Skip to main content
. Author manuscript; available in PMC: 2020 Jun 22.
Published in final edited form as: J Hazard Mater. 2016 Jul 1;322(Pt A):48–84. doi: 10.1016/j.jhazmat.2016.06.060

Table 2.

Select examples of environmental applications of MNPs and their hybrids.

Media and
Treatment
Contaminant
s
MNPs and hybrids Mode of
action
Ref.
Air cleanup BTEX Fe3O4 Adsorption [211]
CO Pt@Fe3O4 Oxidation [212], [216]
CO Pd@Fe3O4 Oxidation [213]
H2S Fe3O4@GO Adsorption [215]
CO2 TiO2@SiO2@Fe3O4 and Cu/TiO2@SiO2@Fe3O4 Reduction to produce methanol [216]
Antimicrobial for water disinfection E. coli, S. aureus Fe3O4@GO–CNTs Inactivation [217]
E. coli PQA@Fe3O4 100% biocidal [218]
E. coli, S. aureus Fe3O4@PDA@Ag Inactivation [222]
E. coli Ag3PO4–TiO2–Fe3O4 Photocatalytic inactivation [223]
M. aeruginosa B. methylotrophicus, ZJU immobilized on Fe3O4 Algicida [229]
Water treatment: Adsorptive organics removal Dyes, Fe3O4 Separative Adsorption [232]
Cationic dyes AFMCNT [233]
Congo Red, MB Fe3O4@GO [236]
BB Fe3O4/chitosan [239]
MB, MV Fe3O4/MOF [241]
Nitrofurans Fe3O4/MWCNTs [248]
PFOS Fe3O4@SiO2@CTAB–SiO2) [250]
Antibiotics (TC) Fe3O4/polyacrylonitrial mat [251]
Pharmaceuticals MAA coated Fe3O4 [256]
PCBs Fe3O4@β-CD [257]
BPA DFMNPs [260]
p-nitrophenol Fe3O4@mSiO2/GO [262]
2,4,6–TCP nFe3O4@NH2MIP [264]
Herbicide (diquat) Fe3O4@GO [265]
Water treatment: Oxidative organics removal APAP Fe3O4, PMS Catalytic oxidation [190]
TCE Fe3O4, persulfate [191]
Dinitrotoluene Fe3O4, H2O2 [192]
Phenol CuO–Fe3O4, persulfate [193]
Antibiotic flumequine Fe3O4/MWCNTs/PHQ, persulfate [194]
Phenol Fe3O4@C, PMS [195]
RhB Fe3O4–Bi2WO6, H2O2 [196]
TBBPA Fe2.04Cr0.96O4, UV/H2O2 [197]
Antibacterial nalidixic acid Fe3O4, H2O2 [198]
3 methyl-indole Fe3O4–alginate, H2O2 [199]
MB CoFe2O4/g-C3N4, UV/VIS [200]
Orange II CuFe2O4/C3N4, H2O2 [201]
BPA Fe3O4, H2O2 [202]
BPA CuFe2O4, PMS [203]
Cyclic olefins Fe3O4–diethylene glycol, H2O2 [204]
RhB, MB Fe3O4–Cu, NaBH4 [205]
RhB Fe3O4@SiO2@HPW, UV [206]
MB Fe3O4–TiO2–GO, solar light [207]
Benzyl alcohol CoFe2O4, H2O2 [208]
RhB CoFe2O4/TNTs, PMS [209]
Water treatment: Algae removal S. dimorphus PEI-coated Fe3O4 Separative Adsorption [267]
Algae Steric acid–Fe3O4–ZnO [268]
Water treatment: Oil spill cleanup Crude oil, petroleum products Fe3O4 conjugated with carbonaceous NMs Separative Adsorption [270], [271], [272], [273], [274], [275], [276]
Water treatment: Anionic inorganics removal As(V), As(III) Fe3O4, 12 nm Separative Adsorption [279]
As(V) Fe3O4–coated sand [289]
As(V) Fe3O4, 98 nm [291]
As(V) Fe3O4–starch [285]
As(V), As(III) Fe3O4–TiO2 [292]
As(III) Fe3O4–chitosan [287]
As(V), As(III) Fe3O4–MnO2-GO [298]
Phosphate NH2–Al/SiO2/Fe3O4 [304]
