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Abstract: Plant breeding is well recognized as one of the most important means to meet food security challenges 
caused by the ever-increasing world population. During the past three decades, plant breeding has been empowered 
by both new knowledge on trait development and regulation (e.g., functional genomics) and new technologies (e.g., 
biotechnologies and phenomics). Gene editing, particularly by clustered regularly interspaced short palindromic repeats 
(CRISPR)/CRISPR-associated protein (Cas) and its variants, has become a powerful technology in plant research and 
may become a game-changer in plant breeding. Traits are conferred by coding and non-coding genes. From this 
perspective, we propose different editing strategies for these two types of genes. The activity of an encoded enzyme 
and its quantity are regulated at transcriptional and post-transcriptional, as well as translational and post-translational, 
levels. Different strategies are proposed to intervene to generate gene functional variations and consequently phe-
notype changes. For non-coding genes, trait modification could be achieved by regulating transcription of their own or 
target genes via gene editing. Also included is a scheme of protoplast editing to make gene editing more applicable in 
plant breeding. In summary, this review provides breeders with a host of options to translate gene biology into practical 
breeding strategies, i.e., to use gene editing as a mechanism to commercialize gene biology in plant breeding. 
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1  Introduction 

 
Plant breeding is widely expected to help meet 

the challenge of feeding a population of 10 billion 
people on earth (Hickey et al., 2019). The fulfillment 
of this magnificent task will rely on advances and 
breakthroughs in all fields related to plant breeding, 

including new techniques yet to be innovated. Gene 
editing has recently emerged as such a breakthrough 
technology. It was not even dreamed of ten years ago 
in this field. Gene editing started with zinc-finger 
nucleases (ZFNs) (Lloyd et al., 2005) and later, tran-
scription activator-like effector nucleases (TALENs) 
(Cermak et al., 2011; Mahfouz et al., 2011). It is now 
dominated by the clustered regularly interspaced short 
palindromic repeats (CRISPR)/CRISPR-associated 
protein (Cas) technology (Li et al., 2013; Nekrasov  
et al., 2013; Shan et al., 2013). Although the CRISPR/ 
Cas technology has been in being for only seven years, 
its development as a new technology has been un-
precedented. Many CRISPR variant technologies 
have already been developed and quickly deployed 
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for basic and applied research, including plant breeding 
(Li et al., 2013; Chavez et al., 2015; Piatek et al., 2015; 
Xie et al., 2015; Zetsche et al., 2015; Endo et al., 2016; 
Kleinstiver et al., 2016; Lin et al., 2016; Minkenberg 
et al., 2017; Shimatani et al., 2017; Tang L et al., 2017; 
Hu et al., 2018; Nishimasu et al., 2018; Ren et al., 
2019). 

The progress on and perspectives of genomic 
editing in plant breeding have already been exten-
sively reviewed recently (Zhang H et al., 2017; Pan-
diarajan and Grover, 2018; Zaidi et al., 2018; Eş et al., 
2019; Hua et al., 2019; Mao et al., 2019; Molla and 
Yang, 2019; Kausch et al., 2019; Zhang YX et al., 
2019; Zimny et al., 2019). Some reviews were pub-
lished almost simultaneously but in different journals, 
and hence the key information, insights, and per-
spectives conveyed in these reviews overlapped to 
some extent. These reviews mainly covered topics 
such as: (1) the ever-developing gene editing tech-
nologies adapted to plant systems; (2) the applications 
of gene editing in plant breeding for different breed-
ing objectives; (3) challenges and perspectives of 
gene editing in plant breeding. In summary, it is now 
well recognized that gene editing has a broad spec-
trum of applications, from knocking out a gene to 
quickly generating a recessive but desired trait (such 
as fragrance, early maturity) (Shan et al., 2015; Xu  
et al., 2016; Soyk et al., 2017), to generating new 
alleles by nucleotide substitution to create a novel 
trait (Li et al., 2016; Hua et al., 2018; Zong et al., 
2018), to quantitatively regulating the expression of a 
particular gene to increase stress tolerance or content 
of desired metabolites (Li et al., 2012; Čermák et al., 
2015; Jia et al., 2017), to name a few. 

