63

ASP 25 3.50 2.94 3.57 3.09 1.83 3.09

CYS 12 1.31 1.28 1.15 1.10 1.10 1.10

GLN 12 2.65 2.39 1.97 1.54 1.46 1.54

GLU 25 8.23 8.25 4.00 3.86 2.40 3.86

HSD 12 1.70 1.51 1.40 1.23 1.22 1.23

HSE 12 2.16 1.99 1.42 1.32 1.29 1.32

HSP 25 2.16 2.15 1.60 1.59 1.59 1.59

ILE 12 2.58 2.21 2.54 2.31 1.46 2.31

LEU 12 2.07 1.72 1.74 1.43 1.22 1.43

LYS 20 5.27 4.95 2.44 2.49 1.80 2.49

MET 12 2.43 2.30 1.89 1.49 1.39 1.49

PHE 12 1.41 1.25 1.11 1.04 1.04 1.04

SER 12 1.38 1.36 2.32 2.32 1.04 2.32

THR 12 1.86 1.72 2.14 2.18 1.28 2.46

TRP 12 1.78 1.63 1.50 1.29 1.13 1.29

TYR 12 1.55 1.31 1.33 1.06 1.06 1.06

VAL 12 1.24 1.18 1.38 1.32 1.20 1.32

Average 2.66±0.40 2.48±0.40 1.98±0.19 1.82±0.17 1.43±0.08 1.84±0.18

Errors represent standard errors over the amino acids.
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Table 5.

Overlap coefficient (OC) between χ1/χ2 probability distributions of the (Ala)4-X-(Ala)4 condensed phase 

simulations and crystallographic survey, using the Drude-2013 and Drude-2019 FF. The differences of OC 

between the two models are shown in the Diff. OC column where the larger differences indicate improved 

agreement with the Drude-2019 FF.

X
Drude-201321 Drude-2019 Diff. OC

χ1 χ2 χ1 χ2 χ1 χ2

ARG 0.82 0.85 0.96 0.97 0.14 0.12

ASN 0.82 0.61 0.84 0.91 0.02 0.30

ASP 0.65 0.79 0.82 0.93 0.17 0.14

CYS 0.87 0.87 0.00

GLN 0.92 0.60 0.95 0.88 0.03 0.28

GLU 0.68 0.81 0.85 0.80 0.17 −0.01

HSD 0.94 0.80 0.94 0.95 0.00 0.15

ILE 0.78 0.89 0.90 0.90 0.12 0.01

LEU 0.88 0.92 0.96 0.92 0.08 0.00

LYS 0.81 0.93 0.89 0.90 0.08 −0.03

MET 0.92 0.88 0.91 0.96 −0.01 0.08

PHE 0.94 0.89 0.82 0.93 −0.12 0.04

SER 0.74 0.86 0.12

THR 0.74 0.88 0.14

TRP 0.86 0.74 0.86 0.80 0.00 0.06

TYR 0.72 0.74 0.91 0.83 0.19 0.09

VAL 0.87 0.82 −0.05 0.00

Average 0.82±0.02 0.80±0.03 0.88±0.01 0.90±0.02 0.06±0.02 0.09±0.03

Errors represent standard errors over the relevant amino acids.
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Table 6.

Osmotic pressure (in Bar) for guanidinium-acetate solution at different concentrations.

Con. (M) Exp. Drude-2019

0.3 13.35 ± 0.12 14.06 ± 0.54

0.4 17.66 ± 0.09 18.02 ± 1.84

0.5 22.33 ± 0.08 21.66 ± 1.88

Errors represent standard errors over 5 10 ns blocks from the 50 ns production simulations.
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Table 7.

Average RMS differences and RMS fluctuations of the RMSD with respect to the crystal or NMR structures of 

the Cα atoms (values in Å)

