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Abstract: Soil salinity is a global major abiotic stress threatening crop productivity. In salty conditions, plants may 
suffer from osmotic, ionic, and oxidative stresses, resulting in inhibition of growth and development. To deal with these 
stresses, plants have developed a series of tolerance mechanisms, including osmotic adjustment through accumu-
lating compatible solutes in the cytoplasm, reactive oxygen species (ROS) scavenging through enhancing the activity 
of anti-oxidative enzymes, and Na+/K+ homeostasis regulation through controlling Na+ uptake and transportation. In 
this review, recent advances in studies of the mechanisms of salt tolerance in plants are described in relation to the 
ionome, transcriptome, proteome, and metabolome, and the main factor accounting for differences in salt tolerance 
among plant species or genotypes within a species is presented. We also discuss the application and roles of different 
breeding methodologies in developing salt-tolerant crop cultivars. In particular, we describe the advantages and per-
spectives of genome or gene editing in improving the salt tolerance of crops. 

 
Key words: Salinity; Osmotic stress; Ionic stress; Oxidative stress; Salt tolerance 
https://doi.org/10.1631/jzus.B1900510                                   CLC number: Q945.78 
 
 

1  Introduction 
 

Soil salinity is one of the major abiotic stresses 
restricting global crop productivity. Moreover, the 
area undergoing salinization is still expanding. It is 
predicted that nearly half of all arable land in the 
world will be under salinization by 2050 (Butcher  
et al., 2016), raising a huge threat to sustainable ag-
riculture development and food security. The devel-
opment and planting of crop cultivars with high salt 
tolerance is the most efficient approach for fighting 
soil salinity. Therefore, it is important to reveal salt 

tolerance mechanisms and identify relevant geno-
types or genes. 

 
 

2  Salt toxicity in crop plants 
 
Salt stress greatly affects crop growth and de-

velopment. High concentration of soluble salt ions is 
a main factor resulting in salt stress. The most direct 
damage to crops caused by salt stress is due to high 
osmotic pressure resulting from a high concentration 
of salinity ions (i.e., Na+ and Cl−). Therefore, osmotic 
stress and ionic stress are severe conditions for crops 
exposed to salt stress. The superposition of these two 
stresses can lead to secondary oxidative stress 
(Munns and Tester, 2008). 

2.1  Osmotic stress 

Osmotic stress occurs when plant roots are sub-
jected to a certain salt level. For most plants the 
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threshold level is around 40 mmol/L NaCl (Munns 
and Tester, 2008). The onset of osmotic stress de-
creases the ability of plants to take up water. Dehy-
dration may occur when the osmotic pressure of the 
external salt solution is higher than that of the root 
cells (Horie et al., 2012). This phase lasts for a short 
time, and leads to stomatal closure and inhibition of 
cell expansion in shoots (Isayenkov and Maathuis, 
2019). The formation and development of regenera-
tive organs of cereal crops are greatly affected by salt 
stress, which reduces the rate of panicle formation 
and changes flowering and maturity time (Munns and 
Rawson, 1999). Osmotic stress causes physiological 
water deficiency. In cereals, the major effect of sa-
linity on shoots is a reduction in tillers per plant 
(Munns and Tester, 2008). For dicotyledonous spe-
cies, the major effect is often a dramatic curtailing of 
leaf growth or a reduced number of branches (Munns 
and Tester, 2008). 

2.2  Ionic stress 

Under salt stress, excessive uptakes of Na+ and 
Cl− through transpiration streams cause cyto-toxicity 
and nutritional imbalance in plants, namely long-term 
ionic stress. Large amounts of salt ions, especially 
Na+, accumulated in shoots can reach toxic levels, 
inhibiting plant growth. The old leaves cannot suffi-
ciently dilute the toxic ions by leaf expansion, thereby 
accelerating senescence. NaCl is a major component 
of saline soil. For some plants, such as citrus, Cl− is a 
more toxic ion than Na+ (Moya et al., 2003). However, 
for most crops, Na+ appears to have a lower toxic 
concentration threshold than Cl− (Tester and Daven-
port, 2003). The inhibition of K+ by Na+ in plants 
results in a significant reduction in K+ uptake and 
accumulation, and a significant increase in the Na+/K+ 
ratio (Chen et al., 2007). The significant reduction of 
K+ uptake may be connected to the phenomenon of 
salt stress-induced K+ loss (Chen et al., 2007; Wu et al., 
2014). Too great an accumulation of Na+ in shoots 
causes a decrease in other essential metal cations such 
as Ca2+ and Mg2+, which in turn affects physiological 
and biochemical activities in plants (Chen et al., 2005; 
Munns, 2005; Wu et al., 2013a). 

2.3  Oxidative stress 

Salt stress is in general also accompanied by 
oxidative stress because of excessive generation  

of reactive oxygen species (ROS), including O2
−, 

H2O2, ·OH, and HO2· (Zhu, 2001; Munns and Tester, 
2008; Isayenkov, 2012). The excess ROS cannot be 
eliminated fast enough by antioxidant enzymes, 
leading to the formation of lipid free radicals, degra-
dation of proteins and metabolites, and inhibition of 
biological metabolism. Eventually, under long-term 
salt stress, the stabilities of cell membranes and or-
ganelles are destroyed, photosynthesis is severely 
inhibited, and biosynthesis and nutrient transport are 
largely blocked (Zhu, 2001; Zahra et al., 2014). 
Therefore, in the middle and late stages of salt stress, 
oxidative stress will cause severe damage to plants. 
Usually, halophytic plants contain high amounts of 
antioxidant compounds in their tissues, which is one 
adaptive strategy enabling them to survive in harsh 
environments (Munns and Tester, 2008). 