In parallel with rapid technical advance in plant 
research, study on the mechanism of how a gene ex-
erts its function and how a gene is regulated, i.e., gene 
biology, has also experienced tremendous progress 
in the past two decades. However, due to the lack/ 
incomprehension of such knowledge, and in most 
cases lack of proper techniques to make use of, plant 
breeders at large have not taken advantage of this 
knowledge in their breeding programs. Although 
some of the mechanisms have already been integrated 
into gene editing for generation of novel traits, a 
comprehensive examination of how to make use of 
gene biology in gene editing-facilitated plant breeding 
has been lacking. In this perspective paper, we review 

the current state of plant gene biology research, from 
gene structure to transcription and post-transcription 
regulations, to translation and post-translation modi-
fications, and propose various gene editing strategies 
that could be deployed to generate novel alleles of a 
given gene for a particular purpose in plant breeding. 
That is, to use gene editing to translate gene biology 
into practical breeding strategies, i.e., to use gene 
editing as a mechanism to commercialize gene biol-
ogy in plant breeding. 

 
 

2  A brief introduction to gene biology: type 
of genes, functioning mechanisms, and reg-
ulation at various levels 
 

Our understanding of a gene and how it func-
tions has evolved drastically since the term “gene” 
was first introduced into biology. Nowadays, genes 
are divided into two basic types: coding and non- 
coding. Proteins encoded by coding genes also vary 
greatly in their function and can be divided into dif-
ferent categories: (1) enzymes involved in biochem-
ical catalytic reactions in metabolism (classical en-
zymes) and (2) enzymes specialized in modification 
of proteins, RNAs, and DNAs; (3) non-enzyme pro-
teins such as transporters of ions and macromolecules 
and (4) non-enzyme proteins working together with 
other proteins in biochemical process or gene regula-
tion, to name a few. Non-coding genes can also be 
further classified into long non-coding genes and 
small RNA genes. Genes of different types function 
in distinct ways to confer a phenotype. Consequently, 
different strategies could be developed to manipulate 
their function to achieve a specific objective in plant 
breeding. 

For a coding gene to confer a phenotype in plants, 
it should first be transcribed into RNA, processed into 
messenger RNA (mRNA), and translated into a pep-
tide, which should be modified before becoming ac-
tive, or be transported into proper organelles for func-
tioning. Therefore, the function of a coding gene could 
be regulated at transcriptional, post-transcriptional, 
and translational levels, and further modified post- 
translationally. For non-coding genes, their products 
are often involved in regulation of other genes 
through distinct or as yet unknown mechanisms,  
and hence their function could also be regulated or  



Tan et al. / J Zhejiang Univ-Sci B (Biomed & Biotechnol)   2020 21(6):460-473 462

modified. In the following sections, the biological 
basis of gene expression and regulation is elaborated 
in more detail with practical examples when available, 
and respective ways to modify traits by gene editing 
are proposed for plant breeding. 

 
 

3  Gene editing for transcription and post- 
transcription regulations 
 

Transcription is a process in which DNA is 
transcribed into RNA, which involves three steps, i.e., 
initiation, elongation, and termination. Transcription 
begins with the binding of RNA polymerase to DNA 
at the promoter region, and RNA polymerase works 
together with transcriptional factor (TF) in plants. The 
TFs can either bind with the RNA polymerase to form 
complexes or directly bind with the specific sequence 
on the promoter region. Therefore, the transcription 
of a gene of interest (GOI) could be altered by editing 
either its sequence (e.g., promoter, terminator) or its 
TFs. Transcribed RNA is processed into mRNA for 
translation, and the stability of mRNA is dependent 
on sequences in the untranslated regions (UTRs) as 
well as others.  

3.1  Editing for transcription 

Functionally, the promoter region consists of 
three important components, i.e., the core/minimal, 
distal, and proximal promoter regions. The core/ 
 
 

 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 

minimal promoter where the TATA box, initiator, and 
B recognition element (BRE) reside is the sequence 
that is necessary for initiating transcription. The distal 
promoter contains enhancers or silencers and can also 
influence the expression of a gene. The proximal 
promoter region has several TF-binding sites (TFBSs) 
adjacent to the core promoter sequence (Fig. 1). Cis- 
regulatory elements (CREs) are known to be one or 
more TFBSs in the proximal/distal promoter region 
(Pandiarajan and Grover, 2018). 

