Skip to main content
. Author manuscript; available in PMC: 2020 Jun 22.
Published in final edited form as: J Hazard Mater. 2016 Jul 1;322(Pt A):48–84. doi: 10.1016/j.jhazmat.2016.06.060

Table 1.

Common methods and examples for synthesis of MNPs and their hybrids.

Method Reagents and conditions Stabilizer Product Ref.
Co-precipitation FeSO4·7H2O, FeCl3, NH4OH PVA Fe3O4, 4–10 nm [15]
FeCl2, FeCl3, NH4OH, 25–80 °C, Fe3O4, 20 nm [16]
FeSO4·7H2O, FeCl3·6H2O, NaOH Citrate or not Fe3O4, 8 nm with citrate, 14–28 nm without citrate [18]
FeSO4·7H2O, FeCl3·6H2O, NH4OH, 80 °C Phosphate Fe3O4, 9–40 nm [20]
Fe(acac)3, Co(acac)2, Oleic acid, benzyl ether, 290 °C CoxFe3–xO4, 35–110 nm [21]
FeCl3, AlCl3·6H2O, CoCl2·6H2O, 70 °C CoFe2–xAlxO4, 20–63 nm [22]
Thermodecomposition FeCl3·6H2O, 2-pyrrolidone, 245 °C, reflux 1–24 h Fe3O4, 4–60 nm [30]
Fe(acac)3, 2-pyrrolidone, 200–240 °C α,ω-dicarboxyl-terminated poly(ethylene glycol) Fe3O4, 6–15 nm with average 11 nm [31]
Fe(acac)3, oleylamine and benzyl ether, Fe3O4, 8 ± 0.4 nm [36]
Combustion waves Fe2O3 NPs, nitrocellulose, 740 °C Fe3O4, 5–20 nm [37]
Hydrothermal synthesis metal linoleate (solid), an ethanol–linoleic acid liquid phase, and a water–ethanol solution Fe3O4, 9 nm CoFe2O4, 12 nm [38]
FeCl3, ethylene glycol, NaOAc, 200 °C Fe3O4–graphite, 100 nm [42]
Composition controlled synthesis Various surfactants MFe2O4, M = Mg, Fe, Co, Ni, Cu, Zn, 3 nm [44]
Emulsion synthesis Fe3O4, histidine Fe3O4–histidine composite, 500 nm [46]
Microbial synthesis β-FeOOH, ZnxFe1–xOOH, Clostridium sp. Fe3O4, 5–10 nm using β-FeOOH, ZnxFe3–xO4, 3–8 nm using ZnxFe1–xOOH [47]
β-FeOOH, S. putrefaciens CN32, 9,10-anthraquinone-2,6-disulfonate Fe3O4, framboidal, 20–50 nm [48]
Green synthesis Natural biorenewable resources Plant extracts Fe3O4, hybrids [87]