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Abstract

Evolutionary changes in gene expression are often driven by gains and losses of cis-regulatory elements (CREs). The
dynamics of CRE evolution can be examined using multispecies epigenomic data, but so far such analyses have generally
been descriptive and model-free. Here, we introduce a probabilistic modeling framework for the evolution of CREs that
operates directly on raw chromatin immunoprecipitation and sequencing (ChIP-seq) data and fully considers the phy-
logenetic relationships among species. Our framework includes a phylogenetic hidden Markov model, called
epiPhyloHMM, for identifying the locations of multiply aligned CREs, and a combined phylogenetic and generalized
linear model, called phyloGLM, for accounting for the influence of a rich set of genomic features in describing their
evolutionary dynamics. We apply these methods to previously published ChIP-seq data for the H3K4me3 and H3K27ac
histone modifications in liver tissue from nine mammals. We find that enhancers are gained and lost during mammalian
evolution at about twice the rate of promoters, and that turnover rates are negatively correlated with DNA sequence
conservation, expression level, and tissue breadth, and positively correlated with distance from the transcription start
site, consistent with previous findings. In addition, we find that the predicted dosage sensitivity of target genes positively
correlates with DNA sequence constraint in CREs but not with turnover rates, perhaps owing to differences in the effect
sizes of the relevant mutations. Altogether, our probabilistic modeling framework enables a variety of powerful new
analyses.

Key words: phylogenetics, cis-regulation, evolution.

Introduction
It is now well established that the evolution of form and
function is often driven by mutations in cis-regulatory ele-
ments (CREs), particularly in multicellular eukaryotes having
complex programs for regulating gene expression (Wittkopp
and Kalay 2012; Siepel and Arbiza 2014; Villar et al. 2014; Reilly
and Noonan 2016). In humans, patterns of genetic polymor-
phism, patterns of interspecies divergence, and the results of
genome-wide association studies all indicate that a majority
of phenotype- or fitness-influencing nucleotides fall in non-
coding sequences and likely function in gene regulation
(Waterston et al. 2002; Siepel et al. 2005; Hindorff et al.
2009; Arbiza et al. 2013; Gusev et al. 2014; Battle et al.
2017). Although the mutations that underlie regulatory evo-
lution sometimes have subtle effects on, say, protein-DNA
binding or chromatin accessibility, in many of the best-
known cases, they instead alter gene expression through
the gain or loss in activity of a whole CRE (Tournamille
et al. 1995; Prabhakar et al. 2008; McLean et al. 2011). A
number of lines of evidence indicate that this gain-and-loss
process—sometimes called “turnover”—occurs at substantial
rates over evolutionary time (Dermitzakis and Clark 2002;
Moses et al. 2006; Doniger and Fay 2007; Wang et al. 2007;
Bradley et al. 2010; Schmidt et al. 2010; Jones et al. 2012;

Cotney et al. 2013; Kasowski et al. 2013). Indeed, the evolu-
tionary dynamics of this process appear to play out over
considerably shorter time periods than those for other critical
functional elements, such as protein-coding genes,
microRNAs, or long noncoding RNAs (Weirauch and
Hughes 2010; Danko et al. 2018).

There have been numerous attempts to model the evolu-
tionary dynamics of CRE turnover at the level of the primary
DNA sequence (Dermitzakis and Clark 2002; Moses et al.
2006; Siepel et al. 2006; Bullaughey 2011; Tugrul et al. 2015).
However, characterizing this process at the sequence level is
fundamentally challenging owing to limitations in the infer-
ence of regulatory function from the DNA sequence alone.
During the past 15 years, new technologies for collecting high-
throughput epigenomic data—such as chromatin immuno-
precipitation and sequencing (ChIP-seq) data for transcrip-
tion factors or histone modifications—have provided a path
forward, by more directly indicating similarities and differen-
ces across species in molecular phenotypes that are closely
related to cis-regulatory activity. A considerable number of
comparative epigenomic studies have now been carried out
in a variety of organisms, including studies based on transcrip-
tion factor binding (Odom et al. 2007; Bradley et al. 2010;
Schmidt et al. 2010; Paris et al. 2013; Wong et al. 2015;
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Jubb et al. 2016), particular histone modifications
(Bernstein et al. 2005; Mikkelsen et al. 2010; Xiao et al. 2012;
Prescott et al. 2015; Villar et al. 2015), chromatin accessibility
or chromatin contacts (Shibata et al. 2012; Vietri Rudan et al.
2015; Maher et al. 2018), DNA methylation (Qu et al. 2018),
and nascent transcription (Danko et al. 2018) (partially
reviewed in Marinov and Kundaje 2018). Among other find-
ings, these studies have confirmed generally rapid rates of CRE
gain and loss, and demonstrated that turnover rates are sub-
stantially higher in enhancers than in promoters, that depth
of conservation correlates with various measures of functional
impact, and that the evolutionary stability of gene expression
correlates with the complexity and conservation of the local
CRE architecture. However, with rare exceptions (Qu et al.
2018; Yang et al. 2018) (see Discussion), the available com-
parative epigenomic data sets have been analyzed using heu-
ristic, model-free methods that do not consider the
phylogenetic relationships of the species under study or the
uncertainty in epigenomic data.

In this article, we introduce new model-based inference
methods that address these deficiencies by fully accounting
for the species phylogeny as well as the relationship between
element activity and raw ChIP-seq read counts. Our methods
can also account for correlations of turnover rates with local
features along the genome sequence—such as gene expres-
sion patterns across tissues, distance to the transcription start
site (TSS), or DNA sequence conservation—and they are ef-
ficient enough to be applied to genome-wide data sets. As a
proof of concept, we apply these methods to previously pub-
lished ChIP-seq data for the H3K4me3 and H3K27ac histone
modifications in liver tissue across a phylogeny of nine

mammals (Villar et al. 2015). As described in detail below,
we confirm several previous findings regarding relative rates
of turnover in enhancers and promoters, and correlations
with gene expression patterns and local regulatory architec-
ture. In addition, we examine differences between patterns of
constraint at the DNA sequence and CRE turnover levels, and
find evidence suggesting that they reflect differences in the
effect sizes of the relevant mutations.

