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Abstract

Increasing evidence indicates that decellularized extracellular matrices (dECMs) derived from 

cartilage tissues (T-dECMs) or chondrocytes/stem cells (C-dECMs) can support proliferation and 

chondrogenic differentiation of cartilage-forming cells. However, few review papers compare the 

differences between these dECMs when they serve as substrates for cartilage regeneration. In this 

review, after an introduction of cartilage immunogenicity and decellularization methods to prepare 

T-dECMs and C-dECMs, a comprehensive comparison focuses on the effects of T-dECMs and C-

dECMs on proliferation and chondrogenic differentiation of chondrocytes/stem cells in vitro and 

in vivo. Key factors within dECMs, consisting of microarchitecture characteristics and 

micromechanical properties as well as retained insoluble and soluble matrix components, are 

discussed in-depth for potential mechanisms underlying the functionality of these dECMs in 

regulating chondrogenesis. With this information, we hope to benefit dECM based cartilage 

engineering and tissue regeneration for future clinical application.
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1. Introduction

Cartilage is an avascular load-bearing tissue consisting of chondrocytes distributed 

throughout a dense extracellular matrix (ECM), which is a structurally complex environment 

composed of many components including collagen, glycosaminoglycans (GAGs), 

proteoglycans and other elements such as fibronectin and laminin [1,2]. The low cellularity 

and avascular properties of cartilage result in the limited potential for self-repair following 

cartilage injury [3]. Current repair strategies, including microfracture, osteochondral 

autograft or mosaicplasty and autologous chondrocyte implantation, have achieved success 

in regenerating functional cartilage [4–7]. However, the limited availability of graft tissue, 

donor site morbidity, graft subsidence at the surface and fibrocartilage formation affect the 

quality of repair [4,8–10]. Recently, cartilage tissue engineering, combining cartilage-

forming cells (chondrocytes and stem cells), growth factors and scaffolds, has provided 

promising approaches for cartilage regeneration [11,12].

As a basic element in cartilage tissue engineering, scaffolds play an important role in 

providing structural support and a micromechanical environment as well as biochemical 

cues for cell growth and chondrogenic differentiation. Numerous synthesized and natural 

materials, such as poly(l-lactic acid), poly(l-lactic-co-glycolic acid) (PLGA), collagen 

derivatives and fibrin glue [13], have been used as scaffolds for cartilage regeneration 

[12,14,15]. Increasing evidence has shown that ECM can provide not only physical support 

but also biological signals to cells that can facilitate cell attachment, proliferation and 

differentiation [16–19]. Decellularized ECMs (dECMs) from various tissues, such as heart, 

skin, bladder, nerves and tendons, have been used for tissue engineering applications with 

promising results [20,21]. Tissue-specific ECM derived from target tissues was reported to 

promote cell proliferation and lineage-specific differentiation through retaining biophysical 

and biochemical cues within native tissues [22,23]. For instance, dECMs derived from 

cartilage tissues (T-dECMs) have been extensively investigated as biological scaffolds for 

cartilage engineering due to their inherent components and unique structure and 

micromechanical properties, which provide a niche-like nanostructured microenvironment to 

aid in chondrogenesis [24–27].

Recent evidence showed that, different from T-dECMs that induce chondrogenic 

differentiation directly, dECMs derived from chondrocyte/stem cells (C-dECMs) benefited 

cartilage regeneration by promoting expanded cell proliferation and chondrogenic potential 

[25,27–32]. However, few review papers are available comparing the differences between 

these two dECMs when they serve as substrates for cartilage regeneration. In this review, 

cartilage immunogenicity and decellularization methods of T-dECMs and C-dECMs are 

introduced followed by a comprehensive comparison of the roles of T-dECMs and C-dECMs 

on proliferation and chondrogenic differentiation of cartilage-forming cells in vitro and in 
vivo. Also discussed are the potential influential factors within dECMs, including 

microarchitecture characteristics and micromechanical properties as well as retained 

insoluble and soluble matrix components such as collagen, GAGs and bioactive factors, 

which may contribute to differences between these two dECMs in regulating chondrogenesis 

(Figure 1).
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2. Decellularization approach

Cartilage tissue properties, such as avascularity and high density, are unique which render its 

decellularization more complicated than other connective tissues.