PDB C36m Drude-2013 Drude-2019

AVG RMSF AVG RMSF AVG RMSF

Number of amino acids < 50 aa

1L2Y 1.67 0.45 5.08 1.10 1.42 0.57

1U0I 6.65 2.19 5.82 1.68 2.02 0.52

1EJG 4.15 0.15 1.54 0.33 1.28 0.13

2RVD 1.07 0.10 4.16 1.07 1.14 0.09

1K43 2.18 0.54 1.64 0.71 2.16 0.17

1LE3 0.89 0.36 5.34 1.37 1.73 0.50

2EVQ 4.37 3.31 4.50 1.80 0.96 0.32

1J4M 2.01 0.44 1.37 0.39 2.05 0.18

GB1 hairpin 2.51 0.45 7.89 2.50 7.29 2.37

AVE 2.83 0.89 4.15 1.22 2.23 0.54

SE 0.62 0.37 0.75 0.24 0.65 0.24

Number of amino acids > 50 aa

1QX5 8.50 2.35 7.91 0.61 7.22 0.58

4IEJ 1.09 0.17 3.72 0.90 2.59 0.34

1MJC 7.84 10.13 2.58 0.72 1.93 0.46

1UBQ 2.31 0.50 3.22 0.58 2.45 0.38

2QMT 0.94 0.28 2.29 0.84 1.48 0.27

1IFC 1.49 0.28 3.03 0.25 2.47 0.55

6LYT 1.36 0.27 3.74 0.98 2.08 0.44

135L 1.74 0.34 2.99 0.27 2.91 0.53

1P7E 0.73 0.20 2.26 0.42 2.00 0.20

2IGD 10.11 8.01 5.78 2.01 1.42 0.23

AVE. 3.61 2.25 3.75 0.76 2.65 0.40

SE 1.16 1.17 0.56 0.16 0.53 0.04

Averages (AVE) and standard errors (SE) are over the studied proteins.
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Table 8.

Correlations, Average differences and RMS differences between calculated and experimental NMR h3JNC 

couplings with the C36m additive, original Drude-2013 and optimized Drude-2019 FF.

PDB Correlation Coefficients Average Differences RMS differences

C36m Drude-2013 Drude-2019 C36m Drude-2013 Drude-2019 C36m Drude-2013 Drude-2019

1UBQ 0.84 0.39 0.65 0.01 0.10 −0.01 0.10 0.22 0.14

2QMT 0.79 0.41 0.54 −0.02 0.11 0.00 0.11 0.20 0.17

1MJC 0.67 0.51 0.66 0.21 0.14 0.07 0.24 0.22 0.16

1QX5 0.14 0.30 0.25 0.11 0.21 0.07 0.24 0.29 0.19

1IFC 0.69 0.33 0.48 0.00 0.14 0.05 0.16 0.29 0.22

AVE 0.63 0.39 0.52 0.06 0.14 0.04 0.17 0.24 0.18

SE 0.13 0.04 0.06 0.04 0.02 0.02 0.03 0.02 0.02

Averages (AVE) and standard errors (SE) are over the studied proteins.
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Table 9.

Average backbone N-H relaxation order parameter S2 in six proteins. Experimental values and calculated S2 

from MD simulations with the C36m, Drude-2013 and Drude-2019 FFs are listed.

PDB Exp C36m Drude-2013 Drude-2019

1UBQ 0.83 0.81 0.77 0.81

2QMT 0.73 0.81 0.54 0.75

1MJC 0.82 0.35 0.60 0.68

1QX5 0.81 0.45 0.56 0.76

1IFC 0.86 0.82 0.73 0.79

6LYT 0.85 0.79 0.52 0.75

AVE 0.82 0.67 0.62 0.76

SE 0.02 0.09 0.04 0.02

Averages (AVE) and standard errors (SE) are over the studied proteins.
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Table 10.

Combined RMS Differences and correlations between calculated and experimental NMR backbone N-H 

relaxation order parameter S2 with the C36m additive, original Drude-2013 and optimized Drude-2019 FF.

PDB Correlation Coefficients Average Differences RMS differences

C36m Drude-2013 Drude-2019 C36m Drude-2013 Drude-2019 C36m Drude-2013 Drude-2019

1UBQ 0.78 0.54 0.64 −0.02 −0.06 −0.02 0.10 0.13 0.09

2QMT 0.59 0.35 0.39 0.08 −0.19 0.02 0.15 0.25 0.14

1MJC 0.76 0.71 0.78 −0.47 −0.22 −0.14 0.48 0.30 0.23

1QX5 0.12 −0.03 0.43 −0.36 −0.25 −0.05 0.42 0.32 0.11

1IFC 0.11 0.01 0.01 −0.04 −0.13 −0.07 0.13 0.22 0.17

6LYT 0.65 0.45 0.42 −0.06 −0.33 −0.10 0.13 0.40 0.19

AVE 0.50 0.34 0.45 −0.15 −0.20 −0.06 0.24 0.27 0.16

SE 0.13 0.12 0.11 0.09 0.04 0.02 0.07 0.04 0.02

Averages (AVE) and standard errors (SE) are over the studied proteins.
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