In short, salt stress causes severe inhibition of 
growth and development of crop plants through os-
motic, ionic, and oxidative stresses. 

 
 

3  Mechanisms of salt tolerance in plants 
 
In the process of combating salt stress, plants 

have evolved a set of physiological and molecular 
mechanisms to adapt to the different stages of salt 
stress (Rajendran et al., 2009; Roy et al., 2014). Re-
cently, “omic” methodologies have been widely used 
in studies of abiotic stress tolerance in plants (Nawrot 
et al., 2016; Meena et al., 2017). Multi-omic methods 
have proved effective and powerful for understanding 
complex molecular networks in plants (Nawrot et al., 
2016; Wang et al., 2016). The responses of plant 
crops to salt stress have been intensively investigated 
at physiological and molecular levels. The ionome, 
proteome, metabolome, and transcriptome have been 
studied to understand the molecular responses involved 
in osmotic adjustment, ROS scavenging, energy me-
tabolism, Na+ detoxification, and ion homeostasis 
(Wu et al., 2013b; Shen et al., 2017, 2018; Huang  
et al., 2018). 

3.1  Osmotic adjustment 

To cope with osmotic stress, plants synthesize 
and accumulate compatible osmolytes to maintain 
turgor and osmotic potential, thereby increasing leaf 
stomatal conductance to conserve water and alleviate 
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plant growth inhibition (Passioura and Munns, 2000; 
Fricke and Peters, 2002; Roy et al., 2014). Compati-
ble solutions include N-containing compounds, sugars, 
straight-chain polyhydric polyols, and cyclic poly-
hydric alcohols (Hare et al., 1998). Most glycophytes 
synthesize compatible solutions to fight against os-
motic stress, but this strategy is “expensive” with the 
inhibition of growth rate as a cost (Munns and Gilliham, 
2015). Metabolomic and proteomic analyses have re-
vealed that amino acids like proline, and polyols like 
inositol, play important roles in developing salt tol-
erance in barley roots (Wu et al., 2013b; Shen et al., 
2018). Similarly, results from studies of the maize 
(Zea mays) metabolome showed that salt stress leads 
to the enhanced formation of sugars, contributing to 
the mitigation of osmotic stress (Guo et al., 2017). 
Inorganic ions such as Na+ also can be used as os-
molytes provided that they are compartmentalized 
into vacuoles to reduce their cytotoxicity (Flowers 
and Colmer, 2008). Metabolomic and transcriptomic 
analyses revealed that sea barley (Hordeum marinum) 
accession H559 did not increase compatible solutions 
such as proline and maltose more than did barley 
(Hordeum vulgare) XZ113 or “Golden Promise,” but 
accumulated Na+ and K+ as the “cheapest” form of 
osmotic adaptation in roots (Huang et al., 2018). For 
halophytes or salt-tolerant taxa, the uptake, transport, 
and compartmentalization of inorganic ions as osmo- 
regulators may be an economical and efficient way to 
cope with osmotic stress. 

3.2  ROS scavenging and energy metabolism 

When plants are exposed to salt stress for a long 
time, the photosynthetic rate declines rapidly and ROS 
are generated, which have a strong oxidative ability 
and cause cytoplasmic membrane damage, irreversi-
ble metabolic dysfunction, and cell death (Miller et al., 
2010). Correspondingly, plants have developed the 
defense system of ROS scavenging, mainly through 
antioxidative enzymes, such as superoxide dismutase 
(SOD), ascorbate peroxidase (APX), catelase (CAT), 
and glutathione peroxidase (GPX) (Miller et al., 2010; 
Wang et al., 2016). In most cases, stress tolerance in 
plants is achieved at the expense of energy consump-
tion (Munns and Gilliham, 2015). Therefore, the en-
ergy distribution of plants exposed to salt stress is 
important for their survival and ability to thrive. Pro-
teomic analyses showed that dehydroascorbate re-

ductase and peroxidases scavenging ROS in roots, 
and phosphoglycerate kinase, triosephosphate iso-
merase, sedoheptulose-1, and 7-bisphosphatase re-
lated to photosynthesis in shoots, play important roles 
in salt tolerance in the early stage of salt exposure in 
barley (Shen et al., 2017). Salt stress caused a signifi-
cant reduction in metabolites involved in the glycol-
ysis pathway and an increase in those associated with 
the tricarboxylic acid (TCA) cycle in the shoots of a 
salt-sensitive Tibetan wild barley XZ169, but little 
change in the salt-tolerant line XZ26 (Shen et al., 
2016). Multi-omic studies also showed that XZ26 
adopted strategies of root adaptation to salt stress by 
enhancing antioxidant ability to cope with ROS and 
consuming less energy to produce biomass (Shen  
et al., 2018). Comparative transcriptomic and alter-
native splicing analyses of rice and barley found that 
differentially expressed genes (DEGs) associated with 
scavenging ROS and lowering energy consumption 
might contribute to the higher salt tolerance of barley 
(Fu et al., 2019). 

