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Abstract

Increasing evidence indicates that decellularized extracellular matrices (lECMs) derived from
cartilage tissues (T-dECMS) or chondrocytes/stem cells (C-dECMSs) can support proliferation and
chondrogenic differentiation of cartilage-forming cells. However, few review papers compare the
differences between these dECMs when they serve as substrates for cartilage regeneration. In this
review, after an introduction of cartilage immunogenicity and decellularization methods to prepare
T-dECMs and C-dECMs, a comprehensive comparison focuses on the effects of T-dECMs and C-
dECMs on proliferation and chondrogenic differentiation of chondrocytes/stem cells /n vitro and
in vivo. Key factors within dECMs, consisting of microarchitecture characteristics and
micromechanical properties as well as retained insoluble and soluble matrix components, are
discussed in-depth for potential mechanisms underlying the functionality of these dECMs in
regulating chondrogenesis. With this information, we hope to benefit dECM based cartilage
engineering and tissue regeneration for future clinical application.
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Introduction

Cartilage is an avascular load-bearing tissue consisting of chondrocytes distributed
throughout a dense extracellular matrix (ECM), which is a structurally complex environment
composed of many components including collagen, glycosaminoglycans (GAGS),
proteoglycans and other elements such as fibronectin and laminin [1,2]. The low cellularity
and avascular properties of cartilage result in the limited potential for self-repair following
cartilage injury [3]. Current repair strategies, including microfracture, osteochondral
autograft or mosaicplasty and autologous chondrocyte implantation, have achieved success
in regenerating functional cartilage [4-7]. However, the limited availability of graft tissue,
donor site morbidity, graft subsidence at the surface and fibrocartilage formation affect the
quality of repair [4,8-10]. Recently, cartilage tissue engineering, combining cartilage-
forming cells (chondrocytes and stem cells), growth factors and scaffolds, has provided
promising approaches for cartilage regeneration [11,12].

As a basic element in cartilage tissue engineering, scaffolds play an important role in
providing structural support and a micromechanical environment as well as biochemical
cues for cell growth and chondrogenic differentiation. Numerous synthesized and natural
materials, such as poly(l-lactic acid), poly(l-lactic-co-glycolic acid) (PLGA), collagen
derivatives and fibrin glue [13], have been used as scaffolds for cartilage regeneration
[12,14,15]. Increasing evidence has shown that ECM can provide not only physical support
but also biological signals to cells that can facilitate cell attachment, proliferation and
differentiation [16—19]. Decellularized ECMs (dECMs) from various tissues, such as heart,
skin, bladder, nerves and tendons, have been used for tissue engineering applications with
promising results [20,21]. Tissue-specific ECM derived from target tissues was reported to
promote cell proliferation and lineage-specific differentiation through retaining biophysical
and biochemical cues within native tissues [22,23]. For instance, dECMs derived from
cartilage tissues (T-dECMSs) have been extensively investigated as biological scaffolds for
cartilage engineering due to their inherent components and unique structure and
micromechanical properties, which provide a niche-like nanostructured microenvironment to
aid in chondrogenesis [24-27].

Recent evidence showed that, different from T-dECMs that induce chondrogenic
differentiation directly, dECMs derived from chondrocyte/stem cells (C-dECMs) benefited
cartilage regeneration by promoting expanded cell proliferation and chondrogenic potential
[25,27-32]. However, few review papers are available comparing the differences between
these two dECMs when they serve as substrates for cartilage regeneration. In this review,
cartilage immunogenicity and decellularization methods of T-dECMs and C-dECMs are
introduced followed by a comprehensive comparison of the roles of T-dECMs and C-dECMs
on proliferation and chondrogenic differentiation of cartilage-forming cells in vitroand in
vivo. Also discussed are the potential influential factors within dECMs, including
microarchitecture characteristics and micromechanical properties as well as retained
insoluble and soluble matrix components such as collagen, GAGs and bioactive factors,
which may contribute to differences between these two dECMs in regulating chondrogenesis
(Figure 1).
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Decellularization approach

Cartilage tissue properties, such as avascularity and high density, are unique which render its
decellularization more complicated than other connective tissues.

2.1. Cartilage immunogenicity and necessity of decellularization

2.2.

The avascular and dense nature of articular cartilage has led to the prediction that articular
cartilage is immunoprivileged, whereby the cartilage’s immune system is limited because
the cells are deeply encapsulated within the matrix and not easily reachable to immune cells
[2,33-38]. Allogeneic cartilage transplantation from cadaveric origin is well tolerated and
clinical results have validated a high success rate (60-95%) as construed by graft survival
and good/excellent patient evaluations [38]. Animal studies also showed that chondrocytes
of cartilage grafts maintained within their matrix are nearly nonimmunogenic [39].
Moreover, engineered cartilage using allogeneic chondrocytes with natural and synthetic
scaffolds demonstrated successful repair of cartilage defects without significant signs of
rejection and immune response [40-41].