2.1. Cartilage immunogenicity and necessity of decellularization

The avascular and dense nature of articular cartilage has led to the prediction that articular 

cartilage is immunoprivileged, whereby the cartilage’s immune system is limited because 

the cells are deeply encapsulated within the matrix and not easily reachable to immune cells 

[2,33–38]. Allogeneic cartilage transplantation from cadaveric origin is well tolerated and 

clinical results have validated a high success rate (60–95%) as construed by graft survival 

and good/excellent patient evaluations [38]. Animal studies also showed that chondrocytes 

of cartilage grafts maintained within their matrix are nearly nonimmunogenic [39]. 

Moreover, engineered cartilage using allogeneic chondrocytes with natural and synthetic 

scaffolds demonstrated successful repair of cartilage defects without significant signs of 

rejection and immune response [40–41].

However, the immunoprivileged nature of cartilage has been challenged by other findings 

showing that both chondrocytes and their embedded ECM contain antigens and elicit 

varying degrees of immune reactions [34,38,43–45]. Chondrocytes are liable to attack by 

natural killer cells [43,46] and also express major histocompatibility class (MHC) II antigens 

to trigger CD4 T lymphocytes and provoke cell or antibody-mediated immune responses 

[47–49]. Various degrees of immune response were reported after implantation of allogeneic 

chondrocytes grown on engineered scaffolds in osteochondral defects [50,51]. Interestingly, 

physically devitalized cartilage fragments supported chondrogenesis without significant 

inflammation in vivo [52]. Therefore, a threshold amount of cellular material remains in 

implanted scaffolds that can trigger a severe immune response. Eliminating donor cells 

through the decellularization processes is thought to be desirable to reduce the risk of 

immune response from recipients, particularly for xenogeneic or allogeneic donor tissues 

[53].

Furthermore, due to the intrinsic nature of cartilage tissue that consists of dense ECM with 

nanosized pores, chondrocytes/stem cells are unable to infiltrate and repopulate a cartilage 

scaffold in its native form. The matrix alone may not be adequate for tissue regeneration, 

while the low porosity limits cell infiltration which, in turn, limits new matrix deposition. 

Therefore, the decellularization process is necessary to remove cell components and 

immunogenic antigens as well as to improve reseeded cell infiltration for subsequent 

cartilage regeneration by using physical treatment, chemical agents and biological nucleases 

[25,26].

2.2. Decellularization protocols and challenges

Various methods used to prepare dECMs for cartilage regeneration have been reviewed 

[20,21,25,54]. Chemical agents, including but not limited to sodium dodecyl sulfate, Triton 

X-100, ethylenediaminetetraacetic acid and Tris-Hydrochloride, are used to remove cellular 

components and immunogenic material [2,25,55]. Biological nucleases such as DNases and 
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RNases are also commonly used to degrade residual DNA or RNA [25,26]. Since cartilage is 

a dense and compact connective tissue with low porosity, to improve the efficiency of 

chemical decellularization, physically breaking down cartilage tissues into fragments has 

been applied to increase surface area and enhance permeation of chemical agents into 

cartilage [2,25]. Physical treatments were demonstrated to disrupt cellular membranes and 

nuclei, indicative of the ability to remove cellular components through decellularization 

protocols [2,13,56]. In addition, devitalization through tissue homogenization followed by 

retrieval of tissue particles, freezing and lyophilization has achieved porous and devitalized 

ECM-derived biomaterials [57,58]. The use of chemical agents to decellularize cartilage not 

only results in a significant reduction in the amount of whole cells, cell nuclei and DNA, but 

also impacts the biochemical composition of the dECM, including a reduction in GAG 

content, destruction of macrostructure and alteration of micromechanical properties 

[2,59,60].