In the promoter region, many different types  
of responsive elements have been reported that can 
induce transcription when stimulated by various 
biotic or abiotic stress, such as a responsive element 
to oxidative stress, environmental stress (light response 
elements (LREs), heat-shock element (HSE)), or 
pathogen (HSR203 responsive element (HSRE)) and 
responsive elements to different hormones (such as 
abscisic acid (ABA)-responsive element (ABRE) and 
gibberellin (GA)-responsive element (GARE)). The 
transcription proceeds for the elongation with the 
RNA polymerase after initiation and the template 
DNA strand is transcribed into RNA. At termination, 
RNA polymerase releases from DNA and the 
transcription stops. Therefore, gene transcription can 
be regulated by inhibiting the initial binding of the 
promoter with the RNA polymerase and TFs. This 
can be achieved by targeting the known vital elements 
on the promoter or unknown elements analyzed by the 
websites through the CRISPR/Cas technology.  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1  Schematic presentation of a gene and its transcription, and important targets on the promoter or coding region 
of a gene directly confering a trait (gene B) and its transcription factor (gene A) for transcription editing 
CRE: Cis regulatory element; CRISPR: clustered regularly interspaced short palindromic repeat; Cas: CRISPR-associated 
protein 
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Many important traits have evolved from sequence 
changes in the promoter region during the course of 
crop domestication, e.g., grain color (Espley et al., 
2009; Butelli et al., 2012; Oikawa et al., 2015) and 
shape (Li et al., 2011; Wang et al., 2012, 2015; Xu  
et al., 2015), and resistance to disease (Li et al., 2017). 
They often resulted from altered expression levels of 
genes responsive to hormonal or environmental signals. 
In practice, it has been proven that genome editing 
can be used to change gene transcription by editing 
CREs of the GOI (gene B in Fig. 1), or by knocking 
out or altering transcription of its TFs (gene A in  
Fig. 1), thus improving stress tolerance, fruit size, and 
disease resistance in crops, such as rice, wheat, and 
tomato (Wang YP et al., 2014; Wang FJ et al., 2016; 
Rodriguez-Leal et al., 2017; Shi et al., 2017). 

3.2  Editing of UTR 

The UTR region contains the sequences ahead of 
the translation initiation codon ATG (5'-UTR) and 
after the stop codon (3'-UTR) in mature mRNA. 5'- 
UTR works as the entry point for the ribosome during 
translation of mRNA and contains elements that can 
interact with thermal sensors and other classes of 
translation or transcription attenuators, and hence plays 
crucial roles in the regulation of gene transcription 
through influencing the mRNA stability in response 
to environmental stimuli (Leppek et al., 2018; Al-Zeer 
et al., 2019). Therefore, the transcription of a GOI 
could theoretically be altered by targeted mutation in 
UTRs. 

 
 
 

 
 
 

 
 

 
 
 

 
 
 
 
 

 

3.3  Editing for post-transcriptional regulation 

Many genes are subject to post-transcriptional 
regulation in plants, e.g., alternative splicing (AS), 
alternative polyadenylation (APA), and microRNA 
(miRNA) digestion (Fig. 2), which affects transcript 
processing and protein translation (Deng and Cao, 2017). 

AS rearranges the pattern of intron and exon 
elements in mRNAs to direct the decay of a special 
RNA variant. This enables a gene to encode diverse 
protein isoforms (Filichkin et al., 2015). For example, 
one of the florigen genes in temperate grasses is 
capable of producing two splicing isoforms that play 
antagonistic roles in flowering control, suggestive of 
a pervasive phenomenon by AS to confer a gene with 
different cellular functions or properties (Qin et al., 
2017). Most eukaryotic splicing processes of pre- 
mRNAs observe a GU/AG rule (Reddy et al., 2013), 
and thus it can be modified by a CRISPR/Cas9 
technology. The recently developed Cas9-directed 
base editor, which can introduce desired point 
mutation, has been shown to be an ideally efficient 
way to manipulate splicing outcomes. For example, 
hypersensitive to ABA1 (HAB1), a phosphatase 2C 
gene in Arabidopsis, that can generate two isoforms 
playing entirely opposite roles in the GA signaling, 
has successfully produced a retention of intron (Xue 
et al., 2018). The ABA hypersensitive phenotype of 
transgenic mutants demonstrated that generation of 
HAB1 AS isoforms had been completely prevented 
through single-base substitutions (Xue et al., 2018). 
As the base editing tools with non-specific protospacer 
 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2  Schematic overview of post-transcriptional gene regulation events that can be theoretically controlled by 
CRISPR/Cas9 technology in plants, including alternative splicing (AS), miRNA-mediated mRNA cleavage, RNA edit-
ing, and alternative polyadenylation (APA) 
CRISPR: clustered regularly interspaced short palindromic repeat; Cas: CRISPR-associated protein; miRNA: microRNA; 
mRNA: messenger RNA; UTR: untranslated region 
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adjacent motif (PAM) properties are becoming available, 
manipulating pre-mRNA splicing via CRISPR-directed 
base editors will gain wide application in mRNA 
isoform functional studies in crops. 