However, the immunoprivileged nature of cartilage has been challenged by other findings
showing that both chondrocytes and their embedded ECM contain antigens and elicit
varying degrees of immune reactions [34,38,43-45]. Chondrocytes are liable to attack by
natural killer cells [43,46] and also express major histocompatibility class (MHC) Il antigens
to trigger CD4 T lymphocytes and provoke cell or antibody-mediated immune responses
[47-49]. Various degrees of immune response were reported after implantation of allogeneic
chondrocytes grown on engineered scaffolds in osteochondral defects [50,51]. Interestingly,
physically devitalized cartilage fragments supported chondrogenesis without significant
inflammation /in vivo [52]. Therefore, a threshold amount of cellular material remains in
implanted scaffolds that can trigger a severe immune response. Eliminating donor cells
through the decellularization processes is thought to be desirable to reduce the risk of
immune response from recipients, particularly for xenogeneic or allogeneic donor tissues
[53].

Furthermore, due to the intrinsic nature of cartilage tissue that consists of dense ECM with
nanosized pores, chondrocytes/stem cells are unable to infiltrate and repopulate a cartilage
scaffold in its native form. The matrix alone may not be adequate for tissue regeneration,
while the low porosity limits cell infiltration which, in turn, limits new matrix deposition.
Therefore, the decellularization process is necessary to remove cell components and
immunogenic antigens as well as to improve reseeded cell infiltration for subsequent
cartilage regeneration by using physical treatment, chemical agents and biological nucleases
[25,26].

Decellularization protocols and challenges

Various methods used to prepare dECMs for cartilage regeneration have been reviewed

[20,21,25,54]. Chemical agents, including but not limited to sodium dodecyl sulfate, Triton
X-100, ethylenediaminetetraacetic acid and Tris-Hydrochloride, are used to remove cellular
components and immunogenic material [2,25,55]. Biological nucleases such as DNases and
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RNases are also commonly used to degrade residual DNA or RNA [25,26]. Since cartilage is
a dense and compact connective tissue with low porosity, to improve the efficiency of
chemical decellularization, physically breaking down cartilage tissues into fragments has
been applied to increase surface area and enhance permeation of chemical agents into
cartilage [2,25]. Physical treatments were demonstrated to disrupt cellular membranes and
nuclei, indicative of the ability to remove cellular components through decellularization
protocols [2,13,56]. In addition, devitalization through tissue homogenization followed by
retrieval of tissue particles, freezing and lyophilization has achieved porous and devitalized
ECM-derived biomaterials [57,58]. The use of chemical agents to decellularize cartilage not
only results in a significant reduction in the amount of whole cells, cell nuclei and DNA, but
also impacts the biochemical composition of the dECM, including a reduction in GAG
content, destruction of macrostructure and alteration of micromechanical properties
[2,59,60].

Similar decellularization methods for cartilage tissue have also been applied for C-dECMs
[32,54,61,62], such as mild chemical agents and nucleases that are used to effectively
remove cellular components and degrade residual DNA or RNA. Three-dimensional (3D) C-
dECM scaffolds were fabricated by depositing chondrocyte/stem cell secreted ECM onto a
polymer surface followed by leaving or removing the polymer through the use of chemical
decellularization [63,64]. Supplementation with ascorbic acid in the cell culture environment
facilitated ECM deposition [65]. Because cell-derived ECM is less dense than native
cartilage, it is usually unnecessary to use physical treatment paired with chemical agents
[2,66]. Moreover, the decellularization process is generally shorter and more efficient for
cell removal, which also prevents a reduction of aggregate modulus of dECM due to long
decellularization protocols [2,67].

The decellularization process is essential for excluding cellular components and antigenicity
from tissue explants concerning escaping from disease transmission, reducing inflammatory
and immune responses toward the scaffold, particularly with xenogeneic or allogeneic donor
tissues [21]. DNA and the cell surface oligosaccharide molecule a-Gal (also known as “Gal
epitope”) are two typical antigens recognized to trigger an inflammatory response against
biological scaffolds. Therefore, incomplete decellularization may result in residual DNA or
the cell surface oligosaccharide molecule a-Gal being present, which leads to inflammatory
or immune responses [25,68]. Unlike cellular material, ECM components prevalently
conserved through species are well tolerated when employed as allografts or xenografts [25].

Currently there is no standard method of decellularization for cartilage. Reduction of
sulfated GAGs [2,60], loss of inherent collagen content [59] as well as decreased
biomechanical properties [60] of dECMs indicated that the decellularization process itself
can affect the microarchitecture, micromechanical properties, and residual matrix
components [31,55,69]. Therefore, optimal decellularization methods that can effectively
remove cellular components with only minimal disruption to other components, such as
collagen, GAGs and growth factors, can help maintain ECM ultrastructure and
micromechanical properties.
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3. Cartilage T-dECMs and chondrogenesis

3.1

An increasing number of studies demonstrate that cartilage T-dECMs, which retain most of
the native structure and inherent components, direct cartilage-forming cells toward
chondrogenesis by promoting cell proliferation (Table 1) and chondrogenic differentiation
(Table 2).