Results

General Approach
Our approach for analyzing multispecies epigenomic data
consists of three major stages (fig. 1A). First, we carry out a
series of preprocessing steps to summarize the ChIP-seq read
counts for each species in a common coordinate system
(based on version hg38 of the human reference genome),
excluding genomic regions where we could not establish clear
one-to-one orthology based on genomic synteny (see
Materials and Methods for details). Second, we apply a newly
developed probabilistic inference method, called
epiPhyloHMM, to identify “active” regions based on the
ChIP-seq read counts, working in the common coordinate
system. At this stage, an “active” region is one containing
CREs in any one or more species. This method accounts for
the phylogenetic gain and loss process, as well as noise in the
ChIP-seq data, at the same time as it predicts the locations of
the elements. Third, we apply a new probabilistic modeling
program, called phyloGLM, to describe the process of phylo-
genetic gain and loss in more detail, within the “active”
regions identified by epiPhyloHMM. PhyloGLM conditions

A B

FIG. 1. Illustration of modeling framework. (A) ChIP-seq data are aligned separately to the reference genome for each species then converted to the
coordinate system of the human (hg38) genome using the liftOver program (see Materials and Methods). Only regions of apparent one-to-one
orthology are considered, based on synteny. Cis-regulatory elements (CREs) that are active in one or more species are then identified using
epiPhyloHMM. Finally, the dynamics of CRE turnover within these elements are modeled using phyloGLM, which accounts for the associations
between various genomic features and local rates of gain and loss. (B) Both epiPhyloHMM and phyloGLM use a core “two-state” phylogenetic
model in which the presence (si ¼ 1) and absence (si ¼ 0) of CREs are allowed to change in a branch length-dependent manner along a fixed
phylogeny, according to a continuous-time Markov model. The model is defined by an instantaneous rate matrix Q (dashes indicate values
required for rows to sum to zero). The conditional probabilities of the raw ChIP-seq read counts at the tips of the tree (xi) given the corresponding
state (si) are modeled using negative binomial (NB) distributions. The color intensities for the “0” and “1” boxes are proportional to the probability
of each state. p, stationary frequency of CRE presence; c, gain/loss rate; ti, length of branch i.
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on a rich set of genomic features, capturing their correlations
with local rates of gain and loss.

Shared Phylogenetic Model
The epiPhyloHMM and phyloGLM programs both make use
of the same core “two-state” probabilistic model for the gain
and loss of CREs along the branches of a phylogeny.
Moreover, in both cases, this model also describes the gener-
ation of read counts that are reflective of CRE presence or
absence at the tips of the tree. Thus, it serves as a generative
model for multispecies read counts that can be fitted to the
raw data by maximum likelihood (fig. 1B). In this article, we
focus on read counts from ChIP-seq experiments, but the
model can easily be extended to other data types, such as
those arising from DNase-seq, ATAC-seq, or PRO-seq experi-
ments (see Discussion).

The phylogenetic component of the model is a straightfor-
ward “two-state” presence/absence model (with state varia-
bles s 2 f0; 1g) for CREs along the branches of a phylogeny. It
assumes a tree topology is given together with nonnegative
real-valued branch lengths. In practice, the tree and branch
lengths can be obtained from the literature or estimated from
sequence data (see Materials and Methods). The stochastic
process for gains and losses is defined, in the usual manner, by
a continuous-time Markov model with an instantaneous rate
matrix Q, from which branch length-dependent turnover
(gain/loss) probabilities can be obtained as PðtÞ ¼ expðQtÞ
for each branch length t (see Felsenstein 2004). The model has
two free parameters: the stationary probability of CRE pres-
ence (p) and a single turnover rate parameter (c), which to-
gether define a 2� 2 reversible rate matrix Q (fig. 1B). Given
data at the leaves of the tree, phylogenetic inference with this
model can be accomplished using Felsenstein’s pruning algo-
rithm (Felsenstein 1973, 1981) (see Materials and Methods).

Unlike with standard phylogenetic models for DNA
sequences, however, the observed data here consists of epi-
genomic (typically ChIP-seq) read counts, which provide only
an approximate indication of whether or not an active CRE
exists in each species. We accommodated the uncertainty in
read counts by borrowing from the literature on statistical
peak-calling for ChIP-seq data (Zhang et al. 2008). In partic-
ular, we described both the probability of the observed read
counts xi in species i given an active CRE in that species,
Pðxijsi ¼ 1Þ, and the probability of the observed read counts
given no active CRE, Pðxijsi ¼ 0Þ, using negative binomial
distributions (fig. 1B). Moreover, for the “active” model, we
used a mixture of three negative binomial distributions to
accommodate peaks of various heights (see Materials and
Methods) (Anders et al. 2013; Love et al. 2014). We also
adapted these emission distributions to accommodate miss-
ing data due to alignment gaps (see Materials and Methods).
Altogether, this modeling approach allows us to perform
multispecies peak-calling and phylogenetic inference simulta-
neously, accounting for uncertainty in both the locations of
present day CREs along the genome and their presence/ab-
sence over evolutionary time.

epiPhyloHMM: Prediction of Multispecies CREs from
Epigenomic Data
To address the problem of predicting “active” CREs, we
made use of the framework of phylogenetic hidden
Markov models, or phylo-HMMs (Felsenstein and Churchill
1996; Siepel and Haussler 2005). Phylo-HMMs are hidden
Markov models whose hidden states are associated with
phylogenetic models, which in turn, define distributions
over columns in multiply aligned sequences of observations.
Phylo-HMMs are sometimes called “space-time” models
(Yang 1995) because they describe stochastic processes in
both a spatial dimension, along the genome sequence, and a
temporal dimension, along the branches of a phylogeny. In
this case, the temporal (phylogenetic) models describe dis-
tributions over aligned ChIP-seq readcounts from multiple
species, as described in the previous section. The spatial
(hidden Markov) model, in turn, is designed to allow the
identification of CREs with various patterns of presence/ab-
sence at the tips of the tree.

This hidden Markov model consists of a single
“inactive” state and a set of states representing each pos-
sible presence/absence pattern (fig. 2A). Assuming most
of the genome will be inactive, the transition model is
sparse, with each active state being accessible only from
the inactive state, and not from other active states (see
Siepel et al. 2006 for a similar approach). It is completely
defined by two free parameters, q0 and q1 (fig. 2A and
Materials and Methods).

In practice, we constrain the complexity of the model by
including states only for presence/absence patterns that are
achievable by at most three gain/loss events along the
branches of the phylogeny (see Materials and Methods and
supplementary fig. S1, Supplementary Material online). The
free parameters of both the phylogenetic model (p; c) and
the HMM (q0; q1) are fitted to aligned epigenomic data by
maximum likelihood, and then active elements are called in
the standard way, using the Viterbi algorithm (fig. 2B). The
method generally performs well on simulated data (supple-
mentary Methods and figs. S2–S6, Supplementary Material
online).

Application of epiPhyloHMM to Histone-
Modification Data for Nine Mammals
We applied epiPhyloHMM to recently published H3K4me3
and H3K27ac ChIP-seq data for liver tissue from mammals
(Villar et al. 2015), preprocessing and aligning the data as
outlined above (see also Materials and Methods). These
data have the benefit of serving as highly general, if imperfect
(Benton et al. 2019), indicators of regulatory function and of
having been generated uniformly across species. We used
data for 9 of the 20 species examined in Villar et al. (2015).
We chose these nine species to provide good coverage of the
placental mammals across a variety of timescales, by repre-
senting three separate mammalian clades (primates, rodentia,
and carnivora) and an outgroup (opossum). The ingroup
species were selected to include good-quality assemblies.
We mitigated potential problems stemming from the lesser
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quality of the opossum assembly by assigning a separate set of
parameters to the outgroup branch.