Similar decellularization methods for cartilage tissue have also been applied for C-dECMs 

[32,54,61,62], such as mild chemical agents and nucleases that are used to effectively 

remove cellular components and degrade residual DNA or RNA. Three-dimensional (3D) C-

dECM scaffolds were fabricated by depositing chondrocyte/stem cell secreted ECM onto a 

polymer surface followed by leaving or removing the polymer through the use of chemical 

decellularization [63,64]. Supplementation with ascorbic acid in the cell culture environment 

facilitated ECM deposition [65]. Because cell-derived ECM is less dense than native 

cartilage, it is usually unnecessary to use physical treatment paired with chemical agents 

[2,66]. Moreover, the decellularization process is generally shorter and more efficient for 

cell removal, which also prevents a reduction of aggregate modulus of dECM due to long 

decellularization protocols [2,67].

The decellularization process is essential for excluding cellular components and antigenicity 

from tissue explants concerning escaping from disease transmission, reducing inflammatory 

and immune responses toward the scaffold, particularly with xenogeneic or allogeneic donor 

tissues [21]. DNA and the cell surface oligosaccharide molecule α-Gal (also known as “Gal 

epitope”) are two typical antigens recognized to trigger an inflammatory response against 

biological scaffolds. Therefore, incomplete decellularization may result in residual DNA or 

the cell surface oligosaccharide molecule α-Gal being present, which leads to inflammatory 

or immune responses [25,68]. Unlike cellular material, ECM components prevalently 

conserved through species are well tolerated when employed as allografts or xenografts [25].

Currently there is no standard method of decellularization for cartilage. Reduction of 

sulfated GAGs [2,60], loss of inherent collagen content [59] as well as decreased 

biomechanical properties [60] of dECMs indicated that the decellularization process itself 

can affect the microarchitecture, micromechanical properties, and residual matrix 

components [31,55,69]. Therefore, optimal decellularization methods that can effectively 

remove cellular components with only minimal disruption to other components, such as 

collagen, GAGs and growth factors, can help maintain ECM ultrastructure and 

micromechanical properties.
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3. Cartilage T-dECMs and chondrogenesis

An increasing number of studies demonstrate that cartilage T-dECMs, which retain most of 

the native structure and inherent components, direct cartilage-forming cells toward 

chondrogenesis by promoting cell proliferation (Table 1) and chondrogenic differentiation 

(Table 2).

3.1. Proliferation

Cartilage T-dECMs with a 3D interconnected porous environment facilitate cellular 

infiltration and support cell proliferation during chondrogenesis. It has been reported that 

cartilage T-dECMs were non-cytotoxic for chondrocytes and adult stem cells by contact and 

extract cytotoxicity analysis [27,55,60,70,71], suggesting that these scaffolds have good 

biocompatibility to support cell growth. Recent studies have shown that the extraction of T-

dECMs from articular cartilage and meniscus exerted significant roles in promoting bone 

marrow stromal cell (BMSC) proliferation [55,72]. Enhanced cell proliferation was also 

observed when chondrocytes or adult stem cells were seeded on T-dECM scaffolds in either 

culture medium or chondrogenic medium [73–76]. These studies indicated that cartilage T-

dECMs could provide a 3D environment to support cartilage-forming cell proliferation.

3.2. Chondrogenic differentiation

Recent findings have demonstrated that soluble T-dECMs from hyaline cartilage or 

meniscus promoted chondrogenic differentiation of stem cells as a medium supplementation 

in two-dimensional (2D) culture [22,72]. Supplementation with soluble T-dECMs also 

promoted chondrogenic differentiation when human BMSCs were cultured in a pellet 

culture system or on aligned nanofibers [22], indicating that cartilage T-dECMs provide an 

appropriate cue for chondrogenic inductivity.