Proliferation

Cartilage T-dECMs with a 3D interconnected porous environment facilitate cellular
infiltration and support cell proliferation during chondrogenesis. It has been reported that
cartilage T-dECMs were non-cytotoxic for chondrocytes and adult stem cells by contact and
extract cytotoxicity analysis [27,55,60,70,71], suggesting that these scaffolds have good
biocompatibility to support cell growth. Recent studies have shown that the extraction of T-
dECMs from articular cartilage and meniscus exerted significant roles in promoting bone
marrow stromal cell (BMSC) proliferation [55,72]. Enhanced cell proliferation was also
observed when chondrocytes or adult stem cells were seeded on T-dECM scaffolds in either
culture medium or chondrogenic medium [73-76]. These studies indicated that cartilage T-
dECMs could provide a 3D environment to support cartilage-forming cell proliferation.

3.2. Chondrogenic differentiation

Recent findings have demonstrated that soluble T-dECMs from hyaline cartilage or
meniscus promoted chondrogenic differentiation of stem cells as a medium supplementation
in two-dimensional (2D) culture [22,72]. Supplementation with soluble T-dECMs also
promoted chondrogenic differentiation when human BMSCs were cultured in a pellet
culture system or on aligned nanofibers [22], indicating that cartilage T-dECMs provide an
appropriate cue for chondrogenic inductivity.

An increasing number of studies demonstrated that hyaline cartilage T-dECMs alone
[22,70,77] or in combination with prochondrogenic factors [27,60,76,78] facilitated /n vitro
chondrogenesis of reseeded chondrocytes/stem cells. Furthermore, implantation of cartilage
T-dECMs seeded by chondrocytes/stem cells in an /7 vivo model also confirmed the
formation of cartilage tissues and the repair of cartilage defects [27,55,77-80]. In addition,
decellularized human trachea readily colonized by epithelial cell and BMSC derived
chondrocytes supported remodeling and produced an engineered airway after a five-year
follow-up of a left main bronchus replacement [81,82]. Decellularized trachea or larynx also
promoted stem cells/chondrocytes to regenerate cartilage when these cell-dECMs were
implanted /7 vivo [83,84], suggesting that airway remodeling may trigger initiation of
chondrogenesis.

T-dECMs from meniscus and nucleus pulposus (NP) tissue also supported chondrogenic
differentiation. Soluble ECM fractions from decellularized menisci incorporating
methacrylated gelatin (GelMA) hydrogels accelerated chondrogenic differentiation of
human BMSCs [72]. Human BMSCs/chondrocytes cultured in porcine decellularized
meniscus promoted chondrocyte differentiation and secreted ECM in addition to supporting
chondrogenesis of human BMSCs [73]. Moreover, porcine decellularized NP tissues
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supported human adipose derived stem cell (ADSC) differentiation toward an NP-like cell
phenotype, even in the absence of differentiation media [85]. Interestingly, it was found that
cartilage T-dECMs without supplementation of chondrocytes/stem cells also supported new
hyaline cartilage formation when implanted /n vivo [86,87]. These studies indicated that
cartilage T-dECMs could support chondrogenic differentiation /n vitroand in vive.

However, contrary studies found that cartilage T-dECMs had a limited or failed capacity to
induce chondrogenic differentiation [88,89]. For example, only a small portion of
cartilaginous and fibrous tissue was formed when decellularized pig ears seeded with
porcine BMSCs without chondrogenic induction were implanted into nude mice. These
findings indicate that acellular cartilage is not strong enough to induce BMSCs to form
homogenous cartilage /n vivo, although it does possess chondrogenic activity [78]. A 72%
failure rate within the first two years of implantation was observed at two institutions when
patients were treated with a decellularized osteochondral allograft (Chondrofix;
ZimmerBiomet) implant for knee cartilage injuries [90]. Many complicating factors, such as
reseeded cells, species sensitivity, the decellularization process, initial biomechanical
loading as well as the limited micromechanical properties of scaffolds, may be involved in
the failure of T-ECM based chondrogenesis [89]. The functionalization of cartilage ECM
hydrogels with methacrylate that compromised /n vitro chondroinductivity also resulted in
the failure of T-dECMs in enhancing chondrogenesis [88].

4. dECMs from chondrocytes/stem cells and chondrogenesis

4.1.

Various types of cartilage-forming cells have been used as a source for C-dECMs, including
chondrocytes and stem cells, to support cell proliferation (Table 3) and chondrogenic
differentiation (Table 4) [91,92]. Interestingly, these C-dECMs alone or in combination with
other factors exert varied capacities in promoting chondrogenesis /n vitro and in vivo.

Proliferation

C-dECM s fabricated by chondrocytes and stem cells offer superior platforms to expand
chondrocytes/stem cells for cartilage regeneration in contrast to traditional methods [92-94].
Many studies have demonstrated that culturing on C-dECMs substantially elevated the
proliferation capacity of cartilage-forming cells relative to culturing on tissue culture
polystyrene (TCPS). For example, our group has repeatedly demonstrated enhanced
proliferation of BMSCs, synovium derived stem cells (SDSCs), infrapatellar fat pad derived
stem cells (IPFSCs) and chondrocytes when cultured on C-dECMs [31,91,92,95]. Other
researchers also reported similar findings that C-dECMs promoted cell proliferation by
analyzing cell count and DNA content [93,96,97]. In addition to autologous cell derived C-
dECMs, C-dECMs from allogeneic cells also supported the expansion of corresponding
stem cells and chondrocytes [91,92,98,99]. These studies indicated that C-dECMs promoted
the proliferation of stem cells and chondrocytes, possibly through the downregulation of
intracellular reactive oxygen species (ROS) [91,95,96,100]