This analysis produced an average of�16,000 and�47,000
elements per species for the H3K4me3 and H3K27ac marks,
respectively (supplementary fig. S7, Supplementary Material
online), with some variation across species owing to differ-
ences in data quality and alignability. The substantially greater
abundance of H3K27ac elements was expected because the
H3K27ac mark is associated with both active promoters and
active enhancers, whereas the H3K4me3 mark is more specific
to promoters. The two types of elements also had highly
distinct distributions of state assignments, with the fully con-
served state being the most frequent for the H3K4me3 mark
but ranking much lower for the H3K27ac mark, beneath most
single-species states (supplementary fig. S8, Supplementary
Material online). This difference suggests substantially lower
rates of turnover in promoters than enhancers (see below).

For comparison, we analyzed the same data with a heu-
ristic pipeline similar to those employed by other researchers
(Villar et al. 2015; Danko et al. 2018), which applied a peak-
calling method (MACS2) separately in each species, and then
mapped all elements to the human genome using liftOver.
We found that epiPhyloHMM found the vast majority of
regions identified by this alternative pipeline, as well as a
number of new regions, which did indeed exhibit hallmarks
of real regulatory function (supplementary figs. S9 and S10A
and B, Supplementary Material online). Moreover,
epiPhyloHMM tended to call fewer regions as active in a
single species and estimated greater numbers of multispecies
regions, by effectively sharing information across the phylog-
eny (supplementary fig. S10C, Supplementary Material
online).

phyloGLM: Modeling of CRE Turnover Conditional on
Local Genomic Features
We addressed the third stage in our pipeline—modeling of
gain/loss dynamics conditional on genomic features such as
nearby gene expression or sequence conservation—with a
new program, called phyloGLM, that allows the free param-
eters of the our phylogenetic model (p and c) to be deter-
mined by a function of genomic features through a
generalized linear model (GLM; fig. 3). These genomic features
are treated as being constant across the phylogeny, but they
can be computed in any manner from any combination of
species.

As shown below, this GLM-based design provides a rigor-
ous framework for measuring the strength of association of
individual genomic features with turnover rate, and for test-
ing for differences in turnover rate between distinct groups of
CREs (see Discussion).

Application of phyloGLM to Real Data
We applied phyloGLM to the genome-wide predictions from
epiPhyloHMM, separately analyzing the H3K4me3 promoter
data set and two subsets of the H3K27ac data that corre-
spond to likely promoters and likely enhancers. Thus, we were
able to compare the enhancer data set with two distinct
promoter data sets, one of which (H3K27ac) included more
abundant but less precise predictions than the other
(H3K4me3). To set up the analysis, we first assigned each
CRE a putative target gene from Ensembl (Zerbino et al.
2018) using simple distance-based rules, which essentially as-
sociated each CRE with the closest TSS of a gene but dis-
carded elements that could plausibly be associated with more
than one gene (see Materials and Methods and
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FIG. 2. Prediction of multispecies cis-regulatory elements (CREs) using epiPhyloHMM. (A) State-transition diagram for the phylogenetic hidden
Markov model. Each state represents a different combination of active and inactive elements in the observed species, corresponding to a different
gain/loss scenario along the branches of the tree (gold: active; black: inactive). The fully inactive (background) state is shown on the “left” and the
states representing various possible presence/absence patterns for active elements are grouped on the “right.” The red star indicates the state
associated with the focal site in the cartoon data at top. Notice that each active state is accessible only from the inactive state, leading to a sparse
transition matrix for the hidden Markov model. (B) Example of predictions obtained by applying epiPhyloHMM to H3K4me3 ChIP-seq data from
Villar et al. (2015) in a region along human chromosome 1. Shown are the nine-species phylogeny (left) and the corresponding ChIP-seq read
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supplementary fig. S11, Supplementary Material online). In
addition, based on proximity to the nearest TSS, we classi-
fied H3K27ac CREs as likely promoter (within 1.5 kb) or en-
hancer (within 100 kb) elements, and we similarly classified
H3K4me elements as likely promoters (within 1.5 kb) or
discarded them. Finally, we associated each CRE with a col-
lection of genic and cis-regulatory features that could po-
tentially impact its turnover rate (supplementary fig. S12,
Supplementary Material online). Broadly, these features de-
scribed the numbers of CREs associated with the target
gene, the expression patterns and annotated function of
that gene, and measures of evolutionary constraint on the
local DNA sequence. After removing all elements with in-
complete covariate data, we were left with 5,368 H3K4me3
promoters, 7,220 H3K27ac promoters, and 25,673 H3K27ac
enhancers for further analysis. These features were some-
what correlated with one another, but most correlations
were weak (supplementary fig. S13, Supplementary
Material online). We fitted phyloGLM separately to these
three sets of elements, estimating all free parameters by
maximum likelihood and conditioning on a phylogeny
with branch lengths based on published estimates of diver-
gence times in millions of years (Kumar et al. 2017). In all
cases, we separately parameterized the branch to the out-
group (opossum), on which gains and losses are difficult to
distinguish, to avoid skewing the other parameter estimates.

This model permitted us to compute the expected total
numbers of gains and losses along each branch of the phy-
logeny, conditional on the data and the fitted model. Similar
patterns of gain and loss were observed for the H3K4me3
and H3K27ac promoters, with fewer total events in the
H3K4me3 elements (0.97 vs. 1.22 events per element on
an average; supplementary fig. S15, Supplementary
Material online). For H3K27ac elements, we found that
the overall rates of gains and losses are fairly similar, with

somewhat more gains than losses, both within promoters
and within enhancers (supplementary fig. S16,
Supplementary Material online). However, the total rate
of turnover for enhancers appears to be approximately
twice that of promoters, with 2.47 events per element com-
pared with 1.22 for the H3K27ac elements. The numbers of
expected events per branch were roughly proportional to
the branch lengths, with long branches tending to be
assigned more events than short branches. The gain/loss
proportions were somewhat variable across branches, but
this variation likely reflects a combination of true differences
and biases from human-referenced alignments and differ-
ences in ChIP-seq data abundance and quality across species
(see Discussion).

