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Abstract

Automated cell type identification is a key computational chal-
lenge in single-cell RNA-sequencing (scRNA-seq) data. To capitalise
on the large collection of well-annotated scRNA-seq datasets, we
developed scClassify, a multiscale classification framework based
on ensemble learning and cell type hierarchies constructed from
single or multiple annotated datasets as references. scClassify
enables the estimation of sample size required for accurate classi-
fication of cell types in a cell type hierarchy and allows joint classi-
fication of cells when multiple references are available. We show
that scClassify consistently performs better than other supervised
cell type classification methods across 114 pairs of reference and
testing data, representing a diverse combination of sizes, technolo-
gies and levels of complexity, and further demonstrate the unique
components of scClassify through simulations and compendia of
experimental datasets. Finally, we demonstrate the scalability of
scClassify on large single-cell atlases and highlight a novel applica-
tion of identifying subpopulations of cells from the Tabula Muris
data that were unidentified in the original publication. Together,
scClassify represents state-of-the-art methodology in automated
cell type identification from scRNA-seq data.
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Introduction

Cell type identification is an essential task in single-cell RNA-

sequencing (scRNA-seq) data analysis (Trapnell, 2015). The most

common approach to identifying cell types within scRNA-seq data is

unsupervised clustering (Kiselev et al, 2017; Wang et al, 2017; Frey-

tag et al, 2018; Diaz-Mejia et al, 2019) followed by manual annota-

tion based on a set of known marker genes (Kolodziejczyk et al,

2015). However, the number of clusters is rarely known in advance,

and the annotation of clusters is subjective, time-consuming and

highly dependent on prior knowledge of previously identified

marker genes (Grün & van Oudenaarden, 2015). This can introduce

bias in the analysis towards the better characterised cell types. With

the increasing availability of well-annotated scRNA-seq datasets, an

alternative approach is to train supervised learning methods on

reference scRNA-seq datasets with high-quality annotation to clas-

sify cells in new/query datasets (Abdelaal et al, 2019). Compared to

unsupervised clustering, supervised learning methods can automate

the cell type identification process and reduce the bias associated

with marker gene selection in cell type annotation (Zhao et al,

2019).

While many major cell types can be divided into subtypes in a

hierarchical fashion, forming what we call a “cell type hierarchy”

(Bakken et al, 2017), current supervised learning methods typically

classify cells directly to a “terminal” cell type and ignore any hierar-

chical relationships between cell types. Such a “one-step” classifi-

cation approach does not take into account the number of cells in

the reference dataset (i.e. sample size) that is needed to train a

model for classifying query cells to the “terminal” cell types. Addi-

tionally, these “one-step” classification models typically use a single

reference dataset, and if a certain cell type in a query dataset does

not exist in the reference dataset, it will be forcibly assigned to an

unrelated cell type. These limitations collectively contribute to
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misclassification, which could be avoidable by estimating the

sample size required for model training, accounting for hierarchical

relationships between cell types and including multiple closely

related reference datasets where available.

To address these challenges, we developed scClassify, a multi-

scale classification framework based on ensemble learning for

accurate cell type identification (Fig 1A). scClassify first constructs

a cell type tree from a reference dataset where cell types are organ-

ised in a hierarchy with increasingly fine-tuned annotation, using a

log-transformed size factor-normalised expression matrix as an

input. Next, scClassify uses a combination of gene selection meth-

ods and similarity metrics to develop an ensemble of classifiers

Reference dataset (training)

Query dataset (test)

Construct cell type
hierarchical tree

Multilevel classification of query cells

A

Ensemble learning at each branch
point using reference dataset

C
el

ls

DE

C
el

ls

DD

DV

C
el

ls
C

el
ls

BD

Similarity
metrics

DP

C
el

ls

Gene
selections

...

Weighted
kNNs

P

S

K

J

C

W
Cells types not in reference
(unassigned)

Post-hoc
clustering

E
ns

em
bl

e 
im

pr
ov

em
en

t o
ve

r 
th

e
si

ng
le

 b
es

t m
od

el
 (

ac
c%

)

Ensemble classification accuracy (%)

C
D

Dataset
Pancreas
PBMC (level 1)
PBMC (level 2)

Lawlor, Xin
Lawlor, Wang

Lawlor, Segerstolpe
Lawlor, Baron

Lawlor, Muraro
Xin, Segerstolpe

Xin, Wang
Xin, Lawlor
Xin, Baron

Xin, Muraro
Wang, Xin

Wang, Lawlor
Wang, Segerstolpe

Wang, Baron
Wang, Muraro

Segerstolpe, Xin
Segerstolpe, Wang

Segerstolpe, Lawlor
Segerstolpe, Baron

Segerstolpe, Muraro
Muraro, Segerstolpe

Muraro, Wang
Muraro, Lawlor
Muraro, Baron

Muraro, Xin
Baron, Segerstolpe

Baron, Wang
Baron, Lawlor

Baron, Xin
Baron, Muraro

Similarity metric
Cosine
Jaccard
Kendall
Pearson
Spearman
Weighted rank

Selection method
BD
DP
DD
DV
DE

Selection
SimilarityModel

parameter

D
at

as
et

s 
(t

ra
in

in
g,

 te
st

) 

0 
to

 0
.5 1.
0

Accuracy

Sorted by average classification accuracy
HighLow

Reference 2

...

Reference 1

Reference N

Joint classification using multiple reference datasets

Query dataset (test)

B

Classification ensembles weighted
by training accuracy

0.
9

0.
8

0.
7

0.
6

improved case = 80.7%

60 70 80 90 100

0

5

10

15

decreased case = 19.3%

Figure 1. scClassify framework and ensemble model construction (see also Fig EV1).

A Schematic illustration of the scClassify framework. Gene selections: DE, differentially expressed; DD, differentially distributed; DV, differentially variable; BD, bimodally
distributed; DP, differentially expressed proportions. Similarity metrics: P, Pearson’s correlation; S, Spearman’s correlation; K, Kendall’s correlation; J, Jaccard distance;
C, cosine distance; W, weighted rank correlation.

B Schematic illustration of the joint classification using multiple reference datasets.
C Classification accuracy of all pairs of reference and test datasets was calculated using all combinations of six similarity metrics and five gene selection methods.
D Improvement in classification accuracy after applying an ensemble learning model over the best single model (i.e. weighted kNN + Pearson + DE).
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that capture cell type characteristics at each non-terminal branch

node of the cell type hierarchy. These classifiers are then integrated

to make predictions for every cell at each branch node of the cell

type hierarchy. Depending on the sample size of each cell type in

the reference dataset, scClassify may assign a cell from a query

dataset to a non-terminal intermediate cell type and not classify it

any further in the hierarchy. To account for the possibility that the

query cell types may not be present in the reference dataset,

scClassify allows cells from the query dataset to be labelled as

“unassigned” (Figs 1A and EV1A). scClassify also enables the esti-

mation of the number of cells required for accurately discriminat-

ing between cell types and subtypes anywhere in the cell type

hierarchy. This is an important component for the experimental

design and generation of reference datasets with sufficiently large

numbers of cells, which is critical for nuanced identification of cell

types. For unassigned cells, scClassify uses a post hoc clustering

procedure for novel cell type discovery (Fig 1A), and when multi-

ple reference datasets are available, scClassify takes advantage of

this by enabling joint classification of cells in a new dataset

by using multiple references (Fig 1B). The joint classification

procedure increases the sample size for model training, improves

cell type classification accuracy and reduces the number of

unassigned cells.