Interestingly, there exists the varying ability of C-dECMs in promoting proliferation of
cartilage-forming cells. Li et al. [69] demonstrated that both fetal and adult C-dECMs from
human SDSCs could promote adult human SDSC proliferation, but fetal C-dECMs had a
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higher proliferation capacity than adult C-dECMs. The findings were in agreement with
another study where Ng ef a/. [101] found that fetal C-dECMs from human BMSCs were
more effective in promoting adult human BMSC expansion than adult C-dECMs. Moreover,
late-passage adult human BMSCs cultured on TCPS for six passages and subsequently
cultured on fetal C-dECMs were significantly improved in terms of proliferation, suggesting
that C-dECMs from fetal stem cells have the ability to enhance and rescue the proliferation
of older cells.

4.2. Chondrogenic differentiation

Increasing evidence demonstrates that C-dECMs provide a 3D microenvironment for
promoting chondrogenic potential. Our group repeatedly demonstrated that SDSCs, BMSCs,
NP cells, IPFSCs and chondrocytes, expanded on autograft or allograft C-dECMs, exerted
enhanced chondrogenic differentiation when these cells were subsequently subjected to
chondrogenic induction in a pellet culture system, indicating that C-dECMs could promote
chondrogenic potential [31,91,94,95,98,99]. Other studies showed that C-dECM expansion
also promoted chondrogenic differentiation in a 3D culture system with or without
supplementation of chondrogenic inductive factors [93,102-104]. C-dECMs could support
chondrogenic differentiation of stem cells and NP cells after /n vivo implantation in animal
models [1,105]. These studies indicate that C-dECMs alone or in combination with
chondroinductive factors could enhance chondrogenic capacity /n vitro and in vivo.

Chondrogenic capacity varied according to the C-dECM properties, which may be
influenced by different cell sources. For example, C-dECMs from porcine SDSCs had a
comparable effect in enhancing chondrogenic potential of porcine IPFSCs compared to that
of C-dECMs from porcine IPFSCs [91]. C-dECMs from human BMSCs showed a stronger
stimulatory effect in promoting chondrogenic differentiation of human BMSCs than those
from human chondrocytes, perhaps due to the easy dedifferentiation of chondrocytes during
in vitro expansion culture [63]. Moreover, Pei ef al. [106] showed that, human urine derived
stem cells (USCs) did not differentiate into chondrocytes; however, C-dECM deposited by
human USCs could enhance senescent human BMSCs toward a chondrogenic capacity,
suggesting that trophic factors that were released by human USCs immobilized in C-dECMs
contributed to the other stem cells’ chondrogenic capacity.

Interestingly, C-dECMs from repeated passage human BMSCs had a limited effect on
chondrogenic differentiation of human BMSCs [106], while C-dECMs from fetal human
BMSC:s significantly improved differentiation potential in late-passage adult human BMSCs
compared to TCPS [101], implying a superior role of C-dECMs from young cells to old
cells. Li et al. [69] further demonstrated that expansion on C-dECMs deposited by fetal
SDSCs (FECM) was superior to C-dECM deposited by adult SDSCs in promoting
chondrogenic potential of adult human SDSCs in vitro. These results may be associated with
unique protein components and the lower elasticity of FECM that was responsible for the
enhancement of chondrogenic differentiation. Moreover, early stage chondrogenesis-
mimicking dECM scaffold facilitated more chondrogenesis in human BMSCs than that of
late stage chondrogenesis-mimicking dECM scaffold [29]. Devitalized tissue engineered
cartilaginous sheets formed in the presence of growth factor releasing microspheres were
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considered to be more developmentally immature tissue and to support comparable levels of
GAG synthesis to native cartilage ECM scaffolds [28]. The varying effects of ECM scaffolds
on the chondrogenic differentiation of MSCs may be due to differences in their composition.
The immature cartilage contained appropriate chondroinductive components that are not
available in mature cartilage to provide a milieu of features more conducive to
chondrogenesis [28,29].

5. Potential influential factors of dECMs on chondrogenesis

5.1.

Although both T-dECMs and C-dECMs supported chondrogenesis, increasing studies
indicated that cartilage T-dECMs were more likely to facilitate chondrogenic differentiation
[27], while C-dECMs had a superior tendency to support cell proliferation and chondrogenic
potential [31]. However, potential influential factors resulting in the differences in these two
dECMs on chondrogenesis are unclear and there is a lack of direct evidence. Previous
studies demonstrated that inherent properties and components of scaffolds, such as
microarchitecture characteristics, micromechanical properties and biochemical components,
were involved in the regulation of cell proliferation and chondrogenic differentiation
[26,107-109], providing clues to elucidate the different effects of dECMs on
chondrogenesis.

Microarchitecture

Much evidence has shown that the porous and nano-fibrous structure provided an initial
microenvironment to support chondrogenesis [107,108]. Various parameters of the
microarchitecture of scaffolds, such as pore size and fiber diameter, influence cellular
behaviors such as proliferation and chondrogenic differentiation.

Pore size—Scaffolds with various pore sizes fabricated from synthetic and natural
materials, such as PLGA [110], calcium polyphosphate [111], gelatin [112], collagen
[113,114] and chitosan [115], provide 3D architectural support for stem cell chondrogenesis.
There are still conflicting results as to which scaffold mean pore size is optimal for
chondrogenesis. For example, higher cell proliferation was observed when chondrocytes/
stem cells were cultured on collagen-hyaluronic acid (HA) scaffolds with pore sizes of 300
pum [108], poly-L-lactide-co-trimethylene carbonate scaffolds with pore sizes of 175 pum
[116] and chitosan scaffolds with pore sizes of 70-120 um [115], suggesting that larger pore
sizes improved better proliferation compared with smaller pore sizes. These findings may be
partially explained by larger pore sizes providing ample space, thus improving the
distribution of cells and nutrients throughout the scaffolds and facilitating cell proliferation.
In contrast, other studies demonstrated that type I collagen scaffolds with pore sizes of 20
um, poly(e-caprolactone) scaffold with pore sizes of 100 or 200 pm, as well as poly(e-
caprolactone) cylindrical scaffolds with pore sizes of 90-105 um supported superior
proliferation of chondrocytes and stem cells compared to those with larger pore sizes
[113,117,118]. The abovementioned studies indicate that scaffolds having a higher surface
area (smaller pore size) possess a larger cell adhesion area, thus enabling better cell
attachment, migration and growth.
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Recent findings demonstrated that scaffolds with smaller pore sizes (20-150 um) facilitated
greater levels of chondrogenic differentiation compared to scaffolds with larger pore sizes
[113,116,119,120]. Stem cells seeded on scaffolds with smaller pore sizes outperformed
larger pore sizes in promoting cartilaginous tissue formation /in vitroand in vivo [119,121].
Scaffolds with smaller pore sizes also demonstrated a significantly greater ability to
maintain chondrocyte morphology and exerted superior chondrogenic differentiation of
chondrocytes compared to scaffolds with larger pore sizes [113,116]. These findings suggest
that smaller pore sizes lead to closely packed cells and 3D cell aggregation as well as a
lower oxygen environment, which may correlate positively with chondrogenic
differentiation.

However, contrary studies exist. An increasing number of studies revealed that scaffolds
with larger pore sizes (250-500 um) had superior effects in promoting chondrogenic
differentiation of chondrocytes/stem cells by producing cartilage ECM
[108,117,118,122,123]. Interestingly, some studies demonstrated superior effects of smaller
pore sizes in terms of cell proliferation, although they failed to outperform larger pore sizes
in enhancing chondrogenic differentiation [117,118], indicating that smaller pore size
initially allows greater cell attachment to enhance proliferation. Moreover, chondrocytes in
the smaller pores often display a dedifferentiated form while the chondrocyte phenotype is
maintained better in larger pores, suggesting that larger pore sizes are more likely to support
chondrogenic differentiation [122].

Interestingly, cartilage T-dECMs with larger pore sizes promoted obvious chondrogenic
differentiation of adult stem cells and formed cartilage-like tissue [27,55], while C-dECMs
with smaller pore sizes effectively improved chondrocyte attachment and proliferation [93],
further indicating that scaffold pore sizes may be responsible for the differences in
chondrogenesis. Therefore, it is believed that cartilage T-dECMs with larger pore sizes more
likely facilitate cell infiltration for chondrogenic differentiation, while C-dECMs with
relatively smaller pore sizes may tend to support cell proliferation and chondrogenic
potential.

Fiber diameter—The nanofibrous structure of scaffolds, morphologically similar in
dimension to native collagen fibrils, has been demonstrated to increase chondrocyte
expansion and maintain chondrocyte phenotype [124,125] as well as promote chondrogenic
ECM deposition [126]. Nanofiber scaffolds could enhance /n vitro chondrogenesis of
BMSCs and repair cartilage defects after implantation into animal models [127-131],
suggesting that nanofiber scaffolds support chondrogenesis of adult stem cells /n vitroand in
vivo. Recent studies also demonstrated that microfiber scaffolds supported chondrocyte
proliferation and promoted cartilage ECM production [125,132,133]. Moreover, human
BMSCs cultured on microfiber scaffolds exerted higher levels of cellular proliferation and
chondrogenic differentiation in comparison to cells on nanofiber scaffolds [134,135],
suggesting a superior role of microfiber diameter in supporting chondrogenesis compared to
nanofiber diameter. The strategies for dispersing nanofibers into the microfiber scaffolds that
have improved micromechanical properties also provide favorable conditions to enhance cell
adhesion and proliferation [136,137]. These studies indicated that both nanofiber and
microfiber scaffolds could support chondrogenesis.

Acta Biomater. Author manuscript; available in PMC 2020 June 22.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Sunetal.

Page 10

It has been reported that the fiber diameter could influence cell behaviors such as
proliferation, migration and differentiation [135,138,139]. For example, tube diameters of
15-20 nm strongly enhanced cellular activities, while cell proliferation, migration and
differentiation were seriously damaged on nanotube layers with a tube diameter larger than
50 nm, particularly for 100 nm [139]. Moreover, small (around 30 nm diameter) nanotubes
boosted adhesion without clear differentiation, whereas larger (70-100 nm diameter)
nanotubes more likely triggered dramatic cytoskeletal stress and differentiation of human
BMSCs [138]. Interestingly, some studies showed higher levels of chondrogenesis with
nanofiber scaffolds compared with microfiber scaffolds [125,131], despite contrasting
studies showing that chondrogenic gene expression was significantly enhanced on
microfiber scaffolds compared with nanofiber scaffolds [134,135]. Recent studies have
demonstrated that chondrocytes/stem cells cultured on cartilage T-dECMs and C-dECMs,
which were made of nanoscale ECM fibers, exerted obvious cell proliferation and
chondrogenic differentiation [31,140,141], also indicating that fiber diameter may be
attributed to the differences in chondrogenesis.

Increasing evidence shows that fiber diameter could influence scaffold pore size which, in
turn, affects chondrogenesis. Smaller diameter fibers generating smaller average pore sizes
decreased cellular infiltration and reduced the advantages of 3D culture by limiting cell
growth to the top of scaffolds. Larger diameter fibers resulting in larger pore size have been
shown to improve cell infiltration and promote higher levels of stem cell differentiation
[107,135]. Therefore, cells seeded onto fiber matrices with smaller pore sizes tend to spread,
attach and, in some cases, extend along the length of the fibers, which facilitates cell
proliferation. In contrast, fiber scaffolds with larger pore sizes achieve a 3D
microenvironment for cellular infiltration, which more likely supports chondrogenic
differentiation.

5.2. Micromechanical properties

Numerous studies have demonstrated that micromechanical properties of substrates, such as
elasticity and stiffness, could influence cell adhesion, spreading and differentiation [142—
144]. A well-known example is that human BMSCs efficaciously differentiated into bone,
muscle or neuronal lineages, respectively, when cultured on stiff, medium or soft substrates
[143], suggesting that inherent stiffness similar to that of corresponding native tissues more
likely induced stem cells to differentiate into targeted tissues. Substrates with the lowest
stiffness (0.5 kPa) directed rat BMSCs toward a chondrogenic lineage, but the stiffest
scaffolds (1.5 kPa) resulted in BMSCs that differentiated toward an osteogenic lineage
[145], suggesting that substrate elasticity can affect stem cell differentiation.

Studies on various stiffnesses of substrates, fabricated by hydrogels [146-153] and porous/
fibrous materials [145,154,155], indicate that soft substrates more likely support
chondrogenesis compared to stiffer substrates [156]. Interestingly, human SDSCs expanded
on C-dECMs have greatly enhanced proliferation and chondrogenic potential compared to
TCPS whose elasticity could be considered as infinite, suggesting that a lower stiffness of C-
dECMs may be responsible for enhanced chondrogenic potential of expanded cells [31,140].
Moreover, lower elasticity of C-dECMs deposited by fetal SDSCs maintained better

Acta Biomater. Author manuscript; available in PMC 2020 June 22.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Sunetal.

Page 11

chondrogenic potential compared to those of adult C-dECMs or TCPS that had higher
elasticity [69], suggesting that controlled elasticity of dECM provides great potential in
regulating reseeded cell chondrogenesis.

Interestingly, higher stiffness of materials supported better cartilage regeneration compared
to those with less stiffness [157-159]. For example, a storage modulus of about 45 Pa
(weaker than naturally occurring cartilage) of HA:poly(ethylene glycol) hydrogel supported
better chondrogenic differentiation of human BMSCs compared to lower stiffnesses of other
scaffolds [157]. Chondroitin sulfate-containing hydrogels with a stiffness of ~7-33 kPa
resulted in neocartilage formation after subcutaneous implantation into nude mice by co-
encapsulating human ADSCs and calf chondrocytes; in contrast, soft stiffness (~1kPa)
scaffolds failed to maintain structural integrity and broke into pieces /n vivo[159],
indicating that minimal initial stiffness is required to retain micromechanical integrity over
time.

Despite the fact that micromechanical properties of natural cartilage varied due to different
types of cartilage [160,161], compared to the native tissue, decreased linear modulus of
meniscus/nasal septum T-dECM [60] and equilibrium and dynamic modulus of cartilage T-
dECM [74] after decellularization supported chondrogenic differentiation. Furthermore,
Abdelgaied and coworkers found a lower compressive elastic modulus in meniscus T-dECM
compared to the nature structure, which could be explained by a 60% loss of GAG content
[162]. The extraction of GAGs during decellularization resulted in the loss of water
[163,164], contributing to an increase of stiffness [165,166]. An increasing number of
studies showed that micromechanical properties of the scaffolds, which match native
cartilage, supported chondrogenic differentiation by directing stem cells into the
chondrogenic lineage and enhancing cartilage formation 7 vitroand in vivo [158,167,168].
Therefore, the micromechanical properties may be involved in regulating chondrogenesis of
chondrocytes/stem cells by designing scaffolds with appropriate elasticity to control
chondrogenic differentiation.

5.3. Chemical components

In addition to the abovementioned microstructural-micromechanical functionality, ECM is
also composed of insoluble components such as collagen and GAGs as well as soluble
factors such as growth factors, which play a significant role in cell-ECM interaction and cell
proliferation and lineage-specific differentiation.

Insoluble factors—Collagens are primary insoluble components of cartilage ECM that
form a tensile meshwork with a high compressive strength. Among various collagens, type 1l
collagen is a dominant component of cartilage, while type I collagen and type X collagen are
primarily located in the fibrocartilage and calcified regions, respectively [169,170]. Many
studies have shown that collagens contribute to chondrogenic differentiation of
chondrocytes/stem cells /n vitroand in vivo[171,172]. For example, type 11 collagen alone
promoted GAG level and the re-expression of cartilaginous marker mRNASs in human
senescent chondrocytes (Passage 7) in 2D culture in a dose-dependent fashion [173].
Chondrocytes cultured in scaffolds, made by processing both type I and type 1l collagen,
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maintained chondrocyte phenotypes and accumulated cartilaginous ECMs during the culture
period [171,173,174]. These collagen-based scaffolds also supported stem cell
chondrogenesis as evidenced by promotion of chondrogenic differentiation and production
of cartilaginous ECMs [175-177]. Furthermore, incorporation of collagens with natural
polymers and synthetic polymers, such as agarose [178], poly(epsilon-caprolactone) [179]
and chitosan [180], could enhance stem cell chondrogenesis in both micromechanical and
biological properties. Though type | collagen is extensively used in cartilage engineering,
interestingly, chondrogenic differentiation was more prominent in type Il collagen when
chondrocytes/stem cells were cultured in these collagen-based scaffolds [173,181,182].
These studies indicate that collagens can be biomaterials for providing chondroinductive
cues to support chondrogenic differentiation for cartilage regeneration.

GAGs are polysaccharides that either link to protein cores to form proteoglycans or are free
within cartilage ECM. Important types of GAGs include sulfated chondroitin sulfate, non-
sulfated HA, keratan sulfate, sulfated heparin sulfate, heparin and dermatan sulfate
[183,184]. Many studies have demonstrated that GAGs may regulate chondrogenic
differentiation of chondrocytes/stem cells. For example, exogenous heparin sulfate
stimulated chondrogenic differentiation of mesenchymal cells from embryonic chick limb
buds and murine mesenchymal stem cells (MSCs) [185,186]. However, exogenous
chondroitin sulfate did not show a significant effect on chondrocytes (Passage 7), while HA
inhibited the expression of SRY (sex determining region Y)-box 9 and aggrecan mRNAs
[173]. These findings suggest that various types of GAGs exert different capacities in
regulating chondrogenic differentiation.

Recent studies showed that incorporation of GAG with hydrogel or PLGA could induce
chondrogenic differentiation of stem cells /n vitro and synthesize cartilage tissues in vivo
[187-189]. Importantly, collagen-GAG scaffolds used to fabricate biocompatible scaffolds
supported substantial chondrogenesis of chondrocytes/stem cells [108,109,145,190,191].
Interestingly, collagen-GAG scaffolds exerted various capacities in promoting
chondrogenesis due to GAG types and contents [145,192]. For instance, incorporating HA
into the scaffolds significantly enhanced chondrogenic differentiation compared to
chondroitin sulfate, suggesting that HA may be more suitable for cartilage engineering
[145,193]. Although HA supplementation into type I collagen hydrogels promoted
chondrogenic differentiation of human ADSCs and chondrocytes, 1% HA showed the best
overall effect compared to 5% HA [192]. These studies indicate that a combination of
collagens and GAGs could promote chondrogenesis, perhaps depending on GAG types and
contents within collagen-based scaffolds.

Increasing evidence indicates that collagens and GAGs in cartilage T-dECMs were preserved
or partially reduced, maintaining an ECM-rich microenvironment to provide structural
support and chondroinductive cues [22,27,59,73]. Reduced GAGs or collagens resulting in a
3D porous structure with decreased micromechanical properties after decellularization
[27,55,60,194] may facilitate chondrogenic differentiation. However, C-dECMs were
predominantly composed of type | collagen with negligible levels of type Il collagen and
GAGs [31], which might be responsible for promoting reseeded cell expansion and
chondrogenic potential rather than chondrogenic differentiation [61].

Acta Biomater. Author manuscript; available in PMC 2020 June 22.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Sunetal.

Page 13

Soluble factors—Numerous studies have demonstrated that native cartilage ECM
scaffolds can act as reservoirs of bioactive factors, which influence cell behavior and
regulate ECM production [57,58,78,195]. The soluble factors, such as transforming growth
factor beta (TGF-B) [196-198], bone morphogenetic protein (BMP) [199,200], fibroblast
growth factor (FGF) [201-204], insulin-like growth factor | (IGF-I) [205] and growth and
differentiation factor 5 (GDF-5)[206,207], influenced cell proliferation and chondrogenic
differentiation. Soluble factors individually and synergistically supported chondrocytes/stem
cells toward chondrogenesis in both monolayer and pellet culture [91,99,200,208,209].
Supplementation with soluble factors, such as TGF-p, BMP and Mechano Growth Factor
(MGF) IGF-I, into various scaffolds promoted efficient cartilage formation in human MSCs
[210,211], indicating that these soluble factors could enhance chondrogenesis. Furthermore,
it has been reported that TGF-p could bind to heparin sulfate [212] while GAGs stimulated
the release of free and bioactive IGF-1 /n vitro [213], indicating that the interaction of
soluble factors and GAGs may potentially influence chondrogenic differentiation.

Recent studies demonstrated that various soluble factors resulted in obvious differences in
chondrogenesis. For example, TGF-p was always required for chondrogenic differentiation
[198,209], while BMP-2, -4, -6, -7, acid FGF and IGF-1 (10 ng/mL) alone lacked sufficient
chondrogenic inductivity [214]. TGF-B3 supported more efficient chondrogenesis [215],
while human BMSCs differentiated in a pellet culture system with TGF-B1 had significantly
less mineralization than those cultured with TGF-B3 [216], despite the fact that both TGF-p
isoforms performed similarly in directing porcine SDSC chondrogenesis [217]. Interestingly,
some soluble factors, such as BMP-2, GDF-5 and TGF-B1, induced chondrogenic
differentiation of chondrocytes/stem cells that was accompanied by hypertrophic expression,
such as type X collagen and matrix metallopeptidase 13 (MMP13) [206,218,219]. These
studies indicate that various soluble factors support chondrogenesis but exert different
capacities.

Despite few reports to evaluate and compare the effect of soluble factors in dECM, Xue et
al. found that soluble factors such as TGF-B1, basic FGF, IGF-1 and BMP-2 remained in T-
dECM after decellularization [78]. dECM from porcine NP cells partially retained TGF-
and its membrane bound receptor TGF-p receptor | after decellularization, which promoted
differentiation toward a NP cell-like lineage /n vitro and in vivo, suggesting that the presence
of these soluble factors may contribute to the altered phenotype in reseeded MSCs [105].
Recently, a region-specific distribution was found with the existence of basic FGF only in
outer meniscus dECM but higher TGF-f concentrations in inner meniscus dECM following
decellularization [72], indicative of a site-dependent influence of these soluble factors on
chondrogenesis.

6. Conclusion and perspective

As novel biomaterials used for cartilage regeneration, dECMs from cartilage tissues and
cartilage-forming cells can be fabricated through physical, chemical and/or enzymatic
methods. Both types of dECM demonstrate biocompatibility to support chondrogenesis by
regulating cell proliferation and chondrogenic differentiation. Interestingly, cartilage T-
dECMs are more likely to facilitate chondrogenic differentiation, while C-dECMs support
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chondrocyte/stem cell proliferation and promote chondrogenic potential. Various parameters,
including microarchitecture such as mean pore size and fiber diameter, micromechanical
properties, insoluble components (such as collagen and GAGs) and soluble factors, may be
responsible for differences in these dECMs in supporting chondrogenesis. The above data
suggest that both C-dECMs and T-dECMs may be ideal biomaterials to support the
sequential chondrogenesis of reseeded cells, providing optimal scaffolds for the treatment of
cartilage diseases.

However, some limitations exist to prevent further investigation into potential clinical
applications. Currently there is no standard method of decellularization for cartilage. Despite
an exploration of varying methods in the literature, decellularization of cartilage dECM may
not only alter matrix architecture and micromechanical properties, but also remove some
important components in native ECM, which may affect the capacity of dECMs to support
chondrogenesis. dECMs with large pore size and soft micromechanical properties more
efficiently support chondrogenesis, while increasing exposure time to decellularization
agents results in a decrease in micromechanical integrity and structure as well as the loss of
native components. Furthermore, both C-dECMs and T-dECMSs during chondrogenesis exert
unique capacities in supporting proliferation and chondrogenic differentiation. Cartilage T-
dECMs with a larger pore size mostly retained type 11 collagen and GAGs [27], while
negligible levels of type 1l collagen and GAGs as well as smaller pore sizes were observed
in C-dECMs [31,91,93]. Other parameters such as fiber diameter, micromechanical
properties and retention of soluble factors also influence chondrogenesis. Thus, the key
components in dECMs should be further investigated to elucidate the variables that direct
reseeded cells toward chondrogenesis.
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Figure 1.
Diagram design. Decellularized extracellular matrix (AECM) from either tissue (T-dECM) or

cell (C-dECM) supported chondrogenesis of stem cells and chondrocytes. Inherent
properties and components of dECM scaffolds, such as microarchitecture characteristics
including pore size and fiber diameter, micromechanical properties, insoluble components
including glycosaminoglycan (GAG) and collagen, and soluble factors, were involved in the
regulation of cell proliferation and chondrogenic differentiation. Cartilage T-dECMs with
retained type Il collagen and GAGs as well as larger pore sizes were more likely to facilitate
seeded cells’ chondrogenic differentiation, which resulted in a round or elliptic morphology
similar to chondrocyte-like cells [27]. C-dECMs with negligible levels of type Il collagen
and GAGs as well as smaller pore size had a superior tendency to support cell proliferation
and chondrogenic potential, which led to a small and fibroblast-like shape [31]. Reprints
with permission from “He, F.; Chen, X.; Pei, M. Tissue Eng. Part A 2009, 15, 3809.
Copyright (2009) Mary Ann Liebert, Inc. Publications” and “Yang, Q., Peng, J., Guo, Q.,
Huang, J., Zhang, L., Yao, J., ef al., Biomaterials 2008, 29, 2378. Copyright (2008) Elsevier
Publications”.
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