A comparison of the distributions of numbers of events
per CRE provided further support for a roughly 2-fold higher
rate of turnover at enhancers than promoters, with median
values of 0.0075 and 0.0031 events per million years (My),
respectively, for the H3K27ac data (fig. 4A;
P < 2:2� 10�16; Wilcoxon signed-rank test). From these
distributions and the estimated phylogeny, it was also pos-
sible to estimate a distribution of the “half-life” (time re-
quired for half of active elements to be lost) for each type of
CRE. For the H3K27ac data, the median half-life for
enhancers is 130 My and that for promoters is 552 My
(fig. 4B; see Materials and Methods). These estimates are
substantially lower than previous estimates of 296 and
939 My, respectively (Villar et al. 2015). However, our esti-
mate of the median turnover rate for promoters based on
the less noisy H3K4me3 data set was�30% lower, at 0.0022
events per million years, corresponding to a half-life esti-
mate of 937 My, in much better agreement with the corre-
sponding previous estimate. Thus, it seems likely that our
H3K27ac turnover rate estimates are substantially inflated
by the lower resolution ChIP-seq data (see Discussion).

FIG. 3. The phyloGLM model. phyloGLM combines the general modeling framework of figure 1 with a generalized linear model (GLM) to account
for the influence of local genomic covariates (such as gene expression levels or sequence conservation scores) on the turnover process. In each
genomic bin j, the turnover rate cj and the equilibrium frequency for active elements pj are determined by a logistic function f (see Materials and
Methods) applied to a linear combination of covariate values Cj with weight vectors hc and hp , respectively. The phylogeny and hypothetical read
counts xj for bin j are shown at the left, and hypothetical covariate values are represented by colored squares to the right. The shades of gray to the
right of the phylogeny illustrate relative values of the conditional likelihoods PðxjjsÞ.
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Gene Expression-Related Features Associated with
Turnover Rates
In addition to allowing us to characterize overall rates of
turnover, our GLM-based framework enabled us to examine
the strength and directionality of the association between
each of the genomic features we considered and the rates
of turnover at enhancers and promoters. We begin by con-
sidering these relationships for gene expression-related

features, and examine the remaining features in subsequent
sections.

For promoters, three gene expression-related covariates
had statistically significant associations with turnover rate:
the level of expression of the target gene in the liver (the
assayed tissue here), the number of tissues in which the target
gene was expressed, and the cross-tissue expression disper-
sion (fig. 5). For liver expression and the number of tissues,
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distributions of times for half of all active elements to decay to an inactive state (half-life).
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increased values of the covariate were associated with signif-
icantly decreased turnover rates. These observations are
broadly consistent with a variety of previous analyses that
have indicated that CREs associated with high levels of ex-
pression in the tissue of interest or with broad expression
patterns across tissues tend to experience elevated levels of
constraint (Arbiza et al. 2013; Khan et al. 2013; Villar et al.
2015; Berthelot et al. 2018). The positive correlation with
cross-tissue expression dispersion (significant for H3K4me3
only) appears to reflect a similar trend.

The results for enhancers were generally similar to those
for promoters, but tended to be somewhat weaker, likely in
part owing to the difficulty of correctly linking enhancers with
target genes. One notable difference for enhancers was that
the number of tissues in which the target gene was expressed
was not significantly associated with turnover rate. This dif-
ference might result in part from tissue-general
“housekeeping” tending to have fewer enhancers than
tissue-specific genes (Zabidi et al. 2015). In addition, house-
keeping genes are likely enriched for proximal enhancers,
which tend to be excluded by our filters.

Additional Features Associated with Turnover Rates
The remaining genomic features describe either measures of
sequence constraint of the CRE (phastCons; Siepel et al. 2005)
or the gene (pLI; Lek et al. 2016), or aspects of the local reg-
ulatory “architecture” of each target gene, including the num-
bers of enhancers and promoters and the distance of each
enhancer from the TSS (fig. 6). Both enhancers and promoters
displayed a negative correlation between CRE sequence con-
servation, as measured by phastCons, and turnover rate. As

previously noted (Villar et al. 2015; Berthelot et al. 2018;
Danko et al. 2018), this observation indicates that elements
that are more constrained at the DNA sequence level are also
more resistant to evolutionary gain and loss. Interestingly,
however, we observed no significant correlation between
constraint against loss-of-function variants in the gene, as
measured by pLI scores, and turnover rates of associated
enhancers or promoters (see next section).

Among the architectural features, the strongest correlate
at the enhancer level is the distance to the TSS, a quantity
that is positively associated with turnover rate. As has been
noted in several recent studies (Villar et al. 2015; Berthelot
et al. 2018; Danko et al. 2018), this increased constraint against
turnover on enhancers close to the TSS likely reflects an en-
richment for genuine enhancer–gene interactions and direct
influence on the expression of the target gene. Another ob-
servation that echoes a previous finding is that the number of
enhancers per gene is positively correlated with the enhancer
turnover rate but negatively correlated with the promoter
turnover rate. As previously noted (Danko et al. 2018), this
observation suggests that larger ensembles of enhancers as-
sociated with the same target gene tend to impose additional
constraints against promoter turnover, but nevertheless to
relax constraint on each of the enhancers themselves, perhaps
because each enhancer is less essential to the overall regula-
tory architecture of the locus (see also Frankel et al. 2010;
Perry et al. 2010; Osterwalder et al. 2018 ). We also observed
significant effects for several top-level Reactome categories,
suggesting that biological function may provide additional
information about regulatory constraint (supplementary fig.
S17, Supplementary Material online). Together, these
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observations suggest that CREs evolve in a manner that is
strongly dependent on the local regulatory context in which
they appear.

Differences between DNA Sequence and Epigenetic
Conservation in CREs
The correlation of turnover rate with the phastCons scores of
CREs but not with the pLI scores of target genes is curious, but
what does it signify? The pLI score for a gene measures the
probability of intolerance to (generally heterozygous) loss-of-
function mutations in that gene, as inferred from patterns of
variation in ultradeep human exome-sequencing data (Lek
et al. 2016). pLI scores can be used to differentiate between
haploinsufficient and haplosufficient genes or, similarly, be-
tween dosage-sensitive and insensitive genes (Lek et al. 2016)
(although, strictly speaking, the scores are directly informative
only about the strength of selection acting on heterozygotes;
Fuller et al. 2019). By contrast, phastCons scores simply mea-
sure a reduction in fixed derived alleles, and do not effectively
differentiate among various forms of negative selection.
Therefore, the observed difference in correlation suggests
that gains and losses of CREs are generally deleterious but
perhaps do not depend strongly on the dominance or dosage
properties of target genes.

To investigate this issue further, we examined CRE turn-
over rates at the promoters of two classes of genes that serve
as proxies for dosage insensitivity and sensitivity, respectively:
genes that encode proteins involved in metabolism such as
enzymes (whose action tends to be relatively insensitive to
protein abundance) and genes that encode proteins that
regulate gene expression such as transcription factors (which
tend to be more sensitive to abundance) (Wilkie 1994;
Kondrashov and Koonin 2004). We found no significant dif-
ference between these classes of genes in the turnover rates of
CREs in either promoters or enhancers (fig. 7A), further

supporting the idea that turnover rates have little depen-
dency on dosage or dominance. Interestingly, however,
when we condition on the expected number of turnover
events at each CRE and focus on the CREs that have under-
gone the fewest events, we do observe increased sequence
conservation at the more dosage-sensitive regulatory genes.
This difference is observed both for promoters (fig. 7B) and
enhancers (fig. 7C), although it is statistically significant for
promoters only. It suggests that, although both classes of
genes are similarly resistant to mutations that result in the
complete gain and loss of elements (fig. 7A), dosage-
insensitive genes are more tolerant of nucleotide substitu-
tions that do not result in complete gain or less events
(fig. 7B and C). These observations illustrate how the evolu-
tionary dynamics of CRE gain and loss may differ from those
for nucleotide substitutions owing to the pronounced effects
of turnover events on gene expression, and, more generally,
how patterns of evolutionary constraint across the genome
may depend on the effect sizes of mutations.

Discussion
In this article, we have introduced a new probabilistic model-
ing framework for inferring the dynamics of CRE gain and loss,
which accounts for phylogenetic correlations among species,
uncertainty in peak calls from ChIP-seq data, and the influ-
ence of local genomic features on turnover rates. We have
applied our methods to H3K4me3 and H3K27ac ChIP-seq
data (Villar et al. 2015). These histone modifications are some-
what noisy and imperfect indicators of regulatory function
(Benton et al. 2019), but they have the important advantages
of being highly general (i.e., not depending on any particular
regulatory role or transcription factor) and of having been
assayed uniformly across species, making them a natural start-
ing point for an evolutionary analysis. We find support for a
number of previously reported results, including a
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substantially higher rate of turnover in enhancers than pro-
moters, negative correlations of turnover rate with DNA se-
quence conservation, expression level, and tissue breadth,
positive correlations with distance from the TSS, and a strong
dependency on features of the local regulatory architecture
such as number of enhancers per gene. Overall, we find that
enhancers are gained and lost at about twice the rate of
promoters during mammalian evolution, with median rates
of 0.0075 and 0.0031 events per element per million years,
respectively, based on the H3K27ac data.

In addition, we made use of our modeling framework to
examine an apparent lack of correlation between turnover
rates at CREs and the haploinsufficiency or dosage sensitivity
of target genes, as measured approximately using pLI scores
(Lek et al. 2016). We found that turnover rates were signifi-
cantly negatively correlated with DNA sequence conservation
in CREs, suggesting that both whole gain/loss events and
nucleotide substitutions are deleterious, but that turnover
rates were not correlated with pLI scores, suggesting that
gain/loss events are no more deleterious at
haploinsufficient/dosage-sensitive genes than at
haplosufficient/dosage-insensitive genes. However, when we
conditioned on the expected number of turnover events at
each CRE, a positive correlation became evident between
sequence conservation and dosage sensitivity at low-
turnover CREs (fig. 7). We interpret this result as indicating
that DNA substitutions that do not cause complete gain or
loss events are more easily tolerated at dosage-insensitive
genes than at dosage-sensitive genes. These mutations of
small effect at dosage-insensitive genes may be allowed to
accumulate and perhaps compensate for one another, per-
mitting drift in CRE sequences as long as it does not cause the
gain or loss of a whole element. By contrast, gains and losses
of entire CREs have sufficiently large effects that they are
deleterious at both dosage-sensitive and -insensitive genes.
Thus, the divergence between epigenetic and sequence con-
straint is potentially informative about the mode of selection
at each locus. These observations may help to explain previ-
ous reports of CREs that display conservation of epigenetic
marks but not the DNA sequence (Ludwig et al. 2000; Fisher
et al. 2006; Hare et al. 2008; Yang et al. 2015; see also Duque
et al. 2014; Khoueiry et al. 2017).

For various reasons, we have approached the problems of
identifying regulatory elements and modeling their evolution
separately, using the epiPhyloHMM and phyloGLM programs,
respectively. This strategy allows us to address the problem of
segmenting the genome into “active” and “inactive” regions
in a relatively efficient manner, using a simpler model, and
then characterize the turnover process using a richer model
that conditions on a diverse collection of genomic features. It
also has practical advantages in terms of modularity of soft-
ware development and efficient processing of genome-wide
data. At the same time, this strategy has the limitation that
the richer evolutionary model implemented in phyloGLM is
not exploited in element identification, which in principle,
could result in loss of power. Still, this limitation does not
appear to be of major practical importance because identify-
ing regions containing active elements turns out to be fairly

straightforward. A related limitation is that we analyze the
genome in bins of fixed size, which occasionally results in
spurious inferences of turnover when the boundaries of the
bins align poorly with the locations of peaks. Nevertheless,
this simple approach is generally fairly effective for pooling
read counts along the genome and accommodating limita-
tions in the genomic resolution of peak locations (see below).

Notably, our flexible phyloGLM design allows not only for
improved modeling of evolutionary dynamics but also direct
assessment of hypotheses about how these dynamics depend
on various aspects of genomic context, such as gene expres-
sion, local regulatory architecture, and sequence conserva-
tion. As phyloGLM considers all covariates together in a
single model, we avoid the need for complex post hoc anal-
yses, for example, that require matching of foreground and
background sets of elements in terms of relevant covariates.
Importantly, phyloGLM is not designed to identify individual
elements that have undergone gain and loss events, a task for
which it would have weak power owing to noisy per-site data.
Instead, its purpose is to pool information across the genome
in order to enable hypotheses about groups of elements to be
tested. Similar approaches have been used for the estimation
of dN/dS rates (Meyer and Wilke 2013) and probabilities of
fitness consequences for new mutations (Huang et al. 2017;
Huang and Siepel 2019), but to our knowledge, this approach
has not been previously employed in the study of CRE
evolution.

Another strength of phyloGLM and epiPhyloHMM is that
both programs use the same modular emission model to
describe the relationships between epigenetic data and CRE
state. Thus, it would be straightforward to adapt them to
consider alternative epigenomic data types, possibly in com-
bination. As long as the phylogenetic model has two states
(active and inactive), the remaining portions of the existing
programs could be used essentially without change. They
could further be extended to consider additional states—
for example, to allow for various combinations or various
levels of epigenomic signals—but such an approach may be
prohibitive in terms of runtime, unless heuristic methods
were used to limit the portion of the genome under
consideration.

Two other recently published methods (Qu et al. 2018;
Yang et al. 2018) have addressed the problem of inferring
evolutionary dynamics from multispecies epigenomic data
using strategies that are similar to ours, but are also different
in key respects. Importantly, both of these methods avoid
separating the element identification and evolutionary infer-
ence problems—a decision that has potential advantages,
provided the data have sufficiently high resolution to avoid
overfitting, but that is also costly in computational efficiency.

The first method (Yang et al. 2018) directly models an
evolving continuous signal (replication timing, in their appli-
cation) along a collection of aligned genomes using an elegant
combination of a branching Orstein–Uhlenbeck process
along a phylogeny and a hidden Markov model along the
genome sequence, which is fitted to genome-wide data by
expectation maximization. This approach appears to be quite
powerful but it differs from ours in that it focuses on direct
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modeling of a continuous molecular phenotype, rather than
on describing a relationship between a discrete property of
interest (such as transcription factor binding or CRE activity)
and functional genomic data describing that property (such
as ChIP-seq read counts). The strategy has potential advan-
tages when the property of interest truly is continuous, but
could also tend to overfit a complex signal. The second
method (Qu et al. 2018) is more similar to ours in that it
does distinguish between discrete “positive” and “negative”
states (in this case, reflecting DNA methylation status), again
using a combination of a hidden Markov model and a phy-
logenetic model. The structure of this HMM is more complex
than ours, however, and requires Monte Carlo methods for
fitting. The setting for this method is also different from ours
in that the whole genome bisulfite sequencing data being
analyzed appear to provide a higher resolution, more precise
readout of the feature of interest, avoiding some of the un-
certainty of peak-calling from ChIP-seq data. More generally,
modeling of comparative epigenomic data remains an active
area of research, with a number of newly developed methods
that make similar but complementary modeling assumptions,
and more work will be needed to find which approaches are
best suited for various applications of interest.

A major problem faced by all current modeling
approaches—and a reason why model-free methods have
often been used instead—is the fundamental imprecision
of comparative epigenomic data. In most data sets, there is
considerable uncertainty not only in the strength of the signal
along the genome but also in the precise genomic position
and breadth of that signal (i.e., in peak height, location, and
width, in the context of ChIP-seq data). This uncertainty is
compounded by errors in alignment and orthology identifi-
cation between species. Evolutionary models must therefore
strike a balance between getting the most out of the available
data, and avoiding biases that come from assuming unrealistic
levels of precision or resolution. Indeed, in practice, all of the
current modeling approaches have required the use of exten-
sive heuristics and filters before and/or after they are applied.
In our case, the imprecision of the data resulted in a tendency
to fragment individual elements into multiple predicted seg-
ments, for example, because peaks did not align well in width
or position across species. We attempted to mitigate this
problem by postprocessing the epiPhyloHMM predictions
with heuristic rules that joined and filtered elements (see
Materials and Methods). Nevertheless, these misalignment
and fragmentation issues undoubtedly produced some up-
ward bias in our estimates of turnover rate. This effect most
likely drives the substantial elevation in rate for the promoters
based on the noisier H3K27ac data as compared with the
more precise H3K4me3 data (supplementary fig. S14,
Supplementary Material online). More work will be needed
both to improve the precision of comparative epigenomic
data and to accommodate uncertainty in models of evolu-
tionary dynamics.

Two other limitations of our analysis that are broadly
shared with other comparative genomics studies concern
the use of reference-based multiple alignments and
proximity-based rules for associating CREs with target genes.

Our use of human-referenced multiple alignments (which are
also used in Qu et al. 2018; Yang et al. 2018) prevents us from
analyzing portions of the other genomes that do not align to
the human genome, and therefore creates a general bias to-
ward “gains” in human and closely related species, and to-
ward “losses” in more distant parts of the tree, as is evident in
a close inspection of supplementary figures S15 and S16,
Supplementary Material online. This same limitation makes
it infeasible to test for differences in gain or loss rates across
branches or clades of the phylogeny, because alignment-
induced biases would likely overwhelm real biological differ-
ences. There has been some progress in recent years toward
generalized reference-free multiple alignment methods
(Paten et al. 2011; Armstrong et al. 2019) but much more
work is needed on this important problem.

Similarly, the linking of CREs, particularly enhancers, with
target genes is another fundamental unsolved problem that
pervades many genomic analyses. In our case, it is likely that a
substantial fraction of enhancers are mis-assigned a target
gene, with downstream effects on a number of our analyses
(e.g., figs. 5–7). Experimental work to link enhancers to the
correct target genes, either via 3 D-chromatin capture (Sanyal
et al. 2012; Jin et al. 2013; Mifsud et al. 2015), or large-scale
genome editing (Fulco et al. 2016), will help to improve this
issue over time.

Materials and Methods

ChIP-seq Data Preparation
All ChIP-seq data were obtained from Villar et al. (2015).
Reads were aligned to the reference genome for each species
(Waterston et al. 2002; Rat Genome Sequencing Project
Consortium 2004; Lindblad-Toh et al. 2005, 2011; Mikkelsen
et al. 2007; Yan et al. 2011; Marmoset Genome Sequencing
and Analysis Consortium 2014; Peng et al. 2014) (obtained
from the UCSC genome browser) using bowtie2 (v2.2.9)
(Langmead and Salzberg 2012). The reference genomes
were hg38 (human), rheMac3 (macaque), calJac3 (marmo-
set), mm10 (mouse), rn6 (rat), musFur1 (ferret), canFam3
(dog), felCat8 (cat), and monDom5 (opossum). Each read
was summarized by the single base at the center of the
read and converted to the human reference genome using
the liftOver utility and the best reciprocal chains supplied by
the UCSC genome browser ( Hinrichs et al. 2006) (hg38). A
coverage map was computed from the converted reads and
summed to get the total number of reads per 250-bp bin.
Regions that could be aligned to the human genome from
one or more other species were combined if they were less
than 50 kb apart and were expanded by 5 kb to either side to
create genomic blocks within which to run the phylo-HMM.
Sections of the human genome that were not covered by one
of these blocks were excluded from the analysis, leaving
2.83 Gb for further analysis.

Model for Peak-Calling
Our peak-calling model has two versions: the full model used
in epiPhyloHMM and a simpler two-state model that is ap-
plied separately to the data for each species in a preprocessing
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step (as detailed below). The two versions are the same ex-
cept for the state space. In the two-state model, the proba-
bility of the data in bin j, for presence/absence state
p 2 f0; 1g is given by a negative binomial mixture model:

Pð~x jj~lp; ~wp; cj;
~kÞ ¼

X
m

wp;m

�
Y

r

nbinomðxj;rjlp;mcjkr; rp;m;j;rÞ:

Here, ~x j is a vector of the read counts for each replicate r,
wp;m is the weight of mixture component m for state p (such
that

P
m wp;m ¼ 1), lp;m is the mean count for state p and

component m, rp;m;j;r represents the dispersion parameter
for the negative binomial distribution (see below), cj is the
fraction of bases in bin j that are aligned to the human ref-
erence genome, and ~k ¼ fkrg is a set of scaling factors that
account for the sequencing depth of each replicate r. As
noted in the Results section, we use a three-component mix-
ture model for the “presence” state (p¼ 1) and a single com-
ponent for the “absence” state (p¼ 0). The scaling factor kr is
calculated as:

kr ¼
1

a

X
j

xj;r;

where a ¼ maxrð
P

j xj;rÞ. To account for differences in the
dispersion of read counts for different mean depths, we make
use of the model from DESeq2 (Love et al. 2014), where the
dispersion of the distribution r is defined as a function of the
mean l and two free parameters, h1 and h2:

rðl; h1; h2Þ ¼
h1

l
þ h2:

We use the DESeq2 software to estimate h1 and h2, after
subsampling the genome to obtain roughly similar numbers
of low-, medium-, and high-coverage sites. We then calculate
the dispersion per data-point as,

rp;m;j;r ¼
h1

lp;mcjkr
þ h2:

This strategy accounts for effects of sample library depth and
cross-species alignability on the expected read-count depth
for each state p, mixture component m, replicate r, and bin j.

The transition model is a simple two-state model with
auto-correlation parameters q1 for the peak state and q0

for the background state (fig. 2).

Hidden Markov Model
The hidden Markov model used by epiPhyloHMM includes a
set of states fs1; . . . ; sEg representing all patterns of CRE
presence and absence at the tips of the tree, up to a maxi-
mum number of gain/loss events (three, in our application;
supplementary fig. S1, Supplementary Material online).
Conditional on the state (and, implicitly, on the gain/loss
history), the read-counts at the tips of the tree are indepen-
dent. Thus, the emission probability for the observed data in

state se at site j is given by a product over tips (species) t and
presence/absence states p:

Pð~x jjse;~l; ~w;cj;
~kÞ¼

Y
t

Y
p2f0;1g

Pð~x jtj~lpt; ~wpt;cjt;
~ktÞdðse�ft;pgÞ;

where dðse�ft;pgÞ takes a value of one if HMM state se is
consistent with species t having presence/absence state p and
a value of zero otherwise. Where there is a large alignment
gap in a species (with size �5kb), we force the emission
probability for “presence” (p¼1) in that species to zero, pre-
suming a deletion.

The matrix of transition probabilities consists of three dif-
ferent types of transitions. First, self-transitions for all active
and inactive states have probabilities q1 and q0, respectively
(fig. 2). Second, all transitions from active states to the inactive
state have probability 1� q1. Third, each transition from the
inactive state to any active state se has probability
ð1� q0Þ � 1

Z PFelsðseÞ. Here, PFelsðseÞ is the probability of the
presence/absence pattern at the tips of the tree consistent
with state se, as computed using Felsenstein’s pruning algo-
rithm, under our phylogenetic turnover model (implicitly
conditioned on the given phylogeny and the parameters p
and c). Because not all presence/absence patterns are possi-
ble, this probability must explicitly be normalized by the sum
across all allowable states, Z ¼

P
active se

PFelsðseÞ. Thus, the
relative frequencies of the active states are proportional to
their equilibrium probabilities under the specified phyloge-
netic process. All other elements of the transition matrix are
fixed at zero, preventing direct transitions between active
states.

epiPhyloHMM Model Fitting
For reasons of efficiency, we fit the epiPhyloHMM model to
the data approximately in several successive steps. We first fit
the peak-calling models separately to the data for each spe-
cies, using a subset (125 Mb) of the mapped reads and esti-
mating all free parameters by maximum likelihood with the L-
BFGS-B algorithm (Zhu et al. 1997). As noted earlier, this
calculation made use of the dispersion model that was pre-
estimated using DESeq2. We then split the multispecies data
into 20 partitions of similar size, with break-points in 50-kb
long regions lacking alignment to the human genome by any
other species. Separately in each species, we converted bins
with <15% of bases aligning to the human genome to miss-
ing data. We then estimated the q1; q0; p; and c parameters
of the epiPhyloHMM model by maximum likelihood using
the L-BFGS-B algorithm (Zhu et al. 1997), keeping the species-
specific peak-calling parameters—namely, the mixture coef-
ficients w

!
and mean counts l! —at their previously estimated

values. We then obtained an initial set of element calls using
the Viterbi algorithm, and filtered them by the following
heuristics:

(1) We grouped maximal sets of elements that were sep-
arated by at most one “background” bin (as sometimes
occurs due to the sparse design of the transition ma-
trix; fig. 2).
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(2) For each grouped element, we computed an alignment
“score” equal to the sum of alignment scaling factors cj

across all bins j in the element and across all species.
(3) We retained the element in the group having the high-

est alignment score.
(4) In addition, we retained any elements having a score

that exceeded a designated threshold T (T¼ 16 in our
analysis).

(5) We masked any remaining elements from the data by
resetting their alignment scale factors cj to 0.

After this masking step, we re-estimated the q1; q0; p; and c
parameters of the epiPhyloHMM model separately for each
partition of the data. Then we obtained our final set of pre-
dictions by running the Viterbi algorithm genome-wide using
the median values of these per-block estimates.

The Running Time of epiPhyloHMM
The asymptotic running time of the forward algorithm for
computing the likelihood for a fully general HMM is OðLk2Þ,
where L is the number of sites being analyzed and k is the
number of states in the model. In our case, however, we can
reduce the complexity to roughly O(Lk) by taking advantage
of our sparse transition matrix (i.e., such that the “active”
states have nonzero probability of transitioning only to them-
selves and the “inactive” state; see fig. 2). Furthermore, the
number of possible states scales as k ¼ 2S, where S is the
number of species. As noted earlier, we substantially reduce
the state space by only allowing for at most three mutations
on the tree and combining mutational patterns that result in
the same active/inactive patterns at the tips of the tree.

To test the effects of these innovations in practice, we fit
the phylogenetic parameters of epiPhyloHMM, using pre-fit
peak-calling emission parameters (described above), for mod-
els having 9, 64, and 416 states (corresponding to 3, 6, and 9
species trees, respectively). We obtained run-times of approx-
imately 6, 30, and 188 min, respectively. Thus, in practice, the
run-time increases approximately linearly with the number of
states.

CRE-Gene Association and Annotation as Enhancers
and Promoters
All assignments were based on distances to genes obtained
from Ensembl build 93 (Zerbino et al. 2018) via BiomaRt
(Durinck et al. 2005; 2009). Promoter regions were defined
per transcript as the interval 61.5 kb of the annotated TSS.
Each promoter region was associated with the gene linked to
the TSS in question, but multiple promoter regions were
allowed per gene. H3K4me3 elements that overlapped (by
at least one nucleotide) with a single promoter region were
annotated as “promoter” and associated with the corre-
sponding gene. H3K4me3 elements that overlapped with
multiple promoter regions were annotated as an
“unassociated promoter” (promoter_UA). H3K4me elements
that did not overlap with any promoter regions were anno-
tated as “unknown” (unk). For H3K27ac marks, the same rules
were used to label an element as promoter or promoter_UA.

To classify enhancers, we first defined “expanded promoter
regions” as intervals 610 kb of the TSS, again merging them
across transcripts of the same gene. H3K27ac elements that
overlapped with a single expanded promoter region were
annotated as a “proximal enhancer” (enhancer_proximal)
and associated with the corresponding gene. H3K27ac ele-
ments that overlapped with multiple expanded promoter
regions were annotated as an “unassociated proximal
enhancer” (enhancer_proximal_UA). H3K27ac elements
that did not overlap with any expanded promoter regions
but still fell within 100 kb of a TSS were annotated as a “distal
enhancer” and associated with the closest gene (enhancer_-
distal). H3K27ac elements that met none of these criteria
were labeled as “unknown.” This scheme is represented in
supplementary figure S11, Supplementary Material online.

Linking Phylogenetic Parameters to Genomic Features
for phyloGLM
As described in the Results section, the phylogenetic model
for CRE turnover is defined by two free parameters: the turn-
over rate, c, and the equilibrium frequency of element
“presence” distribution, p. These parameters are defined as
generalized linear functions of a vector of genomic features, or
covariates, that are assumed to be available for each bin j.

Specifically, the turnover rate, cj, for a given bin j with
covariate vector Cj is defined by passing a linear combination
of Cj and a vector of coefficients hc through the logistic
function,

wðhc; CjÞ ¼
eCj�hc

1þ eCj�hc
;

with bounds of cmin � cj � cmax imposed as follows,

cj ¼ cmin �
�

1� wðhc; CjÞ
�
þ cmax � wðhc; CjÞ

¼ cmin þ
ðcmax � cminÞeCj�hc

1þ eCj�hc

¼ cmin þ
cmax � cmin

1þ e�Cj�hc
:

Our implementation allows for a separate set of coeffi-
cients hc;e for each edge e of the phylogeny, but in practice,
we separate only the branch to the outgroup and apply the
same coefficients to all other branches of the tree. This strat-
egy ensures that weak power to distinguish gains and losses
on this branch, and poor alignability to the outgroup, do not
drive the maximum likelihood estimates for other parts of the
tree.

Similarly, the stationary distribution of element presence pj

is defined as

pj ¼
eCj�hp

1þ eCj�hp
¼ 1

1þ e�Cj�hp
:

In order to prevent numerical underflow, if pj < 10�3, we
reset pj ¼ 10�3; similarly, if 1� pj < 10�3, we reset
pj ¼ 1� 10�3.
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Fitting a phyloGLM Model
The phyloGLM model was fit to the data using the L-BFGS-B
algorithm (Zhu et al. 1997) as implemented in the “optim”
function in R (R Core Team 2018). Gradients with respect to
the log likelihood Lðh

!
; ~xÞ (where h

!
denotes the entire pa-

rameter set) for elements of the coefficient vectors hc and hp

were computed using the chain rule. For example, the gradi-
ent for an element i of the vector hc, denoted hc;i, is given by,

dqðh
!

; ~xÞ
dhc;i

¼
X

j

dqðh
!

; ~xjÞ
dUj

� dUj

dhc;i
;

where the sum is across all bins, Lðh
!

; ~xjÞ represents the
contribution of bin j to the log likelihood function, and Uj

¼ hc � Cj is the linear combination of features for bin j. The
partial derivative

dLðh
!

;~x jÞ
dUj

was computed numerically.
However, the final term can easily be computed analytically
as,

dUj

dhc;i
¼ d

dhc;i
ðhc;0 þ hc;1Cj;1 þ � � � þ hc;iCj;i þ � � � þ hc;nCj;nÞ

¼ Cj;i:

Notice that the use of the chain rule considerably accelerates

these calculations because
dLðh

!
;~x jÞ

dUj
only needs to be computed

once per phylogenetic parameter (c and p), and then can be
propagated efficiently to all of the individual coefficients. The
same approach works for elements of hp.

Preparation of Genomic Features
Distances to the TSS were based on annotations from
Ensembl build 93 (Zerbino et al. 2018), accessed via
BiomaRt (Durinck et al. 2005; 2009). The distance was com-
puted from the nearest boundary of the CRE to the annotated
TSS position. Gene expression features were based on data
downloaded from the GTEx web portal (https://gtexportal.
org/; last accessed April 2, 2020). Mean phastCons-100way
scores were calculated using the GenomicScores package
(Puigdevall and Castelo 2018). pLI scores were collected
from ftp://ftp.broadinstitute.org/pub/ExAC_release/release1/
manuscript_data/ (last accessed April 2, 2020). Functional
annotations of genes were obtained from Reactome 2018
(Fabregat et al. 2016). For the fitting of the phyloGLM model,
only bins that were unambiguously associated with a single
gene and had no missing covariate values were used. After this
filtering, 7,220 promoters and 25,990 enhancers associated
with 5,307 and 5,552 unique genes remained. All noncategor-
ical CRE covariates were scaled to have mean 0 and SD 1 to
improve model-fitting performance and produce comparable
coefficient values across covariates.

Expected Numbers of Gains and Losses per Branch
We calculated the expected numbers of gains and losses per
branch (supplementary figs. S15 and S16, Supplementary
Material online) using the standard message-passing algo-
rithm on the phylogeny, followed by estimation of the

probabilities of each state transition per branch (see Siepel
and Haussler 2003 for details).

Half-Life Estimation
Under our model, the instantaneous rate of transition from
the active state to the inactive state is given by cð1� pÞ.
Thus, the half-life t1

2
, or time required for half of active ele-

ments to become inactive, is given by:

1

2
¼ e

�c 1�pð Þt1
2 ) t1

2
¼ lnð2Þ

cð1� pÞ

Dosage-Sensitivity Analysis
Annotations of genes as “Metabolic” or “Generic
Transcription Pathway” were obtained from Reactome 2018
(Fabregat et al. 2016). Only genes having one of the functional
annotations “R-HSA-1430728” or “R-HSA-212436” were se-
lected for analysis; genes with both labels were omitted. To
test for significant differences between the two gene catego-
ries, we compared the log likelihoods of phyloGLM models
having 1) separate coefficients for the two gene categories
and 2) one coefficient that applied to both categories, com-
puting P values for one degree of freedom. Mean 100way
phastCons scores were calculated using bwtool (Pohl and
Beato 2014).

Software Availability
epiPhyloHMM is available as an R package at https://github.
com/ndukler/flexPhyloHMM (last accessed April 2, 2020).
phyloGLM is also available as an R package at https://
github.com/ndukler/phyloGLM (last accessed April 2, 2020).

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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