Similar to transcriptional control, the strategy of 
gene editing, especially by CRISPR/Cas9, has now 
revealed significant insights into post-transcriptional 
effects. 

miRNAs, a class of 20- to 24-nt RNAs generated 
from a stem-loop structure, play regulatory roles in a 
wide range of biological processes in eukaryotes (Wu 
et al., 2010). Besides deletion of the full miRNA gene 
locus, making indels in miRNA precursors by 
CRISPR/Cas9 could also readily abolish miRNA 
functions, because the secondary structure of the 
miRNA precursor is critical for the efficiency of 
miRNA formation. Generally, plant miRNAs have 
almost perfect sequence complementarity with targets. 
On the one hand, it is simple to destroy the regulatory 
module of miRNA and targets. This is done through 
the introduction of indels where miRNA and target 
pairs, because of the matching degree at miRNA and 
target sites, especially in the 5' end (positions 2 to 8) 
and central region (positions 10 and 11) of miRNA, 
are crucial for the efficiency of miRNA-mediated 
cleavage. On the other hand, it is also possible to 
artificially fine-tune the target expression through 
adjustment of complementary miRNA and target sites 
by precise base editing. 

In a recent study, Zhang’s group attempted to 
produce miR528 loss-of-function mutants through 
CRISPR/Cas9-based genome editing (Zhou et al., 
2017). The transgenic plants with 3-bp deletion in 
miR528 precursor were, as expected, observed to 
compromise miR528 function in salt stress response. 
However, those with 1-bp insertion in miR528 
precursor have no obvious effects. This interesting 
finding indicates that creating miRNA locus with 
large deletions is more credible than engineering 
miRNA precursors to obtain miRNA loss-of-function 
mutants via CRISPR/Cas9. 

Another example is to fine-tune plant architecture 
by miRNA editing. Promotion of high resource use 
efficiency via ideal plant architecture (IPA) is an 
attractive way to increase crop yield potential (Jiao  
et al., 2010). Rice SQUAMOSA promoter-binding-like 
14 (OsSPL14), an SQUAMOSA promoter-binding 

protein (SBP)-domain transcription factor targeted by 
miR156, is the locus of IPA1 and can be exploited to 
increase grain yield through balancing panicle size 
and tiller number, if it is optimally expressed (Zhang 
L et al., 2017). Although selection of novel promoter 
alleles in natural or mutagenized populations has  
been suggested as a useful way to control the IPA1 
expression pattern, genome editing at miR156 and 
IPA1 target site would be an alternative way to better 
fine-tune IPA1 to design elite super rice varieties. 

Like genomic editing, RNA editing is also a 
mode of nucleotide modification. However, it is 
usually a natural phenomenon occurring at the RNA 
rather than DNA nucleotides from their genome- 
encoded sequence, which is acting as an indirect 
repair mechanism that corrects DNA mutations at the 
RNA level (Takenaka et al., 2013). In flowering 
plants, mRNA editing is generally performed as a 
C-to-U alteration, and subsequently results in a 
change of protein amino acids or gene expression via 
AS or miRNA-mediated degradation (Takenaka et al., 
2013). Since RNA editing is not always emergent, 
people can directly edit a DNA nucleotide sequence at 
an RNA editing site by CRISPR/Cas9 to artificially 
control the physiology caused by the occasional RNA 
editing event. 