Results

scClassify benefits from ensemble learning and outperforms
existing supervised methods

We demonstrate the value of ensemble learning with a collection

of seven PBMC datasets (Ding et al, 2020; Data ref: Ding et al,

2020) generated by different protocols and six publicly available

human pancreas scRNA-seq datasets (Fig EV1B). We first evalu-

ated the performance of 30 individual classifiers on the pancreas

data collection by training each on one dataset and testing it on

another, with a weighted k-nearest neighbour (kNN) classifier

using one of five gene selection methods and one of six similarity

metrics (Fig 1C and Dataset EV1). The heatmap (Fig 1C) highlights

the diversity in performance across different parameter settings

(with average accuracy ranging from 72 to 93%), suggesting that

different parameter combinations capture different cell type char-

acteristics. While the differential expression (DE) gene selection

method was the best single classifier, followed by the weighted

kNN with Pearson’s similarity metric, we found that the ensemble

of weighted kNN classifiers trained by all 30 combinations of gene

selection methods and similarity metrics led, in most cases, to a

classification accuracy higher than that achieved by the single best

model (Fig 1D). The ensemble classifier was therefore used in all

benchmarking.

We compared the performance of scClassify against 14 other

single-cell-specific supervised learning methods (Kiselev & Yiu,

2018; Lieberman et al, 2018; Lopez et al, 2018; preprint: Wagner &

Yanai, 2018; Alquicira-Hernandez et al, 2019; Aran et al, 2019;

preprint: Boufea et al, 2019; de Kanter et al, 2019; Pliner et al, 2019;

Tan & Cahan, 2019; Ma & Pellegrini, 2020) (Appendix Table S1).

The 6 × 5 = 30 (training and test) pairs from the pancreas data

collection of six studies came in two groups: easy cases (n = 16),

where all cell types in the test data are found in the training data,

and hard cases (n = 14), where the test data contained one or more

cell types not present in the training data. The results are

summarised in Figs 2A and EV2A, and an example is shown in

Appendix Fig S1. On average, scClassify achieved a higher accuracy

than the other methods, with the difference being greater among the

14 hard cases than the 16 easy ones. For the collection of six PBMC

datasets, we evaluated scClassify at two levels of the cell type hierar-

chy, coarse (“level 1”) or fine (“level 2”), each leading to 7 × 6 = 42

(training and test) pairs. We found that scClassify effectively anno-

tates the cell types and produces higher accuracy rates in most cases

(Figs 2B and EV2A), with the improvement being greater at level 2

than at level 1. Results for all pairwise comparisons of methods are

summarised in Fig 2C. In terms of computational efficiency and

memory required, we trained and tested each method on classifying

the Tabula Muris dataset (The Tabula Muris Consortium, 2018; Data

ref: The Tabula Muris Consortium, 2018) with varying numbers of

cells or cell types and found that scClassify is comparable to other

existing methods and can be applied to classify datasets with a large

number of cells (Appendix Fig S2).

To evaluate the robustness and stability of scClassify on cell type

classification, we repeatedly resampled each training dataset in the

pancreas data collection and performed scClassify on the total of 30

training and test pairs (see Materials and Methods). We found that

the classification accuracy of scClassify using a subset of training

data is highly reproducible and highly concordant with the results

from the full training dataset (Fig EV2B). To assess the impact of

hyperparameters on scClassify, we used the 30 training and test

pairs from the pancreas data collection and evaluated three key

hyperparameters (see Materials and Methods). We illustrate in

Fig EV2C that the choice of k considered in weighted kNN had mini-

mal impact on the performance of scClassify. We found that the

dynamic and pre-defined threshold in correlation threshold determi-

nation for cell type classification are highly concordant in the 16

easy cases, while in the hard cases, the dynamic threshold is gener-

ally better than a hard-coded threshold (Fig EV2D). Finally, high

consistency of performance was observed from using a different

maximum number of children per branch node of the HOPACH tree

(Appendix Fig S3).

Sample size estimation of reference datasets

To facilitate a complete design and identification framework,

scClassify enables estimation of the number of cells required in

a reference dataset to accurately discriminate between any two

cell types at a given level in a given cell type hierarchy. It does

so by fitting an inverse power law (Mukherjee et al, 2003) (see

Materials and Methods). The procedure requires no assumption

on the distribution of the training dataset or the accuracy. We

expect that the accuracy of cell type classification will increase

with increasing sample size and converge to a maximum. To

evaluate this approach, for a given accuracy and the correspond-

ing sample size from the learning curve estimated from the pilot

data (Fig 3A red line, Fig EV3A), we performed an in silico

experiment by randomly selecting samples of cells of different

sizes from the full reference dataset and built a cell type predic-

tion model. Finally, the model was validated on an independent

set of cells, and the corresponding in silico experiment accuracy
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was calculated (Fig 3A, blue line, Fig EV3A). The learning curve

we estimated (Fig 3A, red line) through this approach exhibited

strong agreement (r = 0.98, 0.99) with the validation results,

demonstrating the validity of our sample size estimation method

(Figs 3B and EV3B).

We applied the sample size estimation to the PBMC datasets

(Ding et al, 2020; Data ref: Ding et al, 2020) and found that dif-

ferent sequencing protocols are associated with different optimal

sample sizes. We also observed that while the different protocols

demonstrate very similar performance at the first level of the cell

type hierarchy, the difference in performance between the protocols

became increasingly apparent at the second level of the hierarchy

(Fig 3C). These results highlight the importance to consider biotech-

nological variation between protocols in experimental design.

To investigate the potential influence of capture efficiency,

sequencing depth and degree of cell type separation on sample size

requirement, we carried out simulations with SymSim (Zhang et al,

2019) (see Materials and Methods). We found that the within-popu-

lation heterogeneity has strong effect on the classification perfor-

mance. scClassify can achieve above 95% average accuracy rate for

the populations with high heterogeneity, while remaining at about

70% average accuracy rate for the extremely homogeneous popula-

tion (sigma = 1). We observed that the classification accuracy

plateaus when the capture efficiency is equal or greater than

alpha = 0.02, regardless of the population heterogeneity (Appendix

Fig S4A). For a population that is more homogeneous, a higher

capture efficiency rate will be required to achieve the greater accu-

racy rate that scClassify can achieve, as more reference samples are

required since scClassify learns relatively more slowly

(Appendix Fig S4B). These results together highlight that within-

population heterogeneity (sigma) and capture efficiency have a

substantial impact on sample size determination, while sequencing

depth has much less impact.

Similar observations were found via down-sampling of UMIs

across a range of down-sampling proportion parameters (pk = 0.1,

. . ., 1). We took random draws from a beta-binomial distribution

using parameters estimated from the DECENT’s beta-binomial

capture model (Ye et al, 2019) on the PBMC10k data with two cell

type levels. We found that for predictions at the first level of the

cell type tree, scClassify achieved over 90% accuracy (20 times
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Figure 2. Benchmarking scClassify against alternative methods on cell type classification of the pancreas and PBMC data collection (see also Fig EV2).

A Performance evaluation for 16 methods on 30 training and test data pairs from the pancreas data collection. Each boxplot ranges from the first to third quartile of
classification accuracy for each method with the median of classification accuracy as the horizontal line. The lower and higher whiskers of boxplot are extended to
the first quartile minus 1.5 interquartile range and the third quartile plus 1.5 interquartile, respectively.

B Performance evaluation for 16 methods on 84 training and test data pairs from the PBMC data collection. Each boxplot ranges from the first to third quartile of
classification accuracy for each method with the median of classification accuracy as the horizontal line. The lower and higher whiskers of boxplot are extended to
the first quartile minus 1.5 interquartile range and the third quartile plus 1.5 interquartile, respectively.

C A 1-by-3 panel of dot plots indicating the rankings of each method in 114 pairs of reference and testing data pairs. The x-axis refers to the different methods, and the
y-axis refers to the reference and testing data pairs. The dots are coloured by rank, and the size of the dots indicates the degree of accuracy.
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fivefold cross-validation) with 10% of the original capture effi-

ciency, suggesting discrimination of major (or coarse) cell types is

robust to biotechnological variations. In contrast, for prediction at

the level 2 of the cell type hierarchy, we found that scClassify

requires 50% of the original capture efficiency to achieve a similar

level of performance (Fig EV3C) and this has a large impact on

sample size estimation. For example, with 20% of the original

capture efficiency, scClassify requires a sample size of N = 80 and

N = 1,200 to achieve a 75% classification accuracy at level 1 and

level 2 cell type hierarchy, respectively (Appendix Fig S5), high-

lighting the importance of jointly considering capture efficiency,

cell type resolution and intended classification accuracy for

constructing a reference dataset.

Post hoc clustering and joint classification further improve cell
type annotation

scClassify labels cells from a query dataset as “unassigned” when

the corresponding cell type is absent in the reference dataset. With

the Xin-Muraro (reference–query) pair (Muraro et al, 2016; Data

ref: Muraro et al, 2016; Xin et al, 2016; Data ref: Xin et al, 2016),

scClassify correctly identified (Fig 4A) the four shared cell types

(alpha, beta, delta and gamma cells) and correctly labelled cells

that were only present in the query dataset (i.e. acinar, ductal,

stellate, endothelial and delta cells in Muraro dataset) as “unas-

signed”. We then applied scClust (Kim et al, 2019) to the “unas-

signed” cells (Figs 4A and EV4A) and obtained clustering and

labelling results consistent with those provided in the Muraro

dataset. Another example is the Xin-Wang (reference–query) pair

(Wang et al, 2016; Data ref: Wang et al, 2016; Xin et al, 2016),

where we found that scClassify is able to correctly label the ductal

and gamma cells as “unassigned”. After performing post hoc clus-

tering and annotation of the clusters using known markers (see

Materials and Methods), we found that the final annotated labels

were highly consistent with those of the original study (Fig EV4B

and C).

Another novel strategy scClassify employs to reduce “unas-

signed” cells from a query dataset is to include more reference data-

sets in order to increase sample size in model training while also

capturing more or all cell types in the query dataset. Specifically,

scClassify utilises multiple reference datasets to perform joint classi-

fication where the final prediction is made by weighing across
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B Scatter plot of sample size estimation based on the pilot data (horizontal axis) compared with accuracy results from the in silico experiments (vertical axis).
C Sample size estimation from the PBMC data collection. Sample size learning curve with the horizontal axis representing sample size (N) and the vertical axis

representing classification accuracy. The learning curves for the different datasets provide estimates of the sample size required to identify cell types at the top (top
panel) and second (bottom panel) levels of the cell type hierarchical tree.
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Figure 4. Post hoc clustering of unassigned cells and joint classification of cell types using multiple reference datasets. (see also Fig EV4).

A Left panel shows cell types based on the original publication by Muraro et al (2016), Data ref: Muraro et al (2016). Middle panel shows the predicted cell types from
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classifiers trained on each reference dataset (see Materials and

Methods). The PBMC data collection contains seven datasets each

generated using a different sequencing protocol. We applied joint

classification on the PBMC data collection by using a “leave-one-

protocol-out” approach where datasets generated from all other

protocols were used for training and prediction. Compared to the

pairwise classification results where a dataset from one sequencing

protocol was used for the training and classification of a dataset

from a different sequencing protocol, we found that the joint classi-

fication results where multiple reference datasets were used resulted

in not only higher classification accuracy but also fewer unassigned

and intermediate cells compared to when a single reference dataset

was used (Fig 4B).

Scalability of scClassify for large datasets and refinement of cell
type annotation through scClassify

To test the scalability of scClassify on large reference and query

datasets with complex cell type hierarchies, we used the Tabula

Muris FACS dataset (The Tabula Muris Consortium, 2018) as the

reference (Appendix Fig S6) and the Microfluidic dataset as the

query dataset, collectively amounting to 96,404 cells (Fig 5A).

Despite the scale and complexity of the data, we found that scClas-

sify achieved a high classification accuracy of ~ 85%, demonstrat-

ing that scClassify scales well to large scRNA-seq datasets. An

assessment of performance by tissue type revealed an accuracy of

> 80% for most tissue types (nine out of 12 tissues; Fig 5B).

Notably, the classification accuracy was 94% for the tongue, 93%

for the liver, 92% for the thymus and 92% for the spleen. Next,

we found that more than half of the cell types (20 cell types) had

a classification accuracy of > 80%, with basal cells, B cells and

mesenchymal cells achieving the highest accuracies (Fig 5C).

We further demonstrate the scalability of scClassify on three

mouse neuronal datasets, each with about 20 cell types from the

visual cortex, generated on three different platforms, and together

with over 63,531 cells (Tasic et al, 2016; Data ref: Tasic et al, 2016;

Hrvatin et al, 2018; Data ref: Hrvatin et al, 2018; Tasic et al, 2018;

Data ref: Tasic et al, 2018) (Appendix Fig S7A–C). We found that

cells with common cell type labels in the training and query datasets

were predominately correctly annotated by scClassify, with an accu-

racy in all cases > 90% and an average of 95%. In some cases

where the cell type labels did not match between datasets, we found

that the annotations derived by scClassify were very closely related

to the original labels (Appendix Fig S8A–C).

Finally, we illustrate the ability of scClassify to provide a more

refined annotation of cell types in the Tabula Muris Lung Atlas by

using as reference dataset the more comprehensive dataset of

mouse lung development with 20,931 cells and deeper cell type

annotation (22 cell types) (Cohen et al, 2018; Data ref: Cohen

et al, 2018). scClassify showed that stromal cell in the original

atlas can be subclassified into smooth muscle and matrix fibrob-

last cells. To validate our results, we used key cell type markers

reported by Cohen et al (2018). Specifically, we defined fibroblasts

as being marked by a high expression level of Col1a2, smooth

muscle cells by Aspn17 and matrix fibroblasts by Macf2 and

Mfap4 (Fig 5D). Furthermore, we show that scClassify is able to

meet the computational challenge of identifying the presence of

small subpopulations of cells in an scRNA-seq dataset. For

example, scClassify was also able to annotate three minor popula-

tions: pericytes (19 cells, originally labelled as stromal cells), cili-

ated cells (21 cells) and neutrophils (28 cells, originally labelled as

leucocytes). The new classifications were supported by the high

expression level of marker genes for each cell type (pericytes:

Gucy1a3; neutrophils: Retnlg; Fig 5D). Remarkably, scClassify was

able to identify a group of only six cells that were originally

labelled as leucocytes and dendritic cells but express high levels of

the three top basophil markers, Ccl3, Ccl4 and Ifitm1 (Fig 5D)

(Cohen et al, 2018). This illustrates the ability of scClassify to

identify cell types present in very small numbers in the data,

something which is usually extremely challenging to do with clus-

tering alone.

Discussion

In supervised cell type classification, the performance of methods

may be influenced by various characteristics in the data. For exam-

ple, better quality reference and query datasets potentially lead to

better performance in classification. Furthermore, the more hetero-

geneous the cell types are in the reference data, the easier they can

be distinguished by the classification algorithm. This can be seen in

our sample size simulation study, where we found that the within-

population heterogeneity strongly affects classification performance

(Appendix Fig S4).

The choice of evaluation metric is important for comparing

performance of supervised cell type classification methods. In

this study, we have extended an evaluation framework proposed

by de Kanter et al (2019) to divide the prediction results into

seven different categories. Compared to the traditional binary

classification evaluation metrics such as the F1 score used in

other benchmark studies (Abdelaal et al, 2019; Zhao et al,

2019), our evaluation framework aims to capture the complexity

in our cell type classification results. For instance, categories of

“incorrectly assigned” and “correctly unassigned” will evaluate

whether a method is able to accurately classify a cell whose cell

type is not present in the reference data, a common scenario

that cannot be properly quantified using a metric such as F1

score. Capturing various complex scenarios in single-cell classifi-

cation in the evaluation metric could provide a better under-

standing of the method performance such as these visualised in

Fig EV2A.

To summarise, scClassify is a robust supervised classification

framework for comprehensive and accurate cell type annotation.

scClassify addresses several limitations of existing supervised clas-

sification methods by generating multilevel cell type annotations

through cell type hierarchies constructed from single or multiple

reference datasets. While the cell type hierarchies enable the inter-

pretation of cell types at multiscale, the joint classification of cells

using multiple references allows the representation of a broad

range of cell types that would be unachievable through a single

dataset, enabling classification of cells that would otherwise be

misclassified or unassigned. Importantly, in cases where the

sample size of a given cell type in the reference dataset is too

small, scClassify allows the query cell of the corresponding cell

type to be annotated as an intermediate cell type and therefore

does not force the classification of cells when it cannot be
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confidently assigned to a terminal cell type. Rather, it implements

a post hoc clustering procedure for discovery of novel cell types

among the unassigned cells. Collectively, the capacity of scClassify

to perform multiscale cell type classification and joint classification

from multiple reference datasets, to estimate sample size and to

implement post hoc clustering enables accurate and nuanced iden-

tification of cell types and their associated genes from scRNA-seq

data.
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Figure 5. Cross-platform classification of cell types using scClassify.

A tSNE visualisation of the Tabula Muris Microfluidic dataset (The Tabula Muris Consortium, 2018; Data ref: The Tabula Muris Consortium 2018). Cell typing is based on
either the original publication (left panel) or scClassify prediction (right panel). scClassify was applied to the Tabula Muris Microfluidic data collection with the Tabula
Muris FACS dataset as reference data for model training.

B Bar plot indicating the predicted cell types organised by tissue types when the Tabula Muris Microfluidic dataset was used as query and the Tabula Muris FACS
dataset was used as reference.

C Heatmap of data in (A) comparing the original cell types given in the Tabula Muris Microfluidic data (rows) against the scClassify predicted cell types (columns)
generated using the Tabula Muris FACS data as the reference dataset.

D scClassify prediction results of cells in lung tissue type in the Tabula Muris FACS data by using Cohen et al dataset as reference (Cohen et al, 2018; Data ref: Cohen
et al, 2018). The large tSNE plot is the full data coloured by scClassify predicted cell types, while the smaller tSNE panels show two subsets of cells from the large
plot, each coloured to highlight four marker genes, where the lighter yellow colour represents higher gene expression.
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Materials and Methods

Reagents and Tools table

Reagent/Resource Reference or source
Identifier or
Catalog Number

Software

R version 3.6 https://www.r-project.org/ N/A

Python version 3.7.3 https://www.python.org/ N/A

ACTINN GitHub version c3dd085 https://github.com/mafeiyang/ACTINN N/A

CHETAH version 1.1.2 https://github.com/jdekanter/CHETAH N/A

CaSTLe GitHub version 258b278 https://github.com/yuvallb/CaSTLe N/A

Garnett version 0.1.4 https://cole-trapnell-lab.github.io/garnett/ N/A

SingleR version 1.0.1 https://github.com/dviraran/SingleR N/A

Moana version 0.1.1 https://github.com/yanailab/moana N/A

scID version 0.0.0.9000 https://github.com/BatadaLab/scID N/A

scPred version 0.0.0.9000 https://github.com/IMB-Computational-Genomics-Lab/scPred N/A

scVI version 0.3.0 https://github.com/YosefLab/scVI N/A

scmap version 1.1.6 https://bioconductor.org/packages/release/bioc/html/scmap.html N/A

SingleCellNet version 0.1.0 https://github.com/pcahan1/singleCellNet/ N/A

SVMreject version 0.22.2 https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html N/A

scater version 1.13.7 https://bioconductor.org/packages/release/bioc/html/scater.html N/A

limma version 3.42.0 https://bioconductor.org/packages/release/bioc/html/limma.html N/A

mixtools version 1.1.0 https://cran.r-project.org/web/packages/mixtools/index.html N/A

minpack.lm version 1.2-1 https://cran.r-project.org/web/packages/minpack.lm/index.html N/A

Bench 1.1.1 https://cran.r-project.org/web/packages/bench/index.html N/A

utils 3.6.2 https://www.rdocumentation.org/packages/utils/versions/3.6.2/topics/Rprofmem N/A

Memory-profiler 0.57.0 https://pypi.org/project/memory-profiler/ N/A

Methods and Protocols

scClassify framework
scClassify is a classification framework for identifying cell types in

scRNA-seq datasets. It uses a cell type hierarchy constructed from a

reference dataset and ensemble learning models at each branch

node of the hierarchy trained on the reference dataset (Fig 1A).