An increasing number of studies demonstrated that hyaline cartilage T-dECMs alone 

[22,70,77] or in combination with prochondrogenic factors [27,60,76,78] facilitated in vitro 
chondrogenesis of reseeded chondrocytes/stem cells. Furthermore, implantation of cartilage 

T-dECMs seeded by chondrocytes/stem cells in an in vivo model also confirmed the 

formation of cartilage tissues and the repair of cartilage defects [27,55,77–80]. In addition, 

decellularized human trachea readily colonized by epithelial cell and BMSC derived 

chondrocytes supported remodeling and produced an engineered airway after a five-year 

follow-up of a left main bronchus replacement [81,82]. Decellularized trachea or larynx also 

promoted stem cells/chondrocytes to regenerate cartilage when these cell-dECMs were 

implanted in vivo [83,84], suggesting that airway remodeling may trigger initiation of 

chondrogenesis.

T-dECMs from meniscus and nucleus pulposus (NP) tissue also supported chondrogenic 

differentiation. Soluble ECM fractions from decellularized menisci incorporating 

methacrylated gelatin (GelMA) hydrogels accelerated chondrogenic differentiation of 

human BMSCs [72]. Human BMSCs/chondrocytes cultured in porcine decellularized 

meniscus promoted chondrocyte differentiation and secreted ECM in addition to supporting 

chondrogenesis of human BMSCs [73]. Moreover, porcine decellularized NP tissues 
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supported human adipose derived stem cell (ADSC) differentiation toward an NP-like cell 

phenotype, even in the absence of differentiation media [85]. Interestingly, it was found that 

cartilage T-dECMs without supplementation of chondrocytes/stem cells also supported new 

hyaline cartilage formation when implanted in vivo [86,87]. These studies indicated that 

cartilage T-dECMs could support chondrogenic differentiation in vitro and in vivo.

However, contrary studies found that cartilage T-dECMs had a limited or failed capacity to 

induce chondrogenic differentiation [88,89]. For example, only a small portion of 

cartilaginous and fibrous tissue was formed when decellularized pig ears seeded with 

porcine BMSCs without chondrogenic induction were implanted into nude mice. These 

findings indicate that acellular cartilage is not strong enough to induce BMSCs to form 

homogenous cartilage in vivo, although it does possess chondrogenic activity [78]. A 72% 

failure rate within the first two years of implantation was observed at two institutions when 

patients were treated with a decellularized osteochondral allograft (Chondrofix; 

ZimmerBiomet) implant for knee cartilage injuries [90]. Many complicating factors, such as 

reseeded cells, species sensitivity, the decellularization process, initial biomechanical 

loading as well as the limited micromechanical properties of scaffolds, may be involved in 

the failure of T-ECM based chondrogenesis [89]. The functionalization of cartilage ECM 

hydrogels with methacrylate that compromised in vitro chondroinductivity also resulted in 

the failure of T-dECMs in enhancing chondrogenesis [88].

4. dECMs from chondrocytes/stem cells and chondrogenesis

Various types of cartilage-forming cells have been used as a source for C-dECMs, including 

chondrocytes and stem cells, to support cell proliferation (Table 3) and chondrogenic 

differentiation (Table 4) [91,92]. Interestingly, these C-dECMs alone or in combination with 

other factors exert varied capacities in promoting chondrogenesis in vitro and in vivo.

4.1. Proliferation

C-dECMs fabricated by chondrocytes and stem cells offer superior platforms to expand 

chondrocytes/stem cells for cartilage regeneration in contrast to traditional methods [92–94]. 