APA is a widespread gene regulation mechanism 
that generates mRNA with different 3'-UTRs, allowing 
them to be differentially degraded or interact with 
diverse sets of RNA regulators such as RNA-binding 
proteins and miRNAs (Hunt, 2014). Because APA 
generally occurs at different sites enriched with 
poly(A), it is conceivable to change APA events 
through deletion or alternation of poly(A) fragments 
by the CRISPR/Cas9 method to form truncated mRNA 
isoforms with different adenylations 

In theory, gene editing could be used in all 
aspects of post-transcription regulation; however, 
there is no report yet on success of APA or RNA 
editing events so far by CRISPR/Cas genome editing, 
and even applications of gene editing on miRNA and 
AS are still very limited. It may well be in that the 
single nucleotide editing efficiency is not yet high 
enough. Nevertheless, with the progress made via the 
breakthroughs of base editing tools, genome editing 
promises to contribute a lot to manipulating gene 
expression explicitly at post-transcription levels. 
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4  Gene editing for translation, post-translation 
modification, and protein localization 

 
Classical gene editing often results in indel mu-

tations in the targeted genome region, and when it 
occurs in the exonic region, it would completely or 
partially knock out a protein-coding gene. Indeed, 
many important traits, selected by farmers during the 
domestication process of various crops, are controlled 
by recessive alleles, such as the “green revolution” 
gene semi-dwarf 1 (sd1), the fragrance gene betaine 
aldehyde dehydrogenase 2 (badh2), and the long grain 
gene grain size 3 (gs3) in rice. Hence, gene editing has 
already been successfully applied to quickly breed a 
trait that is in demand, such as fragrance, waxy rice, 
low phytic acid, and low Cd accumulation (Shan et al., 
2015; Sun et al., 2017; Tang X et al., 2017; Zhang JS 
et al., 2018; Zhou et al., 2018; Jiang et al., 2019; Liu 
et al., 2019). By using base editing techniques, the 
amino acid sequence could also be modified to 
produce partial knockout or gain-of-function muta-
tions through various mechanisms (Fig. 3). 

4.1  Upstream ORF editing for regulating of pri-
mary ORF translation 

It is now considered as a general mechanism that 
upstream ORFs (uORFs) control the amount of pro-
tein that is synthesized from their downstream pri-
mary ORFs (pORFs). According to von Arnim et al. 
(2014), from about 30% to more than 40% transcripts 
harbor uORFs in plants, including important crop 
plants such as maize and rice. By demonstrating that 
genome editing of endogenous uORFs could enable 
the modulation of translation of mRNAs from four 
pORFs that are involved in either development or 
antioxidant biosynthesis, Zhang HW et al. (2018)  
 
 
 
 
 
 
 
 
 
 
 
 

proposed that gene editing could be a generalized 
instrument for translation regulation in plants. 

4.2  Editing for protein activation and degradation 

After being transcribed and translated, the com-
plexity of genetic information encoded in DNA is 
largely increased by multiple post-translational mod-
ifications (PTMs) (Fig. 4). PTMs are chemical alter-
ations to protein structure, typically catalyzed by 
substrate-specific enzymes, which themselves are 
under strict control by PTMs. Due to a lot of types of 
PTMs, there is a rich diversity of gene products 
(Deribe et al., 2010). PTMs might induce conforma-
tional changes or form a docking site to mediate mo-
lecular recognition and stabilize protein–ligand and 
protein–protein interactions. By reversible multisite 
PTMs, they can rapidly and dynamically regulate 
protein turnover, localization, and activation, and  
thus dynamically coordinate developmental processes 
(Huber and Hardin, 2004; Ytterberg and Jensen, 2010; 
Duan and Walther, 2015). PTMs play the key role in 
plant development stages. For example, GENOMES 
UNCOUPLED 4 (GUN4) is a positive regulator of 
light-dependent chlorophyll biosynthesis. GUN4 acti-
vates Mg chelatase (MgCh) that catalyzes the inser-
tion of an Mg2+ ion into protoporphyrin IX. Ara-
bidopsis thaliana GUN4 is phosphorylated at Ser264 
(S264), the penultimate amino acid residue at the C 
terminus. Phosphorylation of GUN4 alters stimula-
tion of MgCh activity in angiosperms (Richter et al., 
2016). The IPA1 gene encodes OsSPL14, a SBP- 
domain transcription factor, and promotes both yield 
and disease resistance in rice (Zhang H et al., 2017; 
Wang J et al., 2018). Wang B et al. (2018) reported 
that ubiquitination and phosphorylation modifications 
could regulate IPA1 function at the post-transcriptional 
 

 
 

 
 
 
 
 

 
 
 
 

 
(a) 

 
(b) 

Site of DSB 

Fig. 3  Generation of gain- or loss-of-function mutations using genome editing tools 
(a) Frameshift mutations cause loss-of-function alleles; (b) Amino acid substitutions cause partial loss-of-function or gain-
of-function alleles. DSB: double-strand break; UTR: untranslated region 
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level. For example, the RING-finger E3 ligase stabi-
lizes IPA1 in shoot apexes through K63-linked 
polyubiquitination, but it promotes the degradation of 
IPA1 in panicles through K48-linked polyubiquitina-
tion. Moreover, phosphorylated IPA1 at amino acid 
Ser163 activates the expression of pathogen defense 
gene WRKY45, leading to enhanced disease resistance, 
which indicate that fine-modifying IPA1 protein leads 
to an “ideal” rice plant with fewer tillers, better 
lodging resistance, and enhanced grain yield. Thus, 
new directions of research are beginning to examine 
how we can exploit genome editing to benefit crop 
breeding by targeting the key sites in PTMs. Although 
some technical hurdles still remain to be overcome, 
we probably can apply CRISPR/Cas technology to 
simultaneously editing of multiple phosphorylation or 
ubiquitination sites of IPA1 or other key regulators  
in a precise and efficient manner, dynamic modulat-
ing of key protein activity or abundance, redirecting 
plant development in a multifunctional way, and 
providing new insights to a new level of plant syn-
thetic biology. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.3  Editing for modification of protein–protein 
interaction 

The term “protein–protein interaction” encom-
passes a variety of events, such as transient and stable 
complexes. The interaction between the proteins can 
be relevant to a variety of biological processes in-
cluding metabolic and signaling pathways, stress 
responses, plant defense, and organismal systems 
(Morsy et al., 2008; Jorrín-Novo et al., 2009). For ex-
ample, the nicotinamide adenine dinucleotide phos-
phate (NADPH)-dependent reduction of glutamyl- 
transfer RNA (tRNA) catalyzed by glutamyl-tRNA 
reductase (GluTR) is the rate-limiting enzyme of 5- 
aminolevulinic acid (ALA) formation and chlorophyll 
biosynthesis (Beale, 1999). Three proteins are known 
to regulate GluTR activity in chloroplasts, fluorescent 
(FLU) protein (Meskauskiene et al., 2001; Goslings  
et al., 2004; Kauss et al., 2012), the GluTR-binding 
protein (GBP, OsGBP) (Czarnecki et al., 2011), and 
the caseinolytic protease (Clp) (Apitz et al., 2016). 
The tetratricopeptide repeat (TPR)-containing protein 
FLU is a negative regulator of chlorophyll biosynthesis 

Fig. 4  Potential post-translationally modified sites involved in phosphorylation and ubiquitination processes using 
genome editing 
IPA1: ideal plant architecture 1; Glu: glutamate; Lys: lysine; Arg: arginine; Ser: serine; tRNA: transfer RNA; GluTR: Glu-
tRNA reductase; GUN: GENOMES UNCOUPLED; K48/63: lysine 48/63; DEP1: dense and erect panicle 1; Ub: ubiquitination 
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in plants. It directly interacts through its TPR domain 
with GluTR (Zhang et al., 2015). Three sites (Arg450, 
Arg485, and Arg500) in the C terminal of GluTR and 
three sites (Glu284, Asp291, and Asp307) in the 
TPR3 domain of FLU play important roles in protein– 
protein interaction in Arabidopsis (Zhang et al., 2015). 
We can use a genome editing tool for single-base 
substitution to edit these sites to vary the interaction 
ability between GluTR and FLU in crops, which may 
change the ALA biosynthesis, chlorophyll biosyn-
thesis rate, or even plant stress resistance. This paves 
the way for achieving functional modifications rather 
than total knock-out. 

 
 

5  Protoplast editing: making gene editing 
more applicable in plant breeding 
 

In animals, genome editing is often DNA-free 
because guide RNA (gRNA) and Cas9 were delivered 
into cells in the form of pre-assembled ribonucleo-
proteins (RNPs) via electroporation (Kim et al., 2014; 
Liang et al., 2015). However, in plants, the presence 
of a cell wall makes it impossible to use transfection 
or electroporation for nucleic acid and/or protein de-
livery. Transient protoplast transfection has also been 
used for evaluation of gene editing reagents in various 
crops such as rice and tomato (Shan et al., 2014; Čermák 
et al., 2015; Woo et al., 2015; Lin et al., 2018), but 
because of the lack of a reasonably efficient proto-
plast regeneration system for almost all crop plants, 
gene editing via the protoplast seems not feasible yet 
for plant breeding. However, RNP-based protoplast 
editing has numerous advantages over the current 
transgenic plant-based method, and hence efforts 
should continue to be made to make it work in crops. 

5.1  Advantages of RNP-based protoplast editing 

Transient delivery systems for transgene-free 
and DNA-free genome editing show a promising 
advantage in crop genetic modification. Based on lots 
of published data the mutagenesis efficiency in the 
protoplast looks higher than that in the plant- or  
tissue-based genome editing, which relies on tradi-
tional genetic engineering techniques (originally in-
cluding gene guns, electroporation, and agrobacte-
rium (Li et al., 2013; Lin et al., 2018)). To avoid some 
disadvantages of the expression of Cas9 and gRNA 

from genome-inserted plasmid DNA, an efficient 
plasmid-free genome editing system has been de-
veloped using pre-assembled RNPs (containing Cas9/ 
single-guide RNA (sgRNA)) in animal and plants 
(Liang et al., 2015; Woo et al., 2015). The new strategy 
achieved almost comparable efficiency to the plasmid- 
based transgenic systems with low off-target fre-
quency. After transfection, the RNP can cleave the 
target immediately. The transcriptional or transla-
tional machinery is not required. Importantly, the 
RNP complex is degraded quickly, to achieve another 
valuable advantage with fewer off-target mutations. 
The rate of regenerated mutants was up to 46% in 
lettuce, according to the published data (Woo et al., 
2015). Sheen lab made progress with a DNA-free 
genome editing system with higher efficiency, ap-
proximately 99% (Sheen, pers. comm.).  

Multiplex gene editing by CRISPR/Cas9 pro-
vides a powerful tool for targeting members of mul-
tigene families. Although previous studies have 
shown that multiplex gene editing in plants is possible 
with CRISPR/Cas9 (Xie et al., 2015) or CRISPR/ 
centromere and promoter factor 1 (Cpf1) (Wang et al., 
2017), the Cas9 system requires large constructs to 
express multiple sgRNA cassettes, which is more 
laborious to construct and may cause instability and 
reduce transformation efficiency. Engineered CRISPR/ 
Cpf1 with a simple short direct repeat (DR)-guide 
array still has the disadvantage of low cleave effi-
ciency and off-target mutation. For pre-assembled 
RNPs one can synthesize multiplex sgRNAs, with, 
theoretically, no limitation for the RNP complex. This 
will demonstrate the feasibility of high-efficiency mul-
tiplex gene editing in the protoplast. 

Currently, most advances in CRISPR/Cas ap-
plication in crops focus on single or multigene 
knockouts, and chromosomal deletions, which ex-
clude some “bad” genes or Cis-elements. In wheat, 
mutations of three mildew-resistance locus O (MLO) 
homeologs by CRISPR/Cas9 result in improved re-
sistance to Blumeria graminis f. sp. tritici infection 
(Wang et al., 2014). Also editing of an α-Kafirin gene 
family increases digestibility and protein quality in 
sorghum (Li et al., 2018). These strategies are based 
on CRISPR/Cas-targeted modification of suscepti-
bility genes in crop species. Compared with the great 
progress of genome editing in animals, the big chal-
lenge in plants is in-frame gene knock-ins by the 



Tan et al. / J Zhejiang Univ-Sci B (Biomed & Biotechnol)   2020 21(6):460-473 468

CRISPR/Cas system, which can produce a “gain of 
function” and facilitate breeding by introducing 
new alleles faster or generating allelic variants that 
do not exist naturally. Also, knock-in can be used to 
alter multiple elite traits by stacking genes in a single 
variety, which have great value for crop trait im-
provement (Chen et al., 2019). Apparently, gene 
knock-in with a protoplast system shows more ad-
vantages in higher efficiency and accuracy than the 
traditional method. The Sheen lab at Harvard Uni-
versity successfully in-frame integrated the exoge-
nous tags in Arabidopsis and the tobacco genomes 
(Sheen, pers. comm.), because using preassembled 
RNP complexes consisting of Cas9 protein and 
sgRNAs, the complexes were introduced directly into 
protoplasts using a polyethylene glycol-based method 
and have shown precise and efficient gene knock-out 
(Woo et al., 2015) or knock-in (Sheen, pers. comm.). 
The previous advantages and pitfalls give us a perspec-
tive on CRISPR/Cas that might be safely used for the 
design of genetic modified crops as with hybrid crops. 

5.2  Paradigm-changing technique for protoplast 
regeneration 

There is a problem in crop regeneration after 
gene editing in the protoplast. Though some papers 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

claimed that they regenerated some crops from the 
protoplast, as is known the regeneration efficiency is 
far from providing a feasible application. How to 
regenerate a plant from a single protoplast? Actually, 
in animals, pluripotent stem cells (also known as 
induced pluripotent stem (iPS) cells) are derived di-
rectly from adult tissues, and induced by some ki-
nases, transcription factors, or other components 
(Takahashi and Yamanaka, 2006). Unlike animals, 
plant stem cells are innately undifferentiated cells 
located in the meristems of plants during the whole 
life cycle (Pierre-Jerome et al., 2018). However, the 
tissue is limited and surrounded by differentiated cells. 
Importantly, these innate stem cells are changed at the 
cell characteristics, cell polarity, epigenetic modifi-
cation, and physiological levels after removing the 
cell wall. Compared with animal cells, plant cells also 
can be induced to homogeneous embryonic stem cells 
in Arabidopsis and tobacco. With these cells, we can 
manipulate the genome rewriting easily and improve 
the regeneration at higher efficiency in Arabidopsis 
and tobacco (data not shown; rice is a potential model, 
which is shown in Fig. 5). Whether it works well in 
main crops such as rice, maize, wheat, soybean, and 
barley remains to be seen. It remains challenging but 
would be rewarding if achieved. Another question is  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 5  Workflow of potential protoplast-based gene editing and regeneration for plant breeding (rice as a model) 

Cas: clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein; gRNA: guide RNA; RNP: 
ribonucleoprotein 
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what the protoplast-regenerated plants look like? The 
plants germinate from a seed and experience pro-
gramed genetic and epigenetic modifications to pro-
duce environmentally adaptable plants. If we produce 
a somatic regenerated plant, the agronomic traits and 
adaptability will be doubtful, even though the re-
ported protoplasts in regenerated tobacco look good 
(Lin et al., 2018). Another group found that regener-
ation of Solanum tuberosum plants from protoplasts 
induces widespread genome instability (Fossi et al., 
2019), so more detailed information is needed before 
application. CRISPR/Cas is a sophisticated toolkit, 
but still under development and evolution. More and 
more researchers are working on the improvement 
and application of the toolkit, and such efforts should 
eventually lead to the implement of precision agri-
culture in the future. 
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中文概要 
 
题 目：基因编辑：将基因生物学用于植物育种的工具 
概 要：人口不断增长给世界粮食安全带来了严峻的挑

战，植物育种是应对这一挑战的最重要手段之

一。过去三十年来，性状形成和调控的新知识（如

功能基因组学）和新技术（如生物信息学和表型

组学）极大地支持了植物育种的发展。基因编辑，

特别是基于 CRISPR/Cas 技术和其衍生技术，已

成为强有力的植物研究技术，可能直接改变植物

育种的方法和策略。植物表型性状受编码基因和

非编码基因的控制，在本文中，我们提出了编辑

这两类基因的不同策略。对于编码基因，其编码

蛋白的活性和数量可在转录和转录后水平以及

翻译和翻译后水平加以调节，我们由此提出了创

造基因功能性变异从而改变性状表型的基因编

辑策略。对于非编码基因，则可以采用基因编辑

技术对其转录水平或对靶基因的目标序列加以

改造，达到产生新的性状的目的。此外，我们还

提出了一种基于原生质体的基因编辑方案，使基

因编辑技术更适合于植物育种。总之，本文提出

了一系列可供植物育种者选择的将基因生物学

知识转化为实用育种策略的方案，即基因编辑技

术成为将基因生物学知识用于植物育种的技术。 
关键词：基因编辑；表达调控；新等位基因；性状形成；

植物育种 

 