Specifically, the hierarchical ordered partitioning and collapsing

hybrid (HOPACH) algorithm (van der Laan & Pollard, 2003) is used

to construct the hierarchical cell type tree from the reference dataset

(see Cell type tree section). In contrast to standard hierarchical clus-

tering, this method allows a parent node to be partitioned into

multiple child nodes, which is more consistent with the natural

progression from broad to more specific cell types, where a cell type

can have two or more subtypes.

We will use the term training set interchangeably with reference

set (or sets) and restrict the usage of the term test set to situations in

which the true cell types of the cells whose annotation is being

predicted are known, i.e. to situations where we are assessing or

comparing the performance of scClassify. We will use the term query

set or query cell when the unknown types of cells are to be predicted,

and we write test/query when we wish to cover both cases.

scClassify uses a weighted kNN classifier. More weight is given

to neighbouring cells that are nearer, as defined by a similarity

metric, to a query cell. To incorporate a variety of information, six

similarity metrics and five cell type-specific gene selection methods

are used in scClassify (see Ensemble of base classifiers section).

Each of the 30 base classifiers is trained using one of the similarity

metrics and one of the gene selection methods. The final predictions

are made by an ensemble classifier that weights individual classi-

fiers depending on their training error. The best base classifier will

have the highest weight, while a classifier with < 50% accuracy will

have negative weight.

An ensemble classifier is trained at each branch node of the cell

type tree constructed using HOPACH, where both the training and

test/query phase follow a top-down approach. That is, for parent

nodes, classifiers are trained using the cells belonging to their child

nodes. To characterise nodes at different levels, we carry out the

gene selection step separately at each level of the tree. In the test/

query step, a cell will have its type predicted from the highest to the

lowest level, as long as it is possible to make a satisfactory predic-

tion at every level (see Multilevel classification section). If that is

not possible, the cell will be given an intermediate type. Finally, we

carry out post hoc clustering of unassigned cells.
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Component 1: Cell type tree
To construct the cell type tree from a reference dataset, we first

take the union across cell types of all the sets of genes found

using limma (Ritchie et al, 2015) to be differentially expressed

(DE) between one cell type and all other cell types (one vs all).

We next use HOPACH on the average expression of selected

genes from each cell type to construct the cell type tree. Starting

from the tree root, the maximum number of children at each

branch node was set as 5 by default and can be modified when

data containing a large number of cell types are used as refer-

ence. The root of the tree consists cells of all the cell types; the

branch nodes of the tree are the less refined cell types, as each

may contain multiple subtypes; at the bottom level of the tree are

the leaves, representing the finest cell types in the reference

dataset. Note that since we build the cell type tree using the

average expression of the cell type, the tree built by the HOPACH

algorithm is robust in general.

Component 2: Ensemble of base classifiers
At each branch node, an ensemble classifier is built from 30 base

classifiers. Each is a weighted kNN model with a different combi-

nation of similarity metric and gene selection methods (Fig 1A).

These 30 base classifiers are all combinations of six similarity

metrics and five cell type-specific gene selection methods. The

motivation is that while numerous similarity metrics are available,

they often lead to different results, reflecting the different proper-

ties of the data each metric is measuring (Kim et al, 2019; Skin-

nider et al, 2019). We use Pearson’s correlation, Spearman’s

correlation, Kendall’s rank correlation, cosine distance, Jaccard

distance and weighted rank correlation (Iman & Conover, 1987).

Since not all genes are cell type-specific (Lin et al, 2019), only the

ones that are informative for cell type classification should be

included in a similarity metric. There are various computational

methods for selecting genes that are cell type-specific (Strbenac

et al, 2016). Five of them are included in scClassify for the dif-

ferent types of information each of them provides, four being

based on two-sample tests. These are DE genes using limma

(Ritchie et al, 2015), differentially variable (DV) genes using

Bartlett’s test, differentially distributed (DD) genes using the

Kolmogorov–Smirnov test, bimodally distributed (BD) genes using

the bimodality index (Wang et al, 2009) and genes with DE

proportions (DP) using a chi-squared test. To make a consensus

prediction from an ensemble, we weight each base classifier in a

manner similar to that in AdaBoost (Bauer & Kohavi, 1999). Specif-

ically, the weight of each classifier is calculated as follows:

at ¼ ln
1� �t
�t

;

where �t is the error rate achieved by training and testing the base clas-

sifier t on the reference dataset, t = 1, . . ., 30. Let ljt 2 L be the cell type

label predicted for cell j by base classifier t, where L is the set of all the

possible labels available to scClassify, including intermediate node labels

and “unassigned”. The ensemble prediction for cell j is made as Bauer

and Kohavi (1999):

l�j ¼ argmax
c2L

X
t:ljt¼c

at:

Note that the weight for each base classifier can also be flexibly

specified by the user or based on a pre-defined classification accu-

racy threshold in the scClassify function for up- and down-weighing

or pruning base classifiers.

Weighted kNN

To relate the cell type predicted for a test/query cell to that of its

nearest neighbours in the reference dataset, we use a distance-

weighted kNN classifier (Dudani, 1976). Let T ¼ fðxj; cjÞgNj¼1 denote

the reference data for a branch node, where xj 2 Rm is the expres-

sion vector of cell type-specific genes for cell j, and cj is the corre-

sponding cell type label. For a test/query cell with expression vector

y 2 Rm , we first calculate the distances between it and all cells in

the training dataset. Let dk be the distance between such a cell and

its k-th nearest neighbour in the reference dataset, k = 1,. . ., N (See

Appendix Table S2). We then identify the K-nearest cells in the train-

ing dataset for this cell (By default, K = 10). A weight wj attributed to

the k-th nearest neighbour is defined as

wk ¼
dK�dk
dK�d1

; dK 6¼ d1
1; dK ¼ d1

�
:

The query cell is then predicted to have the cell type with the

greatest total weight, i.e. we use weighted majority voting.

Discriminative genes

To characterise branch nodes in the tree, we select genes at each

node separately by comparing the gene expression levels in each cell

type at a node against those of all other cell types at that node using

the following five metrics:

• Differentially expressed genes: Differential expression analysis is

carried out using limma-trend (Ritchie et al, 2015). Using the

topTable command of the limma package, we extract the genes

with fold change > 1.

• Differential variable genes: DV analysis is carried out using

Bartlett’s test.

• Differentially distributed genes: DD analysis is carried out using

the Kolmogorov–Smirnov test.

• Differentially proportioned genes: DP analysis is performed by a

chi-squared test. Here, each gene is classified as expressed or not

expressed in each relevant cell, where expressed means it has an

expression level greater than a certain threshold (by default, this

threshold is set at 1 for log-transformed data). The difference

between the proportion of cells in one cell type in which a gene is

expressed and that proportion across all other cell types at that

node is denoted as “proportion difference”.

• Bimodally distributed genes: We calculated the bimodality index

for each gene (Wang et al, 2009), as follows

BI ¼ jm1 �m2j
s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞp ;

where m1 and m2 are the means of the expression levels of one cell

type and of all the other cell types, s is the (assumed) common

standard deviation, and p is the proportion of cells of the cell type

under consideration. The genes are then ranked based on the

bimodality index.
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For each method, genes are first ranked according to their

adjusted P-values, and then, a maximum of 50 top-ranked genes

whose adjusted P-values are < 0.01 and the proportion difference

(defined in 4) > 0.05 are selected from each method. These genes

are included in training model.

Component 3: Multilevel classification
Starting from the root of the cell type tree, scClassify calculates the

distances between a query cell and all reference cells at and below a

branch node and classifies the query cell to a child of that node if

the following two criteria are fulfilled. First, the nearest neighbour

cells must have correlations higher than a certain threshold. This is

determined using a mixture model on the correlation of the cell type

of this nearest neighbour, using the normalmixEM function in the

package mixtools (Benaglia et al, 2009). Second, the weights of its

assigned cell type must be larger than a certain threshold, whose

default is set at 0.7. Cells that fail to pass either of these criteria will

not be classified to the next level. Cells that do not progress above

the root will be considered unassigned. Those cells that are classi-

fied at a branch node, but whose classification process does not

reach a leaf of the tree, will be viewed as having an intermediate cell

type. In such cases, the final type of a query cell is defined by the

last assigned branch node, where a branch node cell type is defined

as the collection of cell types of all its child nodes. Finally, cells that

reach the leaf level will be labelled by the cell type each leaf

represents.

Component 4: Post hoc clustering of unassigned cells
scClassify uses a modified version of the SIMLR algorithm to cluster

unassigned cells (Wang et al, 2017; Kim et al, 2019). To illustrate

scClassify’s capacity to annotate cells that are not in the reference

dataset, we trained scClassify on a reference dataset that had only

four cell types (Xin et al), and used this to predict cell types for a

dataset with nine cell types from human pancreas (Muraro et al).

Cells that were classified as unassigned were then clustered and

further identified in the familiar way following clustering. Specifi-

cally, DE genes in each cluster (one vs all) were found using limma

(Ritchie et al, 2015). Each cluster was subsequently annotated

based on its DE genes and the markers provided by Muraro et al in

the paper (i.e. acinar: PRSS1; ductal: SPP1 and KRT19; stellate:

COL1A1 and COL1A2; endothelial: ESAM; delta: SST; Fig EV4A).

Similarly, we performed post hoc clustering on the human pancreas

dataset generated by Wang et al, where most of ductal and stellate

cells are correctly called unassigned by scClassify (Fig EV4B). We

annotated each cluster based on its genes DE when compared to

other clusters (ductal: SPP1; stellate: COL1A1 and COL1A2;

Fig EV4C). In both cases, we found that the cell types assigned by

scClassify were highly consistent with those originally published.

Note that other clustering methods are also applicable in the post

hoc clustering procedure.

Component 5: Joint classification using different training datasets
When multiple scRNA-seq datasets are available, each profiling the

same tissues or including overlapping cell types, scClassify makes

use of them all by training a collection of ensemble models using

each dataset and makes predictions for a query dataset using a joint

classification method where predictions from each reference dataset

are weighted by their training error. This is because classifiers with

larger training errors usually make poorer predictions, and therefore

should be down-weighted. For each query cell, scClassify assigns

the cell type with the largest average score using the ensemble

models from each of the reference datasets.

Data collections and processing
The datasets used in this study are publicly available and include

the following:

• The pancreas data collection was downloaded from the National

Center for Biotechnology Information (NCBI) Gene Expression

Omnibus (GEO) for GSE81608 (Xin et al, 2016; Data ref: Xin et al,

2016), GSE83139 (Wang et al, 2016; Data ref: Wang et al, 2016),

GSE86469 (Lawlor et al, 2017; Data ref: Lawlor et al, 2017),

GSE85241 (Muraro et al, 2016; Data ref: Muraro et al, 2016),

GSE84133 (Baron et al, 2016; Data ref: Baron et al, 2016) and EBI

ArrayExpress website for E-MTAB-5061 (Segerstolpe et al, 2016;

Data ref: Segerstolpe et al, 2016).

• The PBMC data collection was downloaded from the Single Cell

Portal with accession numbers SCP424 (Ding et al, 2020; Data ref:

Ding et al, 2020), which contains a collection of seven datasets

that were sequenced using different platforms (Smart-Seq, CEL-

Seq, inDrops, dropSeqs, seqWells, 10x Genomics (V3) and 10x

Genomics (V2)).

• The Tabula Muris mouse data were downloaded from https://

tabula-muris.ds.czbiohub.org/ (The Tabula Muris Consortium,

2018; Data ref: The Tabula Muris Consortium, 2018).

• The neuronal data collection was downloaded from GEO acces-

sion number GSE71585 (Tasic et al, 2016; Data ref: Tasic et al,

2016), GSE115746 (Tasic et al, 2018; Data ref: Tasic et al, 2018)

and GSE102827 (Hrvatin et al, 2018; Data ref: Hrvatin et al, 2018).

• The mouse lung development dataset was downloaded from GEO

accession number GSE119228 (Cohen et al, 2018; Data ref: Cohen

et al, 2018).

• The PBMC10k data collection generated by Cell Ranger version

3.0.0 was downloaded from 10x Genomics website: https://sup

port.10xgenomics.com/single-cell-gene-expression/datasets/3.0.

0/pbmc_10k_v3.

We organised these datasets into large data collections for either

performance assessment or use as case studies (Fig EV1B). For the

six pancreas datasets (Baron et al, 2016; Muraro et al, 2016; Seger-

stolpe et al, 2016; Wang et al, 2016; Xin et al, 2016; Lawlor et al,

2017), we manually checked the cell type annotations that were

provided by the original authors of each dataset and curated the

labels such that the naming convention is consistent across datasets.

For example, the cell type “PP” in Xin dataset was changed to

“gamma”, as “gamma” was the name used by all other datasets.

Similarly, “mesenchymal” in Muraro and Wang was changed to

“stellate”. We also removed the cell types that were labelled as

“co-expression” and “unclassified endocrine” in Segerstople dataset,

while for Baron, we grouped quiescent stellate and activated stellate

as stellate.

For all datasets described in Fig EV1B, only cells that passed the

quality control of the original publication and assigned cell types

were included. We performed size factor standardisation to the raw

count matrices for each batch/dataset using the normalize function

in the R package scater (McCarthy et al, 2017) and used the
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log-transformed gene expression matrices as inputs to scClassify

and all other methods. For the PBMC10K data, we removed the

doublets from the dataset using DoubletFinder (McGinnis et al,

2019). We labelled the cells following the approach proposed by

10x Genomics for PBMCs (Zheng et al, 2017), which allowed us to

annotate 11 PBMC cell types. In sample size calculation study, we

considered “B”, “Monocyte”, “T”, “NK” and “CD34+” cell type as

first-level coarse annotation and then expanded “T” to “CD4+ T”

and “CD8+ T” for second-level finer annotation.

Performance evaluation
We extend the evaluation framework introduced in CHETAH (de

Kanter et al, 2019) by describing the results of our predictions as

“correctly classified”, “misclassified”, “intermediate” (correct and

incorrect), “incorrectly unassigned”, “incorrectly assigned” and

“correctly unassigned” (Fig EV1A). For cells of a given cell type

from a query dataset, we first consider whether this cell type is

present in the reference dataset. If it is, we then consider whether

these cells are classified to the leaf level in the cell type hierarchy.

Cells that are classified to the leaf level are “correctly classified” if

their predicted cell types match their annotated cell types in the

original study; otherwise, they are “misclassified”. Of cells not clas-

sified to the leaf level, we consider the unassigned to be “incorrectly

unassigned”, while if they are assigned “intermediate” cell types,

we check whether their “intermediate” types contain the annotated

cell types from the original study. Those that are on the correct

branch of the cell type tree are “correct intermediate”; otherwise,

they are considered to be “incorrect intermediate”. Cells from a cell

type that in the query dataset that is not present in the reference

dataset can be either “incorrectly assigned” to a cell type in the

reference dataset or “correctly unassigned”.

Benchmarking and method comparison
To evaluate and compare the performance of scClassify, we

obtained 14 other publicly available scRNA-seq classification meth-

ods (Appendix Table S1). These packages were installed either

through their official CRAN or Bioconductor website, where avail-

able, or from their GitHub page. Two collections of datasets,

pancreas and PBMC, were used (Fig EV1B).

For the pancreas datasets, we defined the hard cases to be the 14

(training, test) = (reference, query) set pairs, where the reference/

training dataset has fewer cell types than the query/test dataset. The

remaining 16 pairs were called easy. The evaluation of scClassify on

the PBMC datasets was carried out at two levels of the cell type hier-

archy, coarse (“level 1”) or fine (“level 2”). Each led to 42 (training,

test) set pairs. For level 1, we combined CD16+ and CD14+ mono-

cytes into the cell type of monocytes, and we combined CD8+ and

CD4+ T cells into the cell type of T cells. For the level 2, we used

the original cell types.

The evaluation procedure was as follows. For both the pancreas

and the PBMC data collections, we used one of the datasets as refer-

ence or training set, and all the other datasets as query or test sets

on which the accuracy of cell type predictions could be calculated.

This gives us 6 × 5 = 30 distinct (training, test) set pairs of pancreas

datasets and 7 × 6 = 42 distinct pairs of PBMC datasets for each of

the two levels.

For each of the 14 methods, we evaluated the performance of a

total of 114 (training, test) pairs. We used the default settings given

in the package README or vignette for training each method. The

Garnett method requires the specification of marker genes for model

training. In this case, we benchmarked using two approaches. In the

first approach, marker genes were obtained from the published

marker file from Garnett website and from published literature

(Pang et al, 2005; Scarlett et al, 2011; Muraro et al, 2016; Lawlor

et al, 2017; Collin & Bigley, 2018). In the second approach, the list

of DE genes was obtained from scClassify by training on the same

dataset and then used as the input marker genes. Note that for

benchmarking, we did not include the time and memory usage to

generate the DE genes from scClassify. Another method, SVMreject,

requires a pre-specified threshold for classifying samples into the

unassigned category. In this case, we used the same threshold of 0.7

as in a previous published benchmarking paper (Abdelaal et al,

2019). Cells with predicted probability lower than this threshold are

determined to be unassigned. The log-transformed size factor-

normalised gene expression matrix was used as the input for all

models.

The results were the types predicted for all cells in the test/query

datasets. To calculate classification accuracy, we compared the

predicted cell types with those provided in the reference dataset.

Methods that do not allow unassigned or intermediate prediction

were assessed based on cells that are “correctly classified” and

“misclassified” (Fig EV1A). For methods that do allow unassigned

predictions, “incorrectly unassigned”, “incorrectly assigned” and

“correctly unassigned” were also included for calculating classifi-

cation accuracy. Finally, for methods that allow both unassigned

and intermediate predictions, we considered “correct intermediate”

as correct predictions in calculating classification accuracy.

Memory and running time comparison
Dataset preparation

We utilised the Tabula Muris dataset to benchmark the memory and

running time by combining the Microfluidic and FACS datasets via

the commonly expressed genes (The Tabula Muris Consortium,

2018). We chose the 16 cell types with the greatest numbers of cells

for subsequent processing. The dataset was then used to generate

two benchmarking datasets.

1 To benchmark training and test time, we randomly sampled

cells and created datasets with 100, 200, 500, 1,000, 2,000,

5,000, 10,000, 20,000 and 30,000 cells.

2 To benchmark the impact of the number of cell types, we

created datasets with 4, 6, 8, 10 and 12 cell types, while keeping

the total number of cells in each dataset the same at 5,000 cells.

Memory and running time evaluation

All evaluation was performed on a research server with dual Intel

(R) Xeon(R) Gold 6148 Processor (40 total cores, 768 GB total

memory) and dual RTX2080TI GPUs. The following dataset set-up

was utilised for the evaluation:

• To evaluate the impact of the number of cells in the training

sample, we set the training dataset to be 100, 200, 500, 1,000,

2,000, 5,000, 10,000, 20,000 and 30,000 cells and kept the test

dataset the same at 2,000 cells.

• To evaluate the impact of the number of cells in the testing

sample, we performed the reverse, where the test dataset had 100,
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200, 500, 1,000, 2,000, 5,000, 10,000, 20,000 and 30,000 cells and

the training dataset was kept at 2,000 cells.

• To evaluate the impact of the number of cell types in the training

dataset, we kept the number of cell types in the training dataset as

4, 6, 8, 10 and 12 and the number of cells in both the training and

test datasets was kept at 5,000 cells.

For benchmarking R-based methods, we measured the total allo-

cated memory and system running time using the Bench package.

The SingleR method has a built-in parallel framework and cannot be

measured using Bench. In this case, we used the function Rprofmem

in utils package and measured system running time using the R

built-in Sys.time function (R Core Team, 2019).

For benchmarking Python-based methods, we measured the total

allocated memory using the tracemalloc function, which is a Python

built-in function. The system time was measured using the Python

built-in time function. The method ACTINN executes its function in

bash terminal and cannot be measured using tracemalloc. For this

method, we used the package Memory Profiler. The system running

time was still measured using the time function.

Framework for sample size estimation and sensitivity
investigation of reference data
Learning curve construction

Estimating the number of cells required in a scRNA-seq study in

order to discriminate between two given cell types for a given plat-

form is essentially sample size determination for a high-dimen-

sional classification problem. Our approach is to construct a

learning curve (Cortes et al, 1994; Mukherjee et al, 2003) based

on a pilot study and estimate the empirical classification accuracy

as a function of the size of the reference dataset. For each dataset

of size N, we randomly divide the data into a training set of size n

and a test set of size N � n, independently T times (T = 20), with

the resulting accuracy rates being denoted by fan;tgTt¼1. The aver-

age accuracy rate was calculated by an = 1/T ∑tan,t. We then fit

an inverse power law function of sample size to the average accu-

racy rate as follows:

an ¼ bn�c þ a;

where b is the learning rate, c is the decay rate, and a is the maxi-

mum accuracy rate that can be achieved by the classifier.

When we did this, we noticed that the inverse power law func-

tion gave a poor fit in some cases where we had a small sample size.

Therefore, we moved to a two-component inverse power law func-

tion to relate average accuracy rate to sample size, separately fitting

to small and large sample sizes. That is, we now fit to

an ¼ 1 n\dð Þb1n�c1 þ 1 n�dð Þb2n�c2 þ a;

where d here is the transition point of the model, b1 and b2 are the

learning rates of each component, and c1 and c2 are their decay

rates.

The function nlsLM in R package minpack.lm is used to fit both

learning curves models (Elzhov et al, 2016). To fit the mixture

model, we first fixed d and estimated b1, b2, c1, c2 and a. After fitting
the model for various values of d, we determined the best model to

be the one with the smallest residual sum of squares.

Evaluation of the learning curve

To validate the estimated learning curve, we randomly divide the

PBMC10k data into the pilot (20%) and validation (80%) sets. The

pilot set represents data we might have from a typical pilot study on

which sample size estimation is based. The validation set represents

data generated from an actual study. For this evaluation, the valida-

tion set is further divided into a training set and an independent test

set, to calculate the accuracy of our learning curve for any given

sample size. We hope and expect that the learning curves

constructed from these two subsets of the data are consistent, and

we assess their consistency by the Pearson correlation between the

accuracies estimated from the pilot data and those estimated from

the validation data.

Sensitivity investigation of capture efficiency and sequencing depth

via simulation

To investigate the potential influence of capture efficiency, sequenc-

ing depth and degree of cell type separation on the sample size

requirement, we carried out simulations using SymSim (Zhang et al,

2019), estimating the parameters on PBMC10k data, with following

parameter settings:

• Within-population heterogeneity (r) from 0.2 to 1 in increments

of 0.2. According to the definition by SymSim, a higher r indicates

a more homogeneous simulated population.

• Capture efficiency at the following values 0.001, 0.01, 0.02, 0.03,

0.04, 0.05, 0.06, 0.07, 0.08, 0.09 and 0.1.

• Sequencing depth at the following values 30,000, 80,000, 160,000,

300,000 and 500,000.

Sensitivity investigation of capture efficiency and sequencing depth

via down-sampling

We first fitted the DECENT (Ye et al, 2019) model on the UMI data

matrix for the PBMC10k data collection. After obtaining the parame-

ter estimates of DECENT’s beta-binomial capture model, we

conducted a UMI down-sampling using random draws from a beta-

binomial distribution. Specifically, for the UMI raw count xij of gene

i and cell j, the down-sampled matrix Z(k) with down-sampling

parameter pk is generated by

z
ðkÞ
ij �Beta-binomial xij; qij; pk

� �
;

where qij is the correlation parameter of beta-binomial distribution,

calculated using

log
qij

1� qij

 !
¼ s0 þ s1 log xij þ 0:1

� �
;

where s0 and s1 are estimates of DECENT’s of capture model

parameters. Within each cell, the parameter pk in this case can be

interpreted as the ratio of capture efficiency in the down-sampled

dataset relative to the original dataset.

We carried out fivefold cross-validation 20 times with each

down-sampling proportion parameter, which ranges from 0.1 to 1

on PBMC10k data with two cell type levels. We found that for

predictions at the top of cell type tree, scClassify achieved over 90%

accuracy, even with 10% of original capture efficiency. For predic-

tion at the second level of the cell type hierarchy, it requires 50% of
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original capture efficiency to achieve a similar level of performance

(Appendix Fig S5). We then constructed the learning curves of

down-sampling matrices for pk = 0.2, 0.5, 0.8, 1. As shown in

Appendix Fig S6B, for level 1 prediction, learning curves converge

to the highest accuracy rate at N = 80 when pk is greater or equal to

0.5. However, for level 2 prediction, it requires N = 400, and for the

cases with 20% capture efficiency, the accuracy converges to about

75%.

Sensitivity analysis of scClassify
Robustness and stability of cell type classification

To evaluate the robustness and stability of scClassify on cell type

classification, we perturbed each training dataset in the pancreas

data collection by randomly subsampling 80% of the cells and test-

ing the impact of this on classifying each test dataset (a total of 30

training and test set pairs). This procedure was repeated 10 times

for each training and test pair.

Number of nearest neighbours considered in weighted kNN

To evaluate the performance of scClassify on using different

numbers of nearest neighbours in the weighted kNN classifiers (de-

noted as k in scClassify function), we performed scClassify with

various values of k, ranging from 5 to 20 on the 30 training and test

pairs of pancreas datasets.

Maximum number of children per branch node in HOPACH tree

A key hyperparameter in HOPACH algorithm is the choice of the

maximum number of children at each node (denoted as hopach_

kmax in scClassify function). To investigate how different values of

hopach_kmax affect the performance of scClassify, we performed

scClassify on 30 (training, test) pairs of pancreas datasets with

hopach_kmax = 3, 5, 7, 9, 11.

Correlation threshold

By default, the choice of correlation threshold in scClassify is deter-

mined dynamically by a mixture model on the distribution of corre-

lations. We compared this dynamic threshold with a range of

pre-defined thresholds (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7 and 0.8) by

performing scClassify on the 30 training and test pairs of pancreas

datasets.

Data availability

An open-source implementation of scClassify in R is available from

https://github.com/SydneyBioX/scClassify. Code to reproduce all

the analyses presented is available at https://github.com/Sydne

yBioX/scClassify_analysis.

Expanded View for this article is available online.
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