Many studies have demonstrated that culturing on C-dECMs substantially elevated the 

proliferation capacity of cartilage-forming cells relative to culturing on tissue culture 

polystyrene (TCPS). For example, our group has repeatedly demonstrated enhanced 

proliferation of BMSCs, synovium derived stem cells (SDSCs), infrapatellar fat pad derived 

stem cells (IPFSCs) and chondrocytes when cultured on C-dECMs [31,91,92,95]. Other 

researchers also reported similar findings that C-dECMs promoted cell proliferation by 

analyzing cell count and DNA content [93,96,97]. In addition to autologous cell derived C-

dECMs, C-dECMs from allogeneic cells also supported the expansion of corresponding 

stem cells and chondrocytes [91,92,98,99]. These studies indicated that C-dECMs promoted 

the proliferation of stem cells and chondrocytes, possibly through the downregulation of 

intracellular reactive oxygen species (ROS) [91,95,96,100]

Interestingly, there exists the varying ability of C-dECMs in promoting proliferation of 

cartilage-forming cells. Li et al. [69] demonstrated that both fetal and adult C-dECMs from 

human SDSCs could promote adult human SDSC proliferation, but fetal C-dECMs had a 
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higher proliferation capacity than adult C-dECMs. The findings were in agreement with 

another study where Ng et al. [101] found that fetal C-dECMs from human BMSCs were 

more effective in promoting adult human BMSC expansion than adult C-dECMs. Moreover, 

late-passage adult human BMSCs cultured on TCPS for six passages and subsequently 

cultured on fetal C-dECMs were significantly improved in terms of proliferation, suggesting 

that C-dECMs from fetal stem cells have the ability to enhance and rescue the proliferation 

of older cells.

4.2. Chondrogenic differentiation

Increasing evidence demonstrates that C-dECMs provide a 3D microenvironment for 

promoting chondrogenic potential. Our group repeatedly demonstrated that SDSCs, BMSCs, 

NP cells, IPFSCs and chondrocytes, expanded on autograft or allograft C-dECMs, exerted 

enhanced chondrogenic differentiation when these cells were subsequently subjected to 

chondrogenic induction in a pellet culture system, indicating that C-dECMs could promote 

chondrogenic potential [31,91,94,95,98,99]. Other studies showed that C-dECM expansion 

also promoted chondrogenic differentiation in a 3D culture system with or without 

supplementation of chondrogenic inductive factors [93,102–104]. C-dECMs could support 

chondrogenic differentiation of stem cells and NP cells after in vivo implantation in animal 

models [1,105]. These studies indicate that C-dECMs alone or in combination with 

chondroinductive factors could enhance chondrogenic capacity in vitro and in vivo.

Chondrogenic capacity varied according to the C-dECM properties, which may be 

influenced by different cell sources. For example, C-dECMs from porcine SDSCs had a 

comparable effect in enhancing chondrogenic potential of porcine IPFSCs compared to that 

of C-dECMs from porcine IPFSCs [91]. C-dECMs from human BMSCs showed a stronger 

stimulatory effect in promoting chondrogenic differentiation of human BMSCs than those 

from human chondrocytes, perhaps due to the easy dedifferentiation of chondrocytes during 

in vitro expansion culture [63]. Moreover, Pei et al. [106] showed that, human urine derived 

stem cells (USCs) did not differentiate into chondrocytes; however, C-dECM deposited by 

human USCs could enhance senescent human BMSCs toward a chondrogenic capacity, 

suggesting that trophic factors that were released by human USCs immobilized in C-dECMs 

contributed to the other stem cells’ chondrogenic capacity.