3.3  Na+ detoxification and ion homeostasis 

Relatively salt-tolerant plant species or geno-
types commonly demonstrate a lower accumulation 
of Na+ in shoots when under salt stress (Shen et al., 
2016, 2017, 2018; Fu et al., 2018, 2019; Huang et al., 
2018). On the other hand, highly tolerant species also 
show a high accumulation of Na+ in roots (Fu et al., 
2018, 2019; Huang et al., 2018). For most plant species, 
the main tissue organ to suffer Na+ toxicity is the leaf, 
where Na+ is highly accumulated due to ion deposi-
tion through the transpiration stream (Munns, 2002). 
Consequently, for most crops, the main physiological 
response to salt stress is to restrict Na+ distribution, 
thereby lessening accumulation in shoots, even though 
the Na+ content in roots may be greatly increased. Ion 
homeostasis is another ubiquitous physiological strat-
egy for achieving salt tolerance in plants. The ionomic 
analysis of three barley genotypes differing in salt 
stress tolerance revealed that the rearrangement of 
nutrient elements (i.e., K, Mg, and Ca) in tissue or-
gans possibly contributed to the development of salt 
tolerance (Wu et al., 2013a). K and Na compete with 
each other for their uptake and accumulation in plants 
(Chen et al., 2007). The ability to retain K+ in plant 
tissues under salt stress is important for achieving salt 
tolerance (Chen et al., 2005), and the K+/Na+ ratio has 
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been used to identify salt tolerance in different plants 
(Chen et al., 2007; Kronzucker et al., 2008; Shabala  
et al., 2010). K+ homeostasis, involving K+-related 
programmed cell death and K+ as a signaling moiety 
in metabolic pathways, is closely linked to salt tol-
erance (Isayenkov and Maathuis, 2019). 

In short, to adapt to the different stages of stress 
caused by salinity, plants have evolved complex physi-
ological and molecular mechanisms including os-
motic adjustment, ROS scavenging, energy metabo-
lism, Na+ detoxification, and ion homeostasis. 
 
 
4  Genetic differences in salt tolerance among 
crops 
 

Salt tolerance differs greatly among plant spe-
cies (Munns and Tester, 2008). According to their 
tolerance and adaptive evolution, plants can be di-
vided into glycophytes and halophytes (Flowers and 
Colmer, 2008). Halophytes can grow normally in an 
environment with substantial amounts of salt and may 
even benefit from salty conditions (Shabala, 2013; 
Shabala et al., 2014). However, most crops are gly-
cophytes, which are sensitive to salt stress. Even if the 
scope is narrowed down to within the Poaceae family, 
salt tolerance still differs greatly among genera such 
as barley (H. vulgare) and rice (Oryza sativa) (Ligaba 
and Katsuhara, 2010; Nevo and Chen, 2010; Hamam 
et al., 2016). Cultivated plant species and their wild 
relatives may differ significantly in their salt tolerance. 
For example, sea barley grass (Hordeum marinum) is a 
wild halophyte species, while other Hordeum species 
are glycophytes. In a physiological study, we showed 
that a sea barley grass accession H559 had higher salt 
tolerance than barley genotypes XZ113 and “Golden 
Promise” (Huang et al., 2018). 

Comparative studies of plant species that differ 
greatly in salt tolerance are an effective way to un-
derstand the mechanisms of salt tolerance in plants 
(Fu et al., 2018, 2019; Huang et al., 2018). There may 
also be distinct differences in salt tolerance among 
genotypes within a plant species (Wu et al., 2014). 
However, the domestication of crops has resulted in a 
narrowing of genetic variation in wild crop relatives. 
Therefore, closely related species of crops are valuable 
genetic resources for modern agriculture and breeding 
(Dai et al., 2018; Isayenkov, 2019). For instance, our 

previous study identified some Tibetan wild barley 
accessions, which showed higher salt tolerance than a 
well-recognized salt-tolerant barley cultivar CM72 
(Qiu et al., 2011). The wide genetic diversity in salt 
tolerance among plant species and genotypes within a 
species could provide useful gene donors for im-
proving the salt tolerance of crop cultivars. 

Although great effort has been applied in ex-
ploiting natural variation, only modest improvements 
in salt stress tolerance in a few crops have been rec-
orded for several reasons, including the complexity of 
salt tolerance, its interactions with other agronomic 
traits, and the limited understanding of the physiology 
and genetics of salt tolerance (Ismail and Horie, 
2017). 

 
 

5  Transporters involved in plant salt tolerance 
 
In the last two decades, many transporters re-

lated to salt tolerance have been identified in various 
plant species (Han et al., 2015). Among them, salt 
overly sensitive 1 (SOS1), high-affinity K+ transporter 
(HKT), and Na+/H+ exchanger (NHX) participate mainly 
in the processes of the uptake, long-distance trans-
portation, and distribution of Na+ and K+. Together 
with the K+ uptake permease (KUP)/K+ transporter 
(KT) family, stelar K+ outward rectifier (SKOR) and 
guard cell outward rectifying K+ channel (GORK; 
outward-rectifying K+ channels) families, arabidopsis 
K+ transporter (AKT)/K+ channel in Arabidopsis tha-
liana (KAT; inward-rectifying K+ channel) family, 
two-pore K+ channels (TPKs), non-selective cation 
channel (NSCC), Ca2+/cation exchanger (CCX) H+- 
pyrophosphatase (PPase) and plasma membrane H+- 
adenosine triphosphatase (ATPase) pump, these trans-
porters play an important role in maintaining Na+/K+ 

homeostasis under salt stress (Fig. 1). 

