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Communication and oscillatory synchrony between distributed
neural populations are believed to play a key role in multiple
cognitive and neural functions. These interactions are mediated by
long-range myelinated axonal fiber bundles, collectively termed as
white matter. While traditionally considered to be static after de-
velopment, white matter properties have been shown to change
in an activity-dependent way through learning and behavior—a
phenomenon known as white matter plasticity. In the central ner-
vous system, this plasticity stems from oligodendroglia, which
form myelin sheaths to regulate the conduction of nerve impulses
across the brain, hence critically impacting neural communication.
We here shift the focus from neural to glial contribution to brain
synchronization and examine the impact of adaptive, activity-
dependent changes in conduction velocity on the large-scale phase
synchronization of neural oscillators. Using a network model
based on primate large-scale white matter neuroanatomy, our
computational and mathematical results show that such plasticity
endows white matter with self-organizing properties, where con-
duction delay statistics are autonomously adjusted to ensure efficient
neural communication. Our analysis shows that this mechanism sta-
bilizes oscillatory neural activity across a wide range of connectivity
gain and frequency bands, making phase-locked states more resilient
to damage as reflected by diffuse decreases in connectivity. Critically,
our work suggests that adaptive myelination may be a mechanism
that enables brain networkswith ameans of temporal self-organization,
resilience, and homeostasis.

white matter plasticity | adaptive myelination | synchronization | glia |
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The rich repertoire of oscillatory activity observed in brain
dynamics is thought to play a central role in neural com-

munication and brain functions such as attention, large-scale
integration, and memory (1–3). To implement these critical
functions, distributed populations of neurons—behaving like
nonlinear oscillators with dynamic frequencies and phases—
need to coordinate in a flexible yet reliable fashion. Critical to
this complex coordination task are long-range axons inter-
connecting spatially distant brain regions. In the brains of hu-
mans (and indeed, all higher organisms), these long-range,
myelinated axons aggregate into large fiber bundles, collectively
forming a dense and extensive set of tissues termed white matter
(WM). Data about WM micro- and macrostructure have been
used to understand recurrent patterns in the resting state (4–6),
the emergence of neurological disorders (7), and even to inform
personalized computational models (8, 9). Consistent across
species and imaging modalities, studies have confirmed the
fundamental role played by WM in the orchestration of oscilla-
tions involved in brain function (7, 8).

Like many other neurophysiological and neuroanatomical
structures, WM properties are tuned to promote functionally
relevant dynamics. This wiring is also flexible and changes
through developmental stages and learning (10–12). Brain plas-
ticity is driven by a combination of neurophysiological processes
that unfold at different spatial and temporal scales. Synaptic
plasticity, through which the effective strength of synaptic con-
nections changes in time, plays a central role in adaptive brain
wiring, but nonsynaptic processes are also involved. Notably,
conductive properties of axons are also evolving in time—a
feature that likely becomes even more significant as spatial dis-
tances increase and conduction delays become longer and more
variable. While traditionally seen as a fixed template through
which neural populations interact, recent experiments show that
WM is, to the contrary, a dynamic and adaptive structure whose
properties evolve across multiple temporal and spatial scales (11,
13–15). WM is not a static network of cables: through the con-
tinuous and dynamic action of glia, WM conductive properties
change not only after development but well into adulthood.
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The structure and conductive properties of white matter play a
key role in brain dynamics and cognitive processes such as
memory. The coordination between different brain areas, es-
sential for brain function, requires an adaptive traffic control
system. This role is mediated by oligodendrocytes—glial cells
which form myelin sheaths around axons to speed up saltatory
conduction of nerve impulses across the brain. Whilst pre-
viously thought to be largely static after development, recent
results show that white matter rewires itself in an activity-
dependent way with experience and learning. Using a net-
work model based on primate white matter data, our inter-
disciplinary approach reveals how activity-dependent myelination
promotes neural phase synchronization, endowing white
matter with self-organizing properties, where conduction de-
lay statistics are autonomously adjusted to ensure efficient
neural communication.
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Oligodendrocyte precursor cells are the largest population of
dividing cells in the adult brain and generate myelin-forming
oligodendrocytes that maintain and regulate the myelin sheath
surrounding axonal membranes (16–20). Oligodendrogenesis is
regulated by experience and by neural activity (10–15, 19, 21)
and therefore, can adjust the local axonal conduction velocity
(and thereby, conduction delays) of propagating action poten-
tials (22–24). Myelin remodeling is not exclusive to WM and can
impact gray matter as well (11, 13, 14). Through this process,
axonal conduction velocities can span multiple orders of mag-
nitude in the nervous system of mammals (25), allowing them to
adaptively promote coincident signaling and efficient neural
coding, despite highly variable axonal lengths (16, 18, 23, 26).
Interestingly, this temporal regulatory mechanism fails across
numerous conditions such as injury and/or demyelinating dis-
eases (7, 19, 27–29)—leading to a loss of synchrony and/or os-
cillatory coherence between neural populations, resulting in
hindered communication (29, 30).
Taken together, these results suggest that neuronal activity

plays an important role in oligodendrogenesis and myelination
(11, 13–15). Previous research has developed computational
models of local myelin formation, notably by examining how
node of Ranvier distributions impact axonal conduction veloci-
ties to influence action potential timing (31–33). However, the
large-scale contributions of glia on brain dynamics are seldom
considered in modeling studies. To address this gap, we com-
bined whole-brain WM connectivity data with computational
modeling to study the impact of adaptive myelination—specifically
adaptive and phase-dependent changes in axonal conduction
velocity—on self-organization of brain oscillations. Using a simple
model of coupled neural oscillators (34, 35), we constructed a
whole-brain network simulation that is augmented with plastic
conduction velocities over a range of physiologically realistic val-
ues to reflect adaptive myelination (Fig. 1). Our simulations and
mathematical analyses reveal that this addition of WM plasticity in
the model confers enhanced synchronization properties. Under
these conditions, our brain network model autonomously syn-
chronized after a prolonged period of adaptation. Conduction
velocity was found to compensate for variability in tract length,
yielding highly similar conduction delays throughout the network.
We further investigated the relative effect of neural and nonneural
influences on network synchronization. While restricted phase
locking did occur due to an increase in synaptic gain alone,
adaptive myelination resulted in more robust synchronization
across a broader range of frequency bands. Finally, our results
show that adaptive myelination not only stabilizes coherent phase
synchrony but makes it more resilient to sudden changes in con-
nectivity resulting from diffuse injury or damage resulting from
trauma. We further examine oscillatory dynamics resulting from
bidirectional myelin remodeling. Our work provides insight about

the regulatory role played by glia on brain oscillations, self-
organization, and homeostasis.

Results
A Whole-Brain Network Model Built Using the Human WM Connectome.
As a first step to explore the impact of glia and adaptive myeli-
nation on brain synchrony, we built a brain-scale model of inter-
acting oscillatory neural populations. Neural population dynamics
were modeled by the well-known coupled Kuramoto phase oscil-
lator equations (34, 36). This canonical model has been used as a
stepping-stone to understand the mechanisms of synchronization
across a wide range of complex systems in biology (35). Oscillatory
units were placed at each node of a 96-node network (Fig. 2),
composed of 80 cortical and 16 subcortical regions covering the
entire human brain. Interregional connectivity weights within this
network are based on macaque chemical tracer injections, and
tract lengths are approximated by interregional Euclidean dis-
tances (Methods has full details).
In its simplest form, a given connection between two phase

oscillators can be characterized by 1) how strong the connection
is and 2) how fast signals travel along that connection. Thus, for
each connection, two experimentally determined parameters
were used to inform the model: 1) the synaptic gain (either zero
or one representing the existence of a connection between two
networks) and 2) the axonal tract length (representing the length
of that connection and, for a given conduction speed, its asso-
ciated conduction delay). To perform the simulations, we ran-
domized the network phases within the model, and conduction
velocities along each WM connection were set to an initial value
of 3 m/s throughout the network. This velocity lies in the low to
middle range of myelinated axons (37, 38). We initially focused
on low-frequency neural oscillations (i.e., ωo ≈ 10 Hz) whose
spectral features are known to display high sensitivity to WM
structural properties (7, 8). However, we also examined other
frequency bands (see below). Given the set of initial parameters
and random phases, the network was first found in the in-
coherent state (36) (Fig. 3A): despite continuous interactions
between the different brain networks, no consistent phase re-
lationship characterized the dynamics. The Kuramoto order
parameter (r), which is a standard metric of synchronization for
this type of system (see Methods) and scales with the degree of
synchronization across neural populations, was also found to be
low across the oscillators in the network.

Inclusion of Adaptive Myelination Drives Spontaneous Synchronization
in the Network. Starting with the human connectome network
model in the incoherent state, we then investigated the influence
of gradual, activity-dependent changes in conduction velocities on
self-organized brain synchronization. To do this, we enabled the
model with a phenomenological myelination rule that increases
conduction speeds based on the relative phase differences between

Incoherent Stabiliza�on Phase-locked

Fig. 1. Proposed principle of activity-dependent plastic myelination in a network of neural oscillators. In our brain network model, oligodendrocyte glial cells
(depicted here as small solid circles next to network connections) mediate plastic changes in axonal conduction as a function of the phase offset between pairs
of connected oscillatory network nodes (depicted as large circles). If the phases of those oscillatory nodes are distributed randomly, the network is said to be
in an incoherent state, and the associated phase differences trigger corrections in conduction velocity. Local phases (illustrated as rotating angles inside the
large circles) dictate the magnitude of the changes in conduction velocity. If the phase offset between two connected networks is negative, the phase lag
yields a stabilization of myelin and thus, an increase in conduction velocity. In addition to stabilization, a negative term tunes down the conduction velocity to
model the metabolic cost associated with maintaining myelinated axons.
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connected neural populations. While simplistic, this glia plasticity
rule mimics activity-dependent influences on myelin formation (see
Methods). We first considered the case of pure myelin accumulation
over time where the conduction velocities can only increase (bi-
directional myelin remodeling is discussed later). Through this
phenomenological rule, changes in conduction velocities reflect
adaptive myelination over the length of the axon, leading to con-
duction delays of various durations. Augmented with this adaptive
myelination rule, and after a transient period of stabilization where
the dynamics were also incoherent (i.e., not phase locked), we let
the system evolve autonomously for a period of 10 h (3.6 × 104 s)
(Fig. 3B). During this time, conduction velocities increased slowly
(αc ≪ 1) as a function of the local phase offset between pairs of
oscillatory neural populations. After this plasticity period of 10 h, we
examined the distribution of conduction velocities over the network,
as well as the Kuramoto order parameter (r). The network was
found to spontaneously synchronize: the value of the order pa-
rameter gradually increased until phase synchrony was achieved
(Fig. 3 C and D). To disambiguate the effects of the modeled WM
plasticity mechanism from the generic tendency of a dynamic net-
work to move toward a synchronous regime, we repeated the sim-
ulations without adaptive myelination by setting the myelination
rate to zero (see Methods). Without the ability to adapt its con-
duction velocities, the network failed to synchronize: the order pa-
rameter remained close to zero throughout (i.e., in the incoherent

state) (Fig. 3A). This indicates that plastic changes in axonal prop-
erties in the network cause phase locking through the self-regulation
of its conduction times (i.e., delays), which became collectively
shorter. However, this leads us to wonder: what is the statistical
structure of the resulting connections after this period of adaptation?

Variability in Conduction Velocity Compensates for Variability in Tract
Length. If conduction velocity is constant and uniform across all
network connections, conduction delays scale linearly with tract
length (Fig. 4). Consequently, before plasticity occurs and where
conduction velocity is the same throughout the network, con-
duction delays are highly variable. This can be seen in Fig. 3A.
However, this is not the case after the adaptation period
(i.e., Fig. 3B), so how are conduction delays distributed? We
investigated this question by considering the statistics of con-
duction velocities and delays across the network after an adap-
tation period of 10 h, to see how conduction delays (after the
WM plasticity period) correlate with tract lengths. Our simula-
tions indicate that there is a high degree of variability in con-
duction velocity—and thus, degrees of myelination—but also, a
negative correlation between conduction velocity and tract
length. As can be seen in Fig. 4A, high variability in the con-
duction velocity can be seen, as well as a statistical trend: longer
connections tend to possess slower conduction velocities. This
negative correlation is a direct consequence of the length-
dependent metabolic drag coefficient (Methods) that tends to
favor the myelinated connections with smaller tract lengths.
Despite the variability in conduction velocities, unfolding the
distribution of conduction delays according to tract length
revealed an interesting bimodal configuration. Indeed, as seen in
Fig. 4B, the distribution of conduction delays was dominated by
two main modes: first, a linear distribution of delays corre-
sponding to the connections that possess minimal myelination
with the baseline conduction velocity (i.e., τ = l=co). Another
contribution could be observed, where statistically similar and
small delays were found to be uniformly distributed, in-
dependently from tract length. Within this region, the model
results suggest a degeneracy in tract lengths: multiple combina-
tions of tract lengths and/or conduction velocities lead to con-
duction delays that are statistically similar. This means that
within this region of parameter space, tract lengths are poor
predictors of conduction delays and outline the multiplexing role
played by glia. The statistics of these delays were not only aligned
with our theoretical predictions (Methods) but also shed some
light on the mechanism involved in the autonomous transition to
phase-locked synchrony we observed in our simulations. Results
presented in Fig. 4 show that synchrony is achieved in our model
because of continuous changes in conduction delay statistics
through a compensation of axonal tract length variability.
Through this degeneracy, our results show that glia may, through
adaptive myelination, lead to an effective decrease in conduction
delay variability. Despite variable axonal distances, conduction
speeds have been adjusted so that timing (i.e., delays) between
two populations remains statistically the same, promoting phase
locking. This dependence of synchrony on delay statistics has
been observed in other biological networks, where delay distri-
bution variance has been found to hinder phase locking of neural
oscillators (39, 40). This consistency in conduction delays is
furthermore in line with previous experimental observations
where similar timings were observed across connections, irre-
spective of the variability of traveling distances (16–18). While
this did not apply in our model to all network connections, their
statistical weight indicates that this degeneracy in conduction
delays represents an emergent feature of our model and was
confirmed by theoretical calculations. However, what is this
mechanism underlying spontaneous transition to synchrony, and how
does adaptive myelination relate to other plasticity mechanisms?

(au)

(mm)Axonal tract lengths

Connec�vity weightsFN
A

B

Fig. 2. Whole-brain anatomical connectivity used in the model. The net-
work is composed of 96 nodes, each corresponding to brain regions from the
regional map (RM) parcellation of Kötter and Wanke (59) (Methods). Region
labels are given on the left. (A) Matrix of connectivity weights, representing
the density of axonal connections between every pair of nodes (arbitrary
units [au]). Higher (brighter) values of the connection weights denote denser
connections; black entries indicate no anatomical connection for that node
pair. (B) Matrix of tract lengths, as approximated by Euclidean distances be-
tween the centroids of each area in the (human-modified) RM parcellation.
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Myelination Stabilizes Phase-Locked Solutions. Adaptive synchrony
in the brain results from a combination of physiological mech-
anisms, both neural and nonneural. However, how do they relate
to each other? To disambiguate the contribution of local synaptic
coupling and long-range adaptive myelination, we computed the
Kuramoto order parameter (r) as a function of varying synaptic
coupling (g; scaling how strong local synaptic connections are)
and oscillatory frequency band (ωo) for various rates of myeli-
nation. We found that the adaptive nature of our model stabi-
lized phase-locked states across a wide range of synaptic
strengths and frequency bands. As expected, the order parameter
was found to increase as a function of synaptic coupling. In the
absence of plasticity (e = 0), the synaptic strength required to
achieve phase locking scales with the frequency band: stronger
connections are required to stabilize higher-frequency phase

synchrony (Fig. 5A). We found that plastic conduction velocities
increased significantly the repertoire of possible phase-locked
states. Increasing the myelination rate (from e = 0.1  to 0.2) was
found to enable autonomous synchronization of the system over
much larger portions of parameter space. As seen in Fig. 5 B and
C, synchronization was spontaneously achieved over an extended
range of frequency bands as well as weaker synaptic coupling
gains. Interestingly, adaptive myelination was found to permit
synchrony in regions of parameter space that were otherwise
unable to do so. These regions, delimited in Fig. 4 for visibility,
support synchronization not only for weaker synaptic gains (g)
but also, over a wide range of frequency bands.
These results indicate that adaptive myelination, through the

plastic modulation of conduction velocities, increases signifi-
cantly the range of frequencies at which phase-locked synchrony
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Fig. 3. Spontaneous transition to phase-locked synchrony due to adaptive plastic changes in conduction velocity. (A) The network was initially set with
uniform conduction velocity, and phase was randomized. As a result, the overall dynamics are incoherent, and the order parameter r is small. (B) After a
period of 10 h (the asterisk [*] denoting scaled time; see Methods), the conduction velocity along network connections changed and adjusted so that phase-
locked synchrony emerges in the system. (C) Temporal evolution of randomly selected plastic conduction velocities. Conduction velocities increase and
plateau after phase locking is achieved. (D) Associated time delays as a function of time, showing how fast axonal connections formed over the duration of
the simulations. Here, g = 0.3, ωo = 65  rad=s'10  Hz, and αc = 1x10−4.
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ωo = 25  rad=s'4Hz, e = 0.2, g = 1.0, and αc = 1.
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can be observed and decreases the dependence of those states on
the strength of synaptic coupling. Our results also indicate that in
absence of this plasticity, and for weaker connection gains, the
network loses its ability to self-organize and phase lock. This is in
line with multiple experimental studies in both humans and an-
imals (11, 12, 23, 29, 30), which have demonstrated the role of
glia (specifically myelin formation and regeneration) in maintaining
synchrony and/or phase coherence among neural populations.

Resilience. Our previous results indicate that our network model,
enhanced with plastic conduction velocities to represent the
impact of glial myelination, promotes synchrony over a larger
portion of parameter space by compensating for weaker synaptic
coupling and axonal length variability. We next asked, as a cor-
ollary, whether adaptive myelination could make the network
more resilient to perturbations in connectivity—thus imple-
menting a homeostatic mechanism preserving oscillatory co-
herence between neural populations subjected to structural
changes (i.e., damage). To do this, we first considered strong
synaptic gain, in which coherent synchrony can be achieved even
in the absence of plasticity. As shown in Fig. 5, this occurs when
both the synaptic gain is strong (frequency band is low) and when
the conduction velocity is high (i.e., the conduction delays are
less variable). We first fixed the conduction velocity for all con-
nections to 3 m=s and let the system evolve for 5 h (1.8 × 104 s).
Then, 80% of existing connections were destroyed (i.e., connection
probability of those connections was set to zero) (see Methods)
after phase-locked synchronization was reached in the network,
and the system was evolved for another 5 h. We then compared the
dynamics exhibited by the network with and without plasticity
(i.e., the dynamics where conduction velocities remain stable and
those where conduction velocity can take any value within the
defined range).
Despite strong coupling, the damage inflicted by destroying

network connections destabilized the phase-locked state (Fig.
6B). The dynamics became incoherent, and the Kuramoto order
parameter (r) decreased dramatically. In the absence of plastic-
ity, the network does not possess the ability to adapt (i.e., the
statistics of the conduction velocities [and delays] remain un-
changed), and the sudden decrease in network synaptic coupling
due to damage destabilizes phase-locked synchrony. In contrast,
plasticity allowed the system to maintain synchrony, albeit at
lower levels than before damage was applied. After an adapta-
tion period of 5 h, the order parameter recovered most of its
amplitude (Fig. 6B). When exposed to this perturbation, the
statistics of conduction velocities and delays undergo radical

changes: they adapt to reserve synchronous phase locking over
the remaining connections. As can be seen from Fig. 6C, many
connections adjust their conduction velocity to compensate and
decrease the delay to align the phases. We then explored how
large the myelination rate had to be to preserve phase-locked
synchrony for various degrees of insults. We gradually altered the
network connectivity by changing the insult index and observed
the robustness of the phase-locked state by measuring the order
parameter r in each case. An increasingly large myelination rate
was required to preserve synchrony whenever damage severity
increased (Fig. 6D). Taken together, these results show that glia,
through the activity-dependent adjustment of conduction veloc-
ity, act like a homeostatic mechanism preserving phase-locked
states in the presence of changes in network synaptic coupling
and hence, damage.

Bidirectional Myelin Remodeling. While the majority of the ex-
perimental evidence supports experience-dependent increases in
myelination, there is emerging evidence for experience-dependent
myelin retraction/thinning (e.g., refs. 41 and 42). Indeed, ma-
ture myelin sheath thickness and nodal gap length can be re-
versibly modulated via perinodal astrocytes, and this may
represent one mechanism for these experience-dependent changes
(43). Whether this process is regulated in an activity-dependent
manner and on timescales similar to activity-regulated de novo
myelination remains unclear. Nonetheless, we explored the po-
tential contribution of bidirectional activity-regulated changes in
oscillatory coherence. To do this, we modified the activity-
dependent myelination rule to allow both myelin formation
and retraction (see Methods). Through this modification, illus-
trated in Fig. 7, the conduction velocity over a specific axonal
tract is allowed to fluctuate bidirectionally as a function of phase,
and can do so at different rates. With this modification, the ratio
of the rate of retraction over the rate of stabilization (i.e., R=S)
can be tuned to reflect a specific balance in myelin remodeling.
Using this adjusted myelination rule, we repeated the simula-
tions performed in Fig. 5 and computed the Kuramoto order
parameter (r) as a function of varying synaptic coupling (g) and
oscillatory frequency band (ωo) but this time for various re-
traction vs. stabilization ratios. We found that, even if myelin
retraction is introduced, phase-locked states are still stabilized
over a wide range of synaptic strengths and frequency bands.
However, the scope of this synchronization was found to depend
on the retraction vs. stabilization ratio: as retraction rates in-
creased compared with stabilization, phase synchronization
occurs over restricted regions of parameter space. This can be
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seen by comparing Fig. 7 B and C with Fig. 5C: if retraction
occurs at half the rate of stabilization (i.e., R=S = 0.5), the
adaptive synchronization property of the network is diminished.
This is even more salient if retraction and stabilization would
hypothetically occur at the same rate (i.e., R=S = 1.0). These
results can be understood through the lens of dynamical sys-
tems theory: the stronger myelin stabilization is, the higher the
conduction velocity is and—as a corollary—the shorter the
conduction delays. Favoring shorter delays results in enhanced
and widespread synchronization, which is what is observed in
Fig. 5C where there is no retraction (i.e., R=S = 0).

Discussion
The active influence of glia represents one important aspect of
brain plasticity that spans multiple spatial and temporal scales.
However, the impact of adaptive myelination on brain synchro-
nization remains poorly understood and seldom considered. To
gauge the influence of myelination on large-scale brain dynam-
ics, we built and analyzed a brain-scale network of neural oscil-
lators, informed by whole-brain anatomical connectivity data,
and enabled WM plasticity via a mechanism of phase-dependent
modification of myelination level. Using this model, we charac-
terized the effect of adaptive and time-dependent changes in
conduction velocity on network synchronization. Our results
reveal that phase-dependent myelination enables our brain-scale
network model to establish a configuration of conduction delays
that stabilizes synchronous phase-locked states across wider re-
gions of parameter space. Variability in conduction velocities
was found to compensate for tract length, yielding conduction
delays that were statistically equivalent. As a corollary, activity-
dependent myelination was found to make the network more
resilient to spontaneous changes in network connectivity, preserving

phase-locked synchrony in the presence of increasing, spatially dif-
fuse damage. Even when bidirectional changes in conduction ve-
locity were considered, oscillatory coherence was found to be
maintained, indicating that myelin net accumulation is dominant.
Taken together, our results indicate that the temporal structure of
neural interactions, mediated by adaptive myelination (and the
mechanisms that regulate it), is as important as synaptic strength in
brain oscillatory self-organization and dynamics.

Homeostasis. Our results are revealing when considered from the
perspective of brain homeostasis. Indeed, the simulations of Figs.
5 and 7 show that adaptive conduction velocities enable syn-
chronization over an extended region of parameter space. Spe-
cifically, phase synchrony is facilitated for weaker network
synaptic coupling and over a wider range of frequencies. This
self-organizing feature of the model, mediated by glia, provides
the opportunity to reorganize the timing of neural interactions to
preserve specific network target dynamics (i.e., an attractor;
here, phase-locked synchrony). When considered from the per-
spective of WM plasticity and larger-scale brain synchronization,
this feature of our model represents an example of a dynamic
implementation of homeostatic optimization—specifically, the
self-organization and optimization of conduction velocities to-
ward the preservation of a functionally relevant state. The need
for such homeostatic optimization is further supported by ex-
perimental findings in mice. Indeed, experiments show that the
absence of adaptive myelination contributes to methotrexate
chemotherapy-related cognitive impairments in mice (20), which
demonstrates the importance of adaptive myelination after brain
injury in preserving cognitive function. In our model, this was
achieved by the introduction of a glial-mediated phase-dependent
myelination that acts as a trade-off between metabolic demands
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Fig. 6. Network resilience to sudden and diffuse decrease in connectivity. (A) To examine the influence of adaptive myelination on network structure
dynamics, we considered a random and spatially diffuse injury scaled by the insult index γ. Spontaneous changes to network connectivity and phase shuffling
were performed after 5 h of network evolution. We then examined the oscillatory properties and compared the synchronization properties of the network
before and after injury, after network conduction velocities have adapted. (B) Adaptive myelination allows the system to maintain a high degree of phase-
locked synchrony, even after an injury that caused the destruction of 80% of the connections. The order parameter, in the case of plastic conduction ve-
locities, remains high despite the insult applied to the network, indicative of oscillatory resilience. (C) After a sudden decrease in synaptic coupling occurs, the
dynamics of the conduction velocities (for preserved connections) are altered, and a change in overall conduction velocity statistics takes place. (D) The
myelination rate compensates for an increased degree of injury to preserve oscillatory synchrony. The more significant the connectivity insult, the more
myelination is required to keep the order parameter high—and hence, keep the remaining networks synchronized. Here, a frequency of ωo = 65  rad=s'10Hz
was used, g = 1, and αc = 1.
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and local promotion of phase locking. Our results highlight that
through this simple rule, it is possible to implement a form of
oscillatory homeostatic control that corresponds, even in simpli-
fied systems like the one we studied here, to a form of parametric
resilience (44, 45) implemented by glia.
Our results in Fig. 6 highlight the importance of adaptive

myelination, and WM plasticity generally, in preserving func-
tionally relevant dynamics in the presence of brain damage or
injury. Experimental findings have shown that pathological states
preventing adaptive myelination, for instance by injury-induced
impaired glial reactivity, cause cognitive and behavioral impair-
ment in animal models (e.g., ref. 20). From this perspective, our
results thus suggest that adaptive myelination represents a crit-
ical therapeutic target to maintain brain function in the context
of brain injury.
In any network with finite conduction velocity, delays are in-

evitable. The question thus arises as to what the benefit is of
adaptive, activity-dependent myelination—as opposed to uni-
form and strong myelination (18, 22, 23, 26, 46). It would prove
interesting to revisit our results from the perspective of large-
scale metabolic and/or energetic constraints to see whether
adaptive self-regulation of conduction velocities implements some
form of metabolic optimization (e.g., ref. 22). Furthermore, the

results in Fig. 7 also raise the question as to what the functional
implications of bidirectional myelin remodeling would be. Inter-
area phase synchrony is thought to play a central role in neural
communication and information routing (47). To be properly di-
rected toward the right neural targets, oscillatory coherence must
be supported by sets of axonal tracts and suppressed by others.
From this perspective, synchrony is connectivity specific, and some
form of architectural pruning should take place to implement
selective functional relationships (i.e., synchrony) between related
brain areas. Could adaptive myelination be used to prevent syn-
chronization between functionally decoupled or unrelated re-
gions? While there is insufficient experimental evidence to
support these claims at the moment, they nonetheless suggest that
WM modeling can in some cases promote, and some other cases
prevent, phase synchronization.
Our model does not capture all features of glia and/or adap-

tive myelination processes and thus, remains an approximation
meant to address large-scale consequences mediated by changes
in conduction velocity configurations. It thus suffers from nu-
merous limitations. First, the phenomenological myelination rule
we consider here, despite time rescaling, occurs at a very fast
pace compared with experimental observations. Indeed, the
changes in conduction velocity in our model occur much faster
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Fig. 7. Investigating the effects of adaptive myelin retraction and stabilization on phase synchronization. (A) When bidirectional myelin remodeling is
considered, both phase retraction and stabilization between oscillatory nodes combine to establish and maintain network-wide phase synchronization. If the
phase offset between two connected oscillators is positive (red), the phase precession causes a retraction of myelin, and hence the conduction velocity
decreases. If the phase offset between two connected oscillators is negative (blue), the phase lag causes a stabilization of myelin, and hence the conduction
velocity increases. (B and C) The effect of modifying the ratio of myelin retraction (R) to stabilization (S), on the Kuramoto order parameter (r), was measured
across independent trials, as a function of increasing synaptic gain (g) of connections and various frequency bands (δ, α, β, γ). When the rate of retraction is
half the rate of stabilization (R/S = 0.5), there is more myelin being formed than being lost overall. This results in more phase locking across the network,
compared with when the rate of myelin retraction is higher (R/S = 1.0). In the case of the rates of myelin retraction and stabilization being equal (R/S = 1.0),
there is less phase locking observed in the higher-frequency bands across all synaptic gains. However, the phase locking still takes place over a wide range of
synaptic coupling. Parameters are as in Fig. 5.
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than the myelin formation reported in animals, which stabilizes
after a few hours (48). Nonetheless, our work attempts to bridge
the timescale separation that characterizes the feedback loop
between neural activity (milliseconds) and glia/myelination
(hours) first by using a simplified neural oscillator model and
also, by applying asymptotic (i.e., time-rescaling) analysis toward
resulting conduction delay statistics. We further note that an
asymptotic and/or adiabatic analysis of our model could provide
key insight as to the net effect of activity on myelination. Second,
the myelination model we implemented remains highly simpli-
fied. The different physiological constraints that dictate activity-
dependent myelination in the brain are diverse, spatially dis-
tributed, and correlated (11, 18, 23, 24, 28, 49). To circumvent
this, we have developed a myelination rule that possesses a local
phase offset correcting term. This implies that a given connec-
tion “knows” the state of the neural oscillators it connects and
tries to minimize phase misalignment between them. However,
the physiological mechanisms involved in activity-dependent
myelination in the brain remain poorly understood (11, 15, 20,
23, 49, 50). Third, the use of phase oscillators to model local
neural dynamics, while well supported in the literature (ref. 35
and references therein), remains limited. The local synchroni-
zation features, and how they are impacted by afferent inputs,
are likely to impact the myelination process and hence, greatly
enhance the richness of the dynamics, as well as the complexity
of the analysis.
Through a combination of experimental, computational, and

mathematical analysis, our results highlight the importance of
glia and adaptive myelination in large-scale brain synchroniza-
tion. Our results show that through the plastic modulation of
conduction velocities, adaptive myelination significantly in-
creases the range of phase-locking frequencies, decreasing the
dependence of those states on synaptic coupling. Our results
further suggest that this plasticity reinforces the stability—and
hence, resilience—of network synchrony to sudden and diffuse
changes in connectivity. Taken together, our results emphasize
the important role played by glia in implementing a homeostatic
mechanism promoting phase-locked synchrony across large
spatial distances and variable connectivity.

Methods
Human Whole-Brain Network Model. To examine the influence of glia on brain
synchronization, we revisited a well-studied network of coupled oscillators
(34, 36) and built a brain-scale simulation of activity-dependent myelination.
The Kuramoto model has been used as a stepping stone to understand the
mechanisms of synchronization across a wide range of complex systems in
biology (35, 36). The Kuramoto model has been used before to mimic lo-
calized oscillatory responses by focusing on phase-relevant dynamics. In
neuroscience, it has proven to be a powerful tool to model macroscopic
brain phenomena by quantifying the dynamic interactions between the
relative phases of neural oscillators (51–54). Furthermore, its dynamics have
been shown to capture synchronization-mediated interactions of a wide
range of nonlinear coupled oscillators (55). Through this choice, our goal
was to preserve a minimalistic neural model in order to focus on glial con-
tributions, especially at larger spatial scales (Fig. 2).

According to the model below, oscillatory neural activity is generated
locally, and interactions between neural populations occur via phase-
dependent coupling. While our model remains agnostic as to the mecha-
nism responsible for generating these local oscillations, we assume they are
mediated by the interplay of local excitatory and inhibitory populations. We
instead focus on how these oscillations organize through glia-supported
connections at the macroscopic scale. Specifically, we considered a net-
work of N coupled nonlinear and delayed Kuramoto oscillators whose
phases evolve according to the following set of equations (35, 39, 56):

d
dt

θi(t) =   ωo +  N−1 ∑N
j=1

wij   sin[θj(t − τij(t)) − θi(t)],
where ωo represents a shared local frequency. Note that the delays are time
dependent. The synaptic connectivity matrix wij = [W]ij = g  pij defines the

connectivity of the network. The synaptic gain g scales the strength of the
connections, while the connection probability pij = 0 or 1 refers to the ex-
istence or absence of a specific WM connection between populations i and j.
Note that through the combination of connection probability and synaptic
gain, the effective weight of a connection (i.e., the net effect of a upstream
network on a downstream network) is wij = gpij and can be varied.

We have considered in the analysis the time evolution of the mean phase
across the network: that is,

θ(t) = N−1 ∑N
i=1

θi(t).

Influence of Glia: Phase-Dependent Myelination. Axonal conduction delays
correspond to the time taken by an afferent signal to travel via saltatory
conduction along a myelinated fiber, where the propagation velocity cij
changes along the length of the axon across successive nodes of Ranvier, and
also changes in time. The net effective conduction delay over a given axonal
connection may be approximated as the ratio of the axonal length over the
mean conduction velocity: that is,

τij(t) = ∫
A
c−1ij (ℓ, t)dℓ ≈ lij

cij(t),

where lij = [L]ij is the total axonal tract length of the axonal path A between
populations i and j.

We are interested in describing network effects of glia during a phase
called “smart-wiring” (23, 26) in which WM is remodeled in an activity-
dependent way. As such, we have enabled our human brain network
model with a slow feedback loop linking oscillatory phase coupling and
conduction velocity, which mediates a continuous and state-dependent
modification of conduction delay statistics, thought to be implemented by
glia. We consider here the following phenomenological phase-dependent
myelination rule that governs the evolution of the conduction velocity cij,

α−1c
d
dt

cij = M · (−A + B+),

where cij represents the conduction velocity along the axonal connection
between neural populations i and j. In this model, changes in conduction
velocity mediated by glia are governed by the interplay between two gen-
eral mechanisms: 1) an inertial drag toward a baseline conduction velocity
(i.e., minimal myelination) to model the negative influence of metabolic
demands on myelination (A) and 2) an activity-dependent myelination term
that shapes conduction velocity in a phase-dependent way (B+). Both
mechanisms (A and B+) compete to regulate the local conduction velocity
along the axonal connection between the nodes i and j. An additional term,
M, ensures that conduction velocity remains positive and bounded between
3 and 100 m/s [within realistic ranges for myelinated axons (e.g., refs. 25, 37,
and 38)]. Myelin-induced changes in conduction velocities occur on a much
slower timescale compared with neural oscillatory dynamics, and thus, the
rate constant is chosen such that αc ≪ 1. While this rule neglects a wide
range of local neurophysiological processes underlying myelin formation by
oligodendrocytes, its focus is on the macroscopic effect of myelination on
axonal conduction (e.g., refs. 22, 49) and its influence on neural phase
locking (23, 46).

The inertial drift term is mathematically defined as

A = kij(cij(t) − co).
The baseline conduction velocity co = 3 m=s has been set to represent un-
myelinated and/or minimally myelinated axons. This baseline value has been
chosen to match the lower bound for unmyelinated axons, to represent
“minimal” myelination (25, 37, 38) (Table 1). The coefficient kij represents
the net effect of a combination of metabolic and/or biophysical forces
preventing and/or slowing myelin formation. We have made this coefficient
dependent on axonal tract length to represent the metabolic burden of
myelinating longer axons: that is,

kij = ko
lij

arg max[L]i,j ,

where ko is a scaling coefficient and arg max[L]i,j represents a normalization
factor. Through this form, connections exhibiting longer spatial lengths will
demyelinate faster, compared with shorter ones.

The activity-dependent myelination term has the form
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B+ = {−epij sinΔij if  2nπ ≤ Δij ≤ (2n + 1)π
0 otherwise

.

The myelination rate e sets the gain or magnitude of the conduction velocity
fluctuations and n = 0,1,2 . . .. The connection probability wij, which we recall
is either 0 or 1, is also present to ensure that only existing connections
change (i.e., whenever the connection probability pij > 0). The phase differ-
ence defined as Δij = θj − θi represents a myelination-promoting forcing that
depends on the phase difference between two oscillators i and j.

The activity-dependent myelination rule B+ only allows positive changes
in conduction velocity. Given that myelin has been shown to accumulate
over time (14), the rule above has been calculated so that that phase dif-
ferences have a net positive influence on conduction velocity, or otherwise
no effect (to reflect accumulation of myelin). A schematic of the phase-
dependent myelination rule is plotted in Fig. 1, where changes to conduc-
tion velocity lead to phase locking of network oscillators. One can see that
whenever the phase offset is negative, θj < θi, the phase lag between the
two oscillators causes the conduction velocity to increase; myelin undergoes
formation or stabilization. If the phase is the same between two oscillators,
or the network has achieved phase-locked synchrony, then no changes in
conduction velocity occur. Any further modification of the conduction ve-
locity requires a nonzero phase difference, which can occur spontaneously
or due to some input. This implies that fully phase-locked solutions (in which
all phases are locked around one frequency and where no phase difference
exists) would not emerge in our system unless the baseline conduction ve-
locity co is high enough. In the simulations, we set this baseline conduction
velocity to a high value (3 m/s), in order not to bias our analysis and compare
cases in which resulting delays become too large and unrealistic.

While experimental studies clearly support a net increase in activity-
induced myelination, evidence of myelin retraction and/or thinning also
exists (10, 43), although at a lower rate. Our computational model can
provide predictions about the consequences of activity-dependent myelin
thinning/demyelination on large-scale brain oscillatory coherence, notably
bidirectional remodeling that would occur during learning (10), for instance.
As such, in Fig. 7, we modified the activity-dependent myelination rule to
reflect bidirectional (i.e., increase and decrease) phase-dependent changes
in conduction velocity that occur at different rates. This modified rule is
given by

B± =
⎧⎨⎩

−e  pij sinΔij if  2nπ ≤ Δij ≤ (2n + 1)π
−R
S
e  pij sinΔij otherwise

,

where 0≤ R
S≤ 1 reflects the retraction over stabilization ratio. If R

S = 0, no
retraction occurs, and we recover the case of unidirectional myelin accu-
mulation (i.e., B± = B+). In the hypothetical case where R=S = 1, myelin re-
traction would occur at the same rate as stabilization. Other parameters in
B± are identical to those used previously. In this bidirectional framework,
whenever the phase offset Δij = θj − θi is positive, the phase precession be-
tween two interconnected neural oscillators causes conduction velocity to
decrease: myelin undergoes retraction and/or thinning. While myelin retraction

and thinning occur at much smaller rates compared with formation and
stabilization (57), they would nonetheless influence emerging oscillatory
dynamics. We thus examined in Fig. 4 different stabilization/retraction (R=S)
ratios and their consequences on phase synchronization. We repeated the
numerical experiments in Fig. 5 and examined synchronization properties as
a function of stabilization/retraction ratios.

Time Rescaling and Asymptotic Analysis. The phenomenological network
model above is a multiscale system: WM plasticity occurs on a much slower
timescale compared with the dynamics of its oscillators. To circumvent this
limitation for the purpose of numerical simulations, by combining those two
scales in a common numerical framework, we have considered a time
rescaling in which the time constant αc is increased to match the dynamics of
the neural oscillators. To validate this approach, and ensure that it does not
alter the equilibrium of the system or the resulting delay and/or conduction
velocity statistics, we analyzed the asymptotic dynamics of the myelination

rule. Introducing the adiabatic approximation (i.e., setting αc-1 →0), if we
consider co < cij < cmax,

0 ≈ −kij(cij(t) − co) + B+.

Solving for the conduction velocity yields, given that all e, wij, and kij are
positive,

cij =
⎧⎪⎨
⎪⎩
co + e  pij

kij
sinΔij if  2nπ ≤ Δij ≤ (2n + 1)π

co otherwise

.

Given that we do not have access to the individual phase differences Δij, and
their short-time temporal fluctuations (which would be equivalent to solving
analytically the full system), we can nonetheless assume that they are ex-
ponentially distributed (an approximation inspired by numerical observations):
that is,

ρ(Δ) ≈ exp[−|Δ|].
Assuming that Δ is small, we can approximate

cij ≈
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩
co + epij

kij
∫ π
0sinΔρ(Δ)dΔ = co + (1

2
+ e−π

2
)(epij

kij
) if  0 ≤ Δij ≤ π

co otherwise

.

According to this adiabatic and small phase difference approximation, by
virtue of the symmetry of the Δdistribution, half of the connections possess a

baseline conduction velocity cij = co (i.e., τij = lijc−1o ), while the other half

possess velocities that are distributed along the curve cij = co + (12 + e−π
2 ) epij

kij

[i.e., τij = lij(co + (12 + e−π
2 ) epij

kij
)−1]. Delays resulting from these approximations

are plotted in Fig. 4A, dashed line alongside the simulated data generated
with the time rescaling. One can see that this analysis provides a good ap-
proximation of the two main statistical trends of conduction speed distri-
butions, and hence that the asymptotic properties of the system are
preserved.

Order Parameter. To measure the degree of phase synchronization, we used
the well-established Kuramoto order parameter r (34, 36) that quantifies the
degree of phase locking across a population of N oscillators. The order pa-
rameter is equivalent to the phase-locking value or phase-locking index used
to quantify phase coherence between neural time series (29, 30):

r(t) = N−1 ∑N
j=1

eiθj (t).

This parameter, whose values are between zero (fully incoherent phases) and
one (full synchronization), fluctuates in time and scales with the degree of
phase locking in the network.

Damage. To model damage and test the resilience of our network, we in-
troduced the insult index γ, which takes values between zero (no damage)
and one (fully disconnected). We considered γ as a disconnection probability
and modified elements of the matrix W according to the following rule:

Table 1. Model parameters

Symbol Definition Value

N Network size 96
g Synaptic gain Variable
ωo Local oscillation frequency Variable
wij Synaptic weight Variable
pij Connection probability [0,1]
lij Connection length Variable
τij Conduction delay Variable
cij Conduction velocity Variable
co Baseline conduction velocity 3 m/s
cmax Maximal conduction velocity 100 m/s
dt Integration time step 1 ms
γ Insult index Variable
ko Metabolic inertia constant 0.01 arbitrary units
αc Plasticity rate constant 0.001 s−1

r Order parameter Variable
e Myelination rate Variable
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~wij = { wij

⃒⃒
p>γ

  0  |p ≤ γ
,

where p = [0,1] is a uniform random deviate. Collectively, the application of
this rule sets a total of γN connection weights to zero.

Connectivity and Tract Lengths. Our model represents long-range WM
pathways interconnecting distal gray matter regions using two adjacency
matrices, one describing anatomical connectivity and the other average
axonal conduction delays between pairs of gray matter regions. The delays
matrix is, in turn, derived from a fixed matrix of tract lengths and an ad-
justable per-connection conduction velocity.

The weights and length matrices were taken from the 96-node connec-
tivity dataset (“connectivity96”) distributed with The Virtual Brain neuro-
informatics and brain simulation platform (https://github.com/the-virtual-
brain). This connectivity is a subset of the Collation of Connectivity data on
the Macaque brain (CoCoMac), a database containing chemical tract tracer
measurements of the macaque brain (58). The weights are mapped from the
macaque brain onto the human neuroanatomy using a regional map (RM)
parcellation scheme (59). The RM scheme defines brain areas topographi-
cally and is suitable for mapping data between brains of related species with

similar parcellation maps. The weights in the network are denoted as con-
nection probabilities pij and span 80 cortical and 16 subcortical regions.

Because this connectivity is adapted from macaque tracing data, the
physical length of the corresponding fiber tracts in the human brain is not
available from the CoCoMac database. Thus, the matrix of tract lengths is
approximated using Euclidean distances between coordinate centroids of
each gray matter parcel of the human brain. Refs. 60 and 61 have a full
description of this connectivity and recent improvements to it using
diffusion-weighted MRI.

Data Availability. The anatomical connectivity data used in this study is dis-
tributed freely with the open source neuroinformatics and brain simulation
software library The Virtual Brain (https://github.com/the-virtual-brain). In-
formation on reproducing the analysis in this study, including the code used
for generating simulations, figures, and data, is fully accessible at https://
github.com/Lefebvrelab/ActivityDependentMyelinationModel.
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