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Plant breeding is both the science and art of de-
veloping elite crop cultivars by creating and reas-
sembling desirable inherited traits for human benefit. 
From the bulk selection of wild plants for cultivation 
during early civilization to Mendelian genetics and 
genomics-assisted breeding in modern society, breeding 
methodologies have evolved over the last thousand 
years. In the past few decades, the “Green Revolution” 
through breeding of semi-dwarf wheat and rice vari-
eties, and the use of heterosis and transgenic crops 
have dramatically enhanced crop productivity and 
helped prevent widespread famine (Hickey et al., 
2019). Integration of these technologies can signifi-
cantly improve breeding efficiency in the develop-
ment of super crop varieties (Li et al., 2018). For 
example, a hybrid cotton variety CCRI63 and six 
related hybrid varieties account for nearly 90% of 
cotton production in the Yangtze River Basin (Wan  
et al., 2017; Wang et al., 2018). These varieties have 
successfully combined high yield, good quality, and 
biotic stress tolerance through the integration of 
conventional breeding, hybrid and genetically modi-
fied organism (GMO) technologies (Lu et al., 2019; 
Ma et al., 2019; Song et al., 2019). Unfortunately, 
such technology integration is not practical for most 
staple food crops, including rice and wheat, because 
of social or technical restrictions. Furthermore, plant 
breeding is still labor-intensive and time-consuming, 

and conventional breeding remains the leading ap-
proach for the release of commercial crop varieties 
worldwide. This is especially true for breeding cul-
tivars and hybrids with high yield, good quality, and 
resistance to biotic or abiotic stresses (Liu et al., 2015; 
Gu et al., 2016). New germplasm, knowledge, and 
breeding techniques are required to breed the next 
generation of crop varieties. 

 
 

In this issue 
 
Environmental stress is a major limiting factor in 

achieving maximum yield potential in crops. Climate 
change will further worsen this scenario. For example, 
salinity-affected areas will reach more than 50% of 
the world’s total arable land by 2050 (Mwando et al., 
2020). Huang et al. (2020) integrate their research in 
barley and the latest progress in other plant species to 
identify the important role of ion transporters in salt 
tolerance and discuss the genome editing perspective 
for breeding high-salt-tolerant cultivars. 

Food safety problems, such as those posed by 
heavy metal contamination, are other key challenges 
for future agriculture (Tang et al., 2018). In the fol-
lowing review, Chen and Wu (2020) summarize the 
genes mediating Cd transport (ion transporters and 
chelates) and molecular markers for low-Cd accumu-
lation and discuss methodologies for breeding low-Cd 
cultivars. As Cd is a nonessential and toxic element 
for plants, the uptake and transport of Cd mainly rely 
on the transport system of essential mineral elements, 
such as Mn, Zn, Fe, and Ca (Clemens and Ma, 2016). 
How to breed a cultivar with low-Cd accumulation 
and simultaneously preserve mineral nutrient effi-
ciencies requires more effort to understand the sys-
temic regulation of plants. 

Gene technology will play an essential role. Tan 
et al. (2020) summarize the current state of plant gene 
biology research from gene structure to multi-level 
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regulation and propose various gene-editing strategies 
for coding and non-coding genes to create novel al-
leles for a particular purpose (Zong et al., 2018; Hua 
et al., 2019). In addition, ribonucleoprotein (RNP)- 
based protoplast editing may enhance genome editing 
efficiency (Woo et al., 2015). 
 
 
Perspectives 
 

It is a formidable challenge for future agriculture 
to maintain sustainable food production and satisfy 
the requirements for biofortification and safety of edi-
ble crops under a changing climate (Tang et al., 2018; 
Fernie and Yan, 2019). In a recent report, “Science 
Breakthroughs to Advance Food and Agricultural 
Research by 2030” (National Academies of Sciences, 
Engineering, and Medicine, 2019), genomics and pre-
cision breeding were identified as scientific break-
through areas that will have the greatest positive im-
pact on food and agriculture. Advances in sequencing 
technology are the cornerstone for genomics, having 
decoded the genomes of hundreds of species and un-
covered the regulation network of complex traits (Jiao 
et al., 2017; Mascher et al., 2017; Song et al., 2019; Li 
et al., 2020). The resequencing of large numbers of 
crop germplasm provides a blueprint for identifying 
important genes and designing future varieties through 
genomics-assisted breeding (Lu et al., 2019; Ma et al., 
2019; Song et al., 2019). High-throughput pheno-
typing technology is essential for understanding the 
economic value of genomic variations. Artificial in-
telligence for multi-scale phenotyping (i.e., phenomics) 
will provide high efficiency and accurate solutions 
(Araus et al., 2018). Rapid generation advancement or 
“speed breeding” will facilitate the transfer of tech-
nological advances to crop varieties in the future 
(Ghosh et al., 2018; Watson et al., 2018). Finally, 
gene editing will provide precision breeding technol-
ogy to improve desirable characteristics (Shan et al., 
2014; Svitashev et al., 2016; Liang et al., 2017). Mul-
tiplex editing may be possible soon using the similar 
technology developed for GMO crop (Liu et al., 2018). 
This will shorten the breeding cycle by incorporating 
speed breeding and tissue-culture-free techniques (Maher 
et al., 2020). However, none of the above technologies 
alone will be the silver bullet to breed climate-resilient 
crop varieties for future agriculture. A systematic ap-

proach needs to be adopted to integrate the technolo-
gies, including policy changes for gene-editing crops. 
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