Interestingly, C-dECMs from repeated passage human BMSCs had a limited effect on 

chondrogenic differentiation of human BMSCs [106], while C-dECMs from fetal human 

BMSCs significantly improved differentiation potential in late-passage adult human BMSCs 

compared to TCPS [101], implying a superior role of C-dECMs from young cells to old 

cells. Li et al. [69] further demonstrated that expansion on C-dECMs deposited by fetal 

SDSCs (FECM) was superior to C-dECM deposited by adult SDSCs in promoting 

chondrogenic potential of adult human SDSCs in vitro. These results may be associated with 

unique protein components and the lower elasticity of FECM that was responsible for the 

enhancement of chondrogenic differentiation. Moreover, early stage chondrogenesis-

mimicking dECM scaffold facilitated more chondrogenesis in human BMSCs than that of 

late stage chondrogenesis-mimicking dECM scaffold [29]. Devitalized tissue engineered 

cartilaginous sheets formed in the presence of growth factor releasing microspheres were 
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considered to be more developmentally immature tissue and to support comparable levels of 

GAG synthesis to native cartilage ECM scaffolds [28]. The varying effects of ECM scaffolds 

on the chondrogenic differentiation of MSCs may be due to differences in their composition. 

The immature cartilage contained appropriate chondroinductive components that are not 

available in mature cartilage to provide a milieu of features more conducive to 

chondrogenesis [28,29].

5. Potential influential factors of dECMs on chondrogenesis

Although both T-dECMs and C-dECMs supported chondrogenesis, increasing studies 

indicated that cartilage T-dECMs were more likely to facilitate chondrogenic differentiation 

[27], while C-dECMs had a superior tendency to support cell proliferation and chondrogenic 

potential [31]. However, potential influential factors resulting in the differences in these two 

dECMs on chondrogenesis are unclear and there is a lack of direct evidence. Previous 

studies demonstrated that inherent properties and components of scaffolds, such as 

microarchitecture characteristics, micromechanical properties and biochemical components, 

were involved in the regulation of cell proliferation and chondrogenic differentiation 

[26,107–109], providing clues to elucidate the different effects of dECMs on 

chondrogenesis.

5.1. Microarchitecture

Much evidence has shown that the porous and nano-fibrous structure provided an initial 

microenvironment to support chondrogenesis [107,108]. Various parameters of the 

microarchitecture of scaffolds, such as pore size and fiber diameter, influence cellular 

behaviors such as proliferation and chondrogenic differentiation.

Pore size—Scaffolds with various pore sizes fabricated from synthetic and natural 

materials, such as PLGA [110], calcium polyphosphate [111], gelatin [112], collagen 

[113,114] and chitosan [115], provide 3D architectural support for stem cell chondrogenesis. 

There are still conflicting results as to which scaffold mean pore size is optimal for 

chondrogenesis. For example, higher cell proliferation was observed when chondrocytes/

stem cells were cultured on collagen-hyaluronic acid (HA) scaffolds with pore sizes of 300 

μm [108], poly-L-lactide-co-trimethylene carbonate scaffolds with pore sizes of 175 μm 

[116] and chitosan scaffolds with pore sizes of 70–120 μm [115], suggesting that larger pore 

sizes improved better proliferation compared with smaller pore sizes. These findings may be 

partially explained by larger pore sizes providing ample space, thus improving the 

distribution of cells and nutrients throughout the scaffolds and facilitating cell proliferation. 

In contrast, other studies demonstrated that type I collagen scaffolds with pore sizes of 20 

μm, poly(ε-caprolactone) scaffold with pore sizes of 100 or 200 μm, as well as poly(ε-

caprolactone) cylindrical scaffolds with pore sizes of 90–105 μm supported superior 

proliferation of chondrocytes and stem cells compared to those with larger pore sizes 

[113,117,118]. The abovementioned studies indicate that scaffolds having a higher surface 

area (smaller pore size) possess a larger cell adhesion area, thus enabling better cell 

attachment, migration and growth.
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Recent findings demonstrated that scaffolds with smaller pore sizes (20–150 μm) facilitated 

greater levels of chondrogenic differentiation compared to scaffolds with larger pore sizes 

[113,116,119,120]. Stem cells seeded on scaffolds with smaller pore sizes outperformed 

larger pore sizes in promoting cartilaginous tissue formation in vitro and in vivo [119,121]. 