5.1  SOS transporters 

The SOS pathway, containing a myristoylated 
calcium-binding protein SOS3, a serine/threonine 
protein kinase SOS2, and a plasma membrane Na+/H+ 
antiporter SOS1, has been well characterized in Ara-
bidopsis (Shi et al., 2000, 2002; Qiu et al., 2002; 
Quintero et al., 2002). The main mechanism of the 
SOS regulatory pathway is that a salt-stress-elicited 
calcium signal first activates SOS3 and SOS2 to form  
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a protein kinase complex, and then SOS1 is phos-
phorylated and activated by the SOS3-SOS2 complex 
to gain the function of achieving Na+ efflux from cells 
(Shi et al., 2000, 2002) (Fig. 1). It seems likely that 
SOS1 could also be phosphorylated in a phospho-
lipase D (PLD) signaling pathway-dependent manner 
(Yu et al., 2010). A high Na+ concentration increases 
the enzyme activity of PLDα1, leading to fast accu-
mulation of phosphatidic acid (PA) as a lipid second 
messenger. PA in turn activates mitogen-activated 
protein kinase 6 (MPK6), which can directly phos-
phorylate SOS1 (Yu et al., 2010). Apart from in Ar-
abidopsis, the Na+/H+ antiporter SOS1 was also 
functionally characterized in rice (Martínez-Atienza 
et al., 2007; el Mahi et al., 2019), wheat (Xu et al., 
2008a), and tomato (Huertas et al., 2012). The SOS1 
gene expression pattern, combined with the results of 
ion analysis in sos1 mutant plants, suggests that SOS1 
has several roles in adjusting ion homeostasis: (1) Na+ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

efflux from roots; (2) slowing down Na+ accumula-
tion in the cytoplasm to allow time for Na+ storage in 
vacuoles; and (3) controlling long-distance Na+ transport 
between roots and leaves (Shi et al., 2000, 2002; Qiu 
et al., 2002; Quintero et al., 2002; Zhu, 2003; el Mahi 
et al., 2019). It has also been found that cells lacking 
vacuoles, such as root tip cells, exhibit high SOS1 
activity. However, the disadvantage of this type of 
Na+ extrusion is the loss of the plasma membrane H+ 
gradient. Enhanced levels of SOS1 expression may 
increase tolerance to Na+, but plant growth remains 
relatively slow (Isayenkov and Maathuis, 2019). 
Moreover, the unusually long cytoplasmic tail of 
SOS1 is thought to be involved in Na+ sensing (Shi  
et al., 2000; Zhu, 2003). A recent study measured the 
acute Na+ sensitivity of sos1 plants at low NaCl 
concentrations to avoid the effects of osmotic stress. 
Roots of the sos1 mutant showed a marked down- 
regulation of genes, although the plants suffered 

Fig. 1  Proposed working model for transmembrane transporters in regulating Na+/K+ homeostasis 
The arrows in solid lines indicate the direction of Na+ and K+ flux, while dashed arrows indicate the direction of proton flux. 
Tm, Triticum monococcum; Os, Oryza sativa; At, Arabidopsis thaliana; HKT, high-affinity K+ transporter; SOS, salt overly 
sensitive; NHX, Na+/H+ exchanger; TPK, two-pore K+ channel; Pi, inorganic phosphorus; PPi, pyrophosphate; Ta, Triticum 
aestivum; Hv, Hordeum vulgare; SKOR, stelar K+ outward rectifier; ADP, adenosine diphosphate; ATP, adenosine tri-
phosphate; KUP, K+ uptake permease; HAK, high-affinity potassium transporter; KT, K+ transporter; PIP, plasma membrane 
intrinsic protein; NSCCs, non-selective cation channels; AKT, K+ transporter; KAT, K+ channel in Arabidopsis thaliana; 
Cyt, cytoplasm; GORK, guard cell outward rectifying K+ channel 
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from greater stress, indicating impaired stress de-
tection or an inability to mount a comprehensive 
response to salinity stress without SOS1 (el Mahi  
et al., 2019). 

5.2  NHX transporters 

At the cellular level, high amounts of Na+ can be 
tolerated if intracellular compartmentalization main-
tains a cytoplasmic Na+ concentration as low as 10– 
30 mmol/L (Munns and Tester, 2008). Most tonoplast- 
localized NHXs such as AtNHX1, AtNHX2, and 
OsNHX5 function by sequestering Na+ into vacuoles 
(Fukuda et al., 2011; Bassil et al., 2012). AtNHX5, 
localized in golgi and trans-golgi networks, functions 
by trafficking Na+ into vacuoles (Bassil et al., 2011a). 
These processes are considered an economic strategy 
for adapting to salinity as they not only prevent Na+ 
toxicity in the cytosol, but also use Na+ as an osmo-
lyte in the vacuole to alleviate osmotic stress (Zhu, 
2003; Munns and Tester, 2008; Bassil et al., 2012). In 
Arabidopsis, AtNHX1 and AtNHX2 are the most 
abundant NHX members (Bassil et al., 2012). How-
ever, overexpression of AtNHX1 causes only a slight 
improvement in salt tolerance in Arabidopsis. Moreover, 
the tolerance level is much lower than that of trans-
genic plants overexpressing AtSOS1 (Yang et al., 
2009). This suggests that Na+ compartmentalization 
has a minor effect on the engineering of salt-tolerant 
crops. On the other hand, NHX proteins have im-
portant roles in mediating K+ homeostasis in plants 
(Barragán et al., 2012; Andrés et al., 2014). Studies of 
transgenic tomato (Solanum lycopersicum) indicated 
that overexpression of vacuolar AtNHX1 or the en-
dosomal LeNHX2 Na+/H+ and K+/H+ antiporters leads 
to enhanced K+ accumulation in vacuoles (Rodríguez- 
Rosales et al., 2008; Leidi et al., 2010). The main role 
of NHX-transporters may be in the maintenance of K+ 
homeostasis rather than the sequestration of Na+ into 
vacuoles. AtNHX1 and AtNHX2 antiporters control 
vacuolar pH and K+ homeostasis for regulating plant 
growth (Bassil et al., 2011b). The wheat NHX anti-
porter TaNHX2 confers salt tolerance in transgenic 
alfalfa by increasing the capacity to retain intracellu-
lar potassium (Zhang et al., 2015). 

5.3  HKT transporters 

A member of the gene family of HKT was first 
cloned in wheat (Triticum aestivum) (Schachtman  

et al., 1992), and the family has since attracted sig-
nificant attention because it confers robust permea-
bility for Na+ (Schachtman and Schroeder, 1994; 
Rubio et al., 1995, 1999). Subsequently, the structure, 
localization, and expression of HKTs in crops and 
model plants have been successively identified, re-
vealing substantial divergence in function. Plant HKT 
proteins contain four conserved P-loop domains. The 
serine residue (SGGG-type) in the first P-loop region 
primarily determines Na+ permeability for HKT sub- 
family 1 transporters. However, some studies showed 
that ion permeability is not completely consistent with 
the classification of the P-loop-conserved amino acid. 
For example, the structure of TsHKT1;2 from the 
Arabidopsis relative Thellungiella salsuginea belongs 
to subfamily 1, but the protein has K+ permeability 
(Rodríguez-Navarro, 2000; Mäser et al., 2002b; Ali  
et al., 2012; Oomen et al., 2012). More amino acid 
sites affecting ion transport properties in wheat have 
also been reported. The substitutions of amino acids 
A240V, L247F, Q270L, N365S, and E464Q sites in 
TaHKT2;1 from wheat (T. aestivum) significantly 
affect Na+ transport properties (Diatloff et al., 1998; 
Rubio et al., 1999). 

Many members of the HKT family have now 
been functionally characterized (Table 1). Among the 
dicotyledons, the model plant Arabidopsis has only 
one HKT gene, AtHKT1;1, which has been well 
documented. AtHKT1;1 has high affinity for Na+ and 
participates in the uptake of Na+ in roots, Na+ un-
loading from xylem sap, and leaf Na+ refluxing to 
phloem, thereby reducing shoot Na+ toxicity and 
protecting leaves from salt stress (Mäser et al., 2002a; 
Davenport et al., 2007; Møller et al., 2009) (Fig. 1).  
In gramineous plants, there are generally multiple 
copies of the HKT gene, such as 9 in rice, 5–11 in the 
A, B, and D genomes of wheat, and 8 in barley (Gar-
ciadeblás et al., 2003; Huang et al., 2008; Horie et al., 
2009; Qiu et al., 2011; Waters et al., 2013). The 
functional analysis of the HKT genes in rice is rela-
tively comprehensive, covering nine HKT genes, 
while only four HKT genes have been reported in 
wheat and only three in barley. The expression, lo-
calization, and physiological function of these re-
ported HKT genes in rice, wheat, and barley are listed 
in Table 1. Among them, OsHKT1;5 in rice encodes 
an Na+-selective transporter that functions in K+/Na+ 
homeostasis under salt stress (Ren et al., 2005).  
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Kobayashi et al. (2017) used two independent transfer 
DNA (T-DNA) insertion mutants of OsHKT1;5 to fur-
ther reveal its physiological roles in mediating Na+ 
exclusion in the vasculature to protect leaf blades and 
reproductive tissues under salt stress conditions (Fig. 1). 
A major quantitative trait locus (QTL) Nax2 was 
identified in Einkorn wheat (Triticum monococcum), 
and TmHKT1;5-A, located by map-based cloning in 
the region of Nax2, reduced Na+ accumulation in 
tomato leaves (Byrt et al., 2007; James et al., 2011; 
Munns et al., 2012) (Fig. 1). Furthermore, it was 
demonstrated that TaHKT1;5-D from bread wheat (T. 
aestivum) is a major gene of the Kna1 locus, which 
plays a role in leaf Na+ exclusion and salt tolerance 
(Gorham et al., 1990; Byrt et al., 2007, 2014) (Fig. 1). 
In barley, knock-down of HvHKT1;1 led to higher 
Na+ accumulation in both roots and shoots, while 
overexpression of HvHKT1;1 in salt-sensitive Ara-
bidopsis mutant (hkt1-4) and loss-of-function mutants 
(sos1-12) resulted in significant reductions in shoot 
and root Na+ accumulation (Han et al., 2018). That 
study also showed that the constitutive expression of 
HvHKT1;1 did not increase Na+ influx into plant roots 
and that the gene may take part in the relocation  
of Na+ to root epidermal cells for efflux (Fig. 1). 
HvHKT1;5 knock-down barley lines showed higher salt 
tolerance accompanied by a dramatic decrease in Na+ 
translocation from roots to shoots and increases in the 
K+/Na+ ratio compared with wild-type plants under 
salt stress. The negative regulation of HvHKT1;5 in 
salt tolerance distinguishes it from other HKT1;5 
members (Huang et al., 2020). 

Oshkt2;1 mutant rice plants exhibited signifi-
cantly reduced growth compared to wild-type plants 
under low Na+ and K+ conditions, and accumulated 
less Na+, but not less K+, in tissues, indicating that the 
OsHKT2;1 transporter mediates Na+ influx into K+- 
starved roots (Horie et al., 2007). HvHKT2;1 co- 
transports Na+ and K+ in Xenopus oocytes (Mian et al., 
2011). In barley plants, overexpression of HvHKT2;1 
can result in higher Na+ concentration in the xylem 
sap and more translocation of Na+ to leaves, indicat-
ing its role in regulating Na+ xylem transport (Mian  
et al., 2011). The functions of other members of 
HKT2 transporters in cereals are listed in Table 1. It is 
reported that HKT2 sub-family members have a gly-
cine residue in that site (GGGG-type) and are per-
meable to Na+ or both Na+ and K+ transports (Mäser 

et al., 2002b; Platten et al., 2006; Rodríguez-Navarro 
and Rubio, 2006; Horie et al., 2009). 

In conclusion, membrane transporters play an 
important role in the regulation of K+/Na+ homeosta-
sis in plant tissues under salt stress, and their action is 
considered a key mechanism of salt tolerance in crops. 

 
 

6  Genetic improvement of salt tolerance in 
crops 

 
In the last few decades, many attempts have been 

made to develop salt-tolerant crop cultivars using vari-
ous breeding methodologies, including conventional 
breeding, mutagenesis breeding, and genetic engineer-
ing. Great progress has been made in understanding 
the physiology and genetics of salt tolerance in sev-
eral crops, such as rice and wheat (Ren et al., 2005; 
Munns et al., 2012), laying a solid foundation for 
further improvement of salt tolerance in crops. The 
genetic diversities of cultivated plant species and their 
wild relatives may provide new and elite genes that 
have yet to be effectively used (Shen et al., 2016, 
2018; Huang et al., 2018). Transforming this knowledge 
into modern approaches through the tools of genomics 
and molecular breeding will enhance the development 
of tolerant cultivars, thereby enabling increased food 
production (Ismail and Horie, 2017). 

6.1  Conventional breeding 

Conventional breeding of new salt-tolerant crop 
cultivars has been successful in recent decades (Singh 
et al., 2009). Since the 1970s, the International Rice 
Research Institute (IRRI) has bred more than 30 salt- 
tolerant rice cultivars through sexual hybridization. 
With the development of molecular markers, tradi-
tional breeding with marker-assisted selection can 
shorten the breeding cycle. Success in conventional 
breeding relies first on the proper identification of 
tolerant genotypes and genes. Land races and wild 
relatives are considered ideal breeding materials be-
cause they exhibit great genetic diversity, including 
large variation in their responses to salt stress (Reyn-
olds et al., 2005, 2007). Successful breeding for salt 
stress tolerance also relies on the identification of 
QTLs responsible for tolerance and their association 
with linked molecular markers, which are then used 
for effective marker-assisted selection. Numerous  
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Table 1  Gene expression, localization, and function of HKTs in rice, wheat, and barley 

Plant species Gene Gene expression, localization, and function Reference 

Oryza sativa OsHKT1;1 Mainly expressed in the phloem of leaves; the ex-
pression in old leaves is up-regulated by salt 
stress, which protects young leaves by accumu-
lating Na+ in the old leaves 

Wang et al., 2012 

O. sativa OsHKT1;3 Expressed in the root stele, phloem, and leaf vas-
cular bundle; localized on the golgi; associated 
with leaf curl 

Jabnoune et al., 2009 

O. sativa OsHKT1;4 Mainly expressed in the vascular tissue of shoot; 
Na+ was unloaded from the stem and leaf sheath 
during the reproductive growth stage, but this 
function is not significant during the vegetative 
growth stage 

Suzuki et al., 2016 

O. sativa OsHKT1;5 
(SKC1) 

Expressed in the plasma membrane of xylem pa-
renchyma cells in root and leaf sheath; unloading 
Na+ from the xylem; reducing Na+ accumulation 
in leaves 

Ren et al., 2005; Kobayashi 
et al., 2017 

O. sativa OsHKT2;1 Expressed in root epidermis and cortical cells; gene 
expression is reduced under salt stress; involved 
in root Na+ absorption 

Garciadeblás et al., 2003; 
Kader and Lindberg, 2008

O. sativa OsHKT2;2 Mainly expressed in root and mesophyll cells; gene 
expression in phloem is significantly enhanced 
under salt stress; K+/Na+ symporter 

Kader et al., 2006; Yao et al., 
2010 

O. sativa (cv. Nona 
Bokra) 

No-OsHKT2;2/1 Gene expression is induced under salt stress; in-
creasing salt tolerance by enhancing selective 
absorption of K+ 

Oomen et al., 2012 

O. sativa OsHKT2;3 Expressed in roots, basal stem, leaves, and sheaths, 
but no function; possibly pseudogenes 

Garciadeblás et al., 2003 

O. sativa OsHKT2;4 Expressed in root epidermis, stems, internodes, vas-
cular bundles in leaf sheath, and phloem; high 
affinity to K+, low affinity to Na+; ion affinity is 
inhibited by K+ 

Horie et al., 2011; Sassi  
et al., 2012; Zhang et al., 
2017 

Triticum monococcum TmHKT1;4-A 
(Nax1) 

Expressed in roots and sheaths; unloading Na+ from 
the vascular bundle; keeping Na+ in leaf sheath; 
unloading Na+ from the phloem 

Lindsay et al., 2004; James 
et al., 2006 

T. monococcum TmHKT1;5-A 
(Nax2) 

Expressed in the plasma membrane of vascular 
tissues in root; unloading xylem Na+; reducing 
sodium accumulation in shoots 

Byrt et al., 2007; Munns  
et al., 2012 

Triticum aestivum TaHKT1;5-D 
(Kna1) 

Expressed in the plasma membrane of stele cells in 
root; unloading Na+ from xylem; reducing Na+ 
accumulation in shoots 

Byrt et al., 2014 

T. aestivum TaHKT2;1 Expressed in the plasma membrane of root cortex; 
Na+/K+ cotransporter under low Na+ condition; 
Na+ uniporter under high Na+ condition 

Rubio et al., 1995; 
Gassmann et al., 1996 

Hordeum vulgare HvHKT2;1 Gene expression is up-regulated in the roots under 
low K+ condition; K+/Na+ cotransporter; when 
overexpressed in barley, the salt tolerance is en-
hanced, which may be related to the specific dis-
tribution of Na+ in leaves 

Mian et al., 2011 

H. vulgare HvHKT1;1 Expressed in the plasma membrane of the root 
epidermis and steles; participating in the lateral 
transport of Na+ in the roots, and finally reducing 
the accumulation of Na+ in the shoots; involved in 
maintaining the balance of K+ and Ca2+ in the 
roots 

Han et al., 2018 
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studies have been conducted to map genes or QTLs. 
For example, Munns et al. (2012) produced two in-
dependent BC4 lines containing Nax2 (TmHKT1;5-A) 
from a cross between the durum wheat cultivar Mar-
rocos and T. monococcum accession C68-101, and a 
backcross with durum wheat cultivar Tamaroi (James 
et al., 2006; Byrt et al., 2007). Field trials on saline 
soils demonstrated that the presence of TmHKT1;5-A 
significantly reduced leaf Na+ concentration and in-
creased durum wheat grain yield by 25% compared to 
near-isogenic lines without the Nax2 locus (Munns  
et al., 2012). Saltol is a major QTL for salt tolerance 
in rice (Thomson et al., 2010). A marker-assisted 
backcross strategy was undertaken to transfer positive 
alleles of Saltol from FL478 into BT7, and the rice 
salt tolerance was successfully improved without 
penalizing agronomic performance (Linh et al., 2012). 
Although the progress of conventional breeding has 
been greatly accelerated through marker-assisted se-
lection, it is still time-consuming and relies largely on 
high-throughput genotyping platforms. 

6.2  Mutagenesis breeding 

In the last century, there were many studies on 
the use of plant tissue and cell cultures to obtain 
salt-tolerant mutants. In vitro plant cells or tissues 
including callus, cell suspensions, and protoplasts have 
been used in mutagenesis breeding. The selection of 
salt-tolerant cultivars by in vitro culture includes 
spontaneous mutation and artificially induced varia-
tion. In spontaneous mutation, NaCl, seawater, poly-
ethylene glycol (PEG), hydroxyproline (HYP), and 
L-azetidine-ethyl-carboxylic acid have been used to 
screen for the selection of salt-tolerant cultivars (Zhao 
et al., 1995; Du et al., 1999; Wang and Jia, 1999). 
Nabors et al. (1980) used nine consecutive screens to 
select salt-tolerant tobacco cell lines, and the regen-
erated salt-tolerant plants were able to stably with-
stand seawater irrigation for two consecutive genera-
tions. This was the first report of an artificially bred 
cultivar with high salt tolerance that could be inher-
ited by future generations through sexual reproduc-
tion. Ye et al. (1987) combined anther culture tech-
niques with hybridization to screen for salt-tolerant 
barley cultivars in salt-stressed media. Genetic varia-
tion was artificially induced using physical methods 
(i.e., X-rays, γ-rays, β-rays, or neutrons) or chemical 
mutagenic agents (i.e., alkylation agents or azides), 
which cause a higher mutation frequency than spon-

taneous mutation, and can create more valuable mu-
tants in a shorter time (Li et al., 1990; Guo et al., 
1997). A successful example is the production of the 
barley cultivar Golden Promise, which is a γ-ray- 
induced semi-dwarf mutant from the cultivar May-
thorpe (Forster, 2001). However, the randomness of 
mutation and difficulties in regenerating whole plants 
greatly restrict the application and development of 
mutagenesis breeding. 

6.3  Genetic engineering 

Transgenic approaches have been widely used in 
gene functional characterization for several decades. 
Genomic studies in combination with transcriptomic 
analysis can be used to discover new genes and reveal 
regulatory systems and their genomic locations (Roor-
kiwal et al., 2014). Alternatively, genetic transfor-
mation provides opportunities for extensive applica-
tion of genetic engineering across different species, 
regardless of their reproductive isolation. Thus, many 
transgenic plants with high salt tolerance have been 
developed across several species (Khan et al., 2015). 
The overexpression of type-I H+-PPase genes en-
hanced salt and drought tolerance in tobacco (Nico-
tiana tabacum), cotton (Gossypium hirsutum), and 
maize (Z. mays) (Gao et al., 2006; Li et al., 2008;  
Lv et al., 2008, 2009). Under salt stress, HvHKT1;5 
knock-down transgenic barley lines showed improved 
salt tolerance, dramatic decreases in Na+ translocation 
from roots to shoots, and increases in the K+/Na+ ratio 
compared with wild-type plants (Huang et al., 2020). 
A late embryogenesis abundant (LEA) protein gene, 
HvA1, from barley was introduced into rice, and the 
transgenic rice plants showed a significant increase in 
their tolerance to water and salt stresses (Xu et al., 
2008b). Chen et al. (2015) also demonstrated a suc-
cessful application of an inducible promoter in regu-
lating the spatial and temporal expression of HvA1 for 
improving rice root architecture and multiple stress 
tolerance without yield reduction. However, because 
of public concerns about transgenic crops, further 
research is required to reveal whether this approach  
is effective for developing commercial salt-tolerant 
cultivars. 

Genome editing is defined as the precise modi-
fication of the nucleotide sequence of the genome of 
an organism or cell by inserting, deleting, or replacing 
DNA at a specific site, usually through the use of 
engineered nucleases (Chen and Gao, 2014; Gao, 
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2015). Genome editing using zinc-finger nucleases 
(ZFNs) (Kim et al., 1996) and transcription activator- 
like effector nucleases (TALENs) (Christian et al., 
2010) has been used for almost two decades, but it has 
recently come under the spotlight through the devel-
opment of clustered regularly interspaced short pal-
indromic repeats (CRISPR)/CRISPR-associated (Cas) 
systems, which provide simplicity and ease for tar-
geted gene editing (Jinek et al., 2012; Li et al., 2013). 
Technologies involving targeted genome editing us-
ing sequence-specific nucleases have great potential 
for crop improvement (Khatodia et al., 2016). Such 
technologies are particularly useful when favorable 
alleles associated with the specific have been identi-
fied and characterized, as is the case for salt tolerance 
(Ismail and Horie, 2017). So far, targeted genome 
editing for disease resistance has been applied many 
times in rice (Li et al., 2012), wheat (Wang et al., 
2014), and tomato (Nekrasov et al., 2017), but only a 
few studies have focused on the improvement of  
salinity tolerance in crops through genome editing. 
Zhang et al. (2018) enhanced rice salinity tolerance 
via CRISPR/Cas9-targeted mutagenesis of the OsRR22 
gene. Zhou et al. (2017) used CRISPR-Cas9-based 
genome editing to obtain mutants of single microRNA 
(miRNA) genes (OsmiR408 and OsmiR528) and miRNA 
gene families (miR815a/b/c and miR820a/b/c) in rice, 
and revealed a positive regulator of rice salt stress 
tolerance, OsMIR528. With the rapid development of 
functional genomics, and the identification and char-
acterization of other important genes, genome editing 
will provide more powerful and efficient opportunities 
for improving the salt tolerance of crops. Certainly, 
more studies should be carried out on the applications 
of genome editing to the precision breeding of crops. 

In conclusion, various breeding methodologies, 
including conventional breeding, mutagenesis breed-
ing, and genetic engineering, have been commonly 
used in developing salt-tolerant crop cultivars and, in 
future, gene editing is likely to become a dominant 
method. 

 
 

7  Conclusions 
 
Many studies have shown that Na+ accumulation 

in tissues, especially in shoots, is a major factor af-
fecting salt tolerance, which in turn depends on Na+ 
uptake, long-distance transportation, and distribution 

in plants mediated by ion transporters like SOS1, 
HKT, and NHX. There are dramatic differences in 
salt tolerance among plant species and genotypes 
within a species. The wide genetic diversity paves the 
way for further improvement of salt tolerance in crops. 
Development of salt-tolerant crop cultivars relies on 
advanced breeding methodologies, including molec-
ular marker-assisted breeding, mutagenesis breeding, 
and genetic transformation, while recently developed 
genome or gene editing provides a more powerful and 
efficient tool for crop breeding. Commonly regarded 
as a non-genetically modified (GM) technology, gene 
or genome editing will become a focus of study and 
use in crop breeding. 
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中文概要 
 
题 目：耐盐胁迫相关离子转运蛋白与作物耐盐育种研究

的进展 

概 要：植物组织特别是地上部钠离子的积累是影响耐盐

性的关键因素，这一过程涉及到一些离子转运蛋

白，如 SOS1、HKT 和 NHX 等。不同植物种和

同一物种不同品种之间的耐盐性差异很大，这种

差异与耐盐胁迫相关离子转运蛋白基因表达有

关。分子标记辅助育种、诱变技术、遗传转化和

基因编辑技术为耐盐作物育种提供了高效有力

的技术支撑，特别是迅速发展的基因编辑技术，

将从非转基因的技术手段有效地改良作物的耐

盐性。 

关键词：盐害；渗透胁迫；离子胁迫；氧化胁迫；耐盐 