Phosphate MFC@ZrO2 [305]
Phosphate Fe3O4@SiO2–lanthanum oxide [306]
Phosphate Fe3O4@LDH [307]
Phosphate MnFe2O4, 5 nm [308]
Molybdate Fe3O4 and ferric ions [309]
Molybdate ZnFe2O4 [310]
Fluoride CuCexFe2-xO4 (x = 0.0–0.5) [312]
Selenate Fe3O4, 10–20 nm [313]
Cr(VI) CD-E-MGO [314]
Cr(VI) Fe3O4@HNTs@C Reduction [322]
Water treatment: Cationic heavy metal ions removal Hg2+ Fe3O4, 100 nm Separative Adsorpton [324]
Hg2+ Fe3O4@SiO2 [325]
Hg2+ MCD–GO–R [332]
Hg2+ Tween20–AuNP–Fe3O4 [334]
Hg2+, Pb2+, Cu2+ CS-PAM-MCM [335]
Hg2+, Pb2+, Cd2+ Fe3O4@C [339]
Hg2+, Pb2+, Cu2+ Fe3O4@SiO2@chitosan [340]
Pb2+ MnFMC, CoFMC [342]
Pb2+ Fe3O4@Zr(OH)x [343]
Cd2+ Fe3O4@SiO2–poly(1-vinylimidazole) [344]
Cd2+ Fe3O4–sodium dodecyl sulfate [345]
Zn2+ Amino–Fe3O4@SiO2 [346]
Cu2+ Fe3O4–sodium alginate [347]
Cu2+, Mn2+, Zn2+ Fe3O4–PMMA [348]
Cu2+, Ni2+, Co2+ K2FeO4 [349]
Cd2+, Pb2+, Co2+, Ni2+ M–PAM–HA [350]
Pb2+, Hg2+, Cu2+ EDTA–MGO [351]
Water treatment: Radionuclides removal U(VI) Fe3O4–TiO2 Separative Adsorption [354]
U(VI) Amino–Fe3O4@GO [355]
Sr(II), Th(II), U(VI) Fungus–Fe3O4 [356]
U(VI) APTMS–MNP [357]
Cs+ Fe3O4–copper ferrocyanide [359]
NpO2+ Ti substituted Fe3O4 Reduction [360]
Water treatment: Rare earth elements Eu Silane@Fe3O4 Separative [362]
La, Ce, Pr, Nd Fe3O4–oleic acid Adsorption [363]
Water treatment: Simultaneous organics and inorganics removal 2,4-D, Pb2+ Fe3O4–GO–LDH Separative Adsorption [364]
Phenanthrene, Cu2+, Zn2+, Pb2+ Fe3O4–AC–biochar [365]
17β-estradiol, Pb2+ Fe3O4–GO [366]
Congo red, Cr(VI) Co2.698Fe0.302O4 [367]
MB, Hg2+ Fe3O4–GO [368]
Furazolidone, Cu2+ Fe3O4–MWCNT [369]
Pathogens, heavy metals, anions Fe3O4–QAC [370]
Congo red, methyl orange, Cu2+ Fe3O4–PDA-LDH [371]
Water treatment: Chemical reductive removal PCBs Fe3O4 under N2 Reduction [372]
PCB77 Fe3O4 + NZVI [373]
DDT Pd–Fe3O4@nSiO2@mSiO2 [247]
4-NP Ag–HNTS–Fe3O4 in NaBH4 [375]
2,4-dichlorophenol MWCNTs–Fe3O4–Pd/Fe [376]
CBZ, TC Fe3O4–AC, Fe3O4–biochar, ball milling [377]
Cr(VI) Fe3O4, synthetic and natural [378]
Cr(VI) Fe3O4, synthetic and biogenic [379]
Cr(VI) Fe3O4@PmPDs [380]
Nitrate Fe3O4–ZVI [381]
Sewage sludge stabilization Cd2+, Co2+, Cu2+, Zn2+, Ni2+, Cr Fe3O4–NZVI Immobilization [382]
Soil improvement Fe3O4–biochar Improvement of soil quality [383]
Soil remediation PAHs Fe3O4–AC, Fe3O4–biochar Adsorption [384]
As(V) Fe3O4–starch [385]
As In situ biogenic Fe3O4 formation [386]
Sediment remediation Phosphate Microsized ZVI with Fe3O4 as corrosion products Immobilization [387]
Cd2+ Biogenic Fe3O4 Adsorption [388]
Groundwater remediation Chlorinated solvents Synthetic and natural Fe3O4 Reductive dechlorination [389], [390], [391], [392], [393], [394], [395], [396], [397], [398]