Scaffolds with smaller pore sizes also demonstrated a significantly greater ability to 

maintain chondrocyte morphology and exerted superior chondrogenic differentiation of 

chondrocytes compared to scaffolds with larger pore sizes [113,116]. These findings suggest 

that smaller pore sizes lead to closely packed cells and 3D cell aggregation as well as a 

lower oxygen environment, which may correlate positively with chondrogenic 

differentiation.

However, contrary studies exist. An increasing number of studies revealed that scaffolds 

with larger pore sizes (250–500 μm) had superior effects in promoting chondrogenic 

differentiation of chondrocytes/stem cells by producing cartilage ECM 

[108,117,118,122,123]. Interestingly, some studies demonstrated superior effects of smaller 

pore sizes in terms of cell proliferation, although they failed to outperform larger pore sizes 

in enhancing chondrogenic differentiation [117,118], indicating that smaller pore size 

initially allows greater cell attachment to enhance proliferation. Moreover, chondrocytes in 

the smaller pores often display a dedifferentiated form while the chondrocyte phenotype is 

maintained better in larger pores, suggesting that larger pore sizes are more likely to support 

chondrogenic differentiation [122].

Interestingly, cartilage T-dECMs with larger pore sizes promoted obvious chondrogenic 

differentiation of adult stem cells and formed cartilage-like tissue [27,55], while C-dECMs 

with smaller pore sizes effectively improved chondrocyte attachment and proliferation [93], 

further indicating that scaffold pore sizes may be responsible for the differences in 

chondrogenesis. Therefore, it is believed that cartilage T-dECMs with larger pore sizes more 

likely facilitate cell infiltration for chondrogenic differentiation, while C-dECMs with 

relatively smaller pore sizes may tend to support cell proliferation and chondrogenic 

potential.

Fiber diameter—The nanofibrous structure of scaffolds, morphologically similar in 

dimension to native collagen fibrils, has been demonstrated to increase chondrocyte 

expansion and maintain chondrocyte phenotype [124,125] as well as promote chondrogenic 

ECM deposition [126]. Nanofiber scaffolds could enhance in vitro chondrogenesis of 

BMSCs and repair cartilage defects after implantation into animal models [127–131], 

suggesting that nanofiber scaffolds support chondrogenesis of adult stem cells in vitro and in 
vivo. Recent studies also demonstrated that microfiber scaffolds supported chondrocyte 

proliferation and promoted cartilage ECM production [125,132,133]. Moreover, human 

BMSCs cultured on microfiber scaffolds exerted higher levels of cellular proliferation and 

chondrogenic differentiation in comparison to cells on nanofiber scaffolds [134,135], 

suggesting a superior role of microfiber diameter in supporting chondrogenesis compared to 

nanofiber diameter. The strategies for dispersing nanofibers into the microfiber scaffolds that 

have improved micromechanical properties also provide favorable conditions to enhance cell 

adhesion and proliferation [136,137]. These studies indicated that both nanofiber and 

microfiber scaffolds could support chondrogenesis.
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It has been reported that the fiber diameter could influence cell behaviors such as 

proliferation, migration and differentiation [135,138,139]. For example, tube diameters of 

15–20 nm strongly enhanced cellular activities, while cell proliferation, migration and 

differentiation were seriously damaged on nanotube layers with a tube diameter larger than 

50 nm, particularly for 100 nm [139]. Moreover, small (around 30 nm diameter) nanotubes 

boosted adhesion without clear differentiation, whereas larger (70–100 nm diameter) 

nanotubes more likely triggered dramatic cytoskeletal stress and differentiation of human 

BMSCs [138]. Interestingly, some studies showed higher levels of chondrogenesis with 

nanofiber scaffolds compared with microfiber scaffolds [125,131], despite contrasting 

studies showing that chondrogenic gene expression was significantly enhanced on 

microfiber scaffolds compared with nanofiber scaffolds [134,135]. Recent studies have 

demonstrated that chondrocytes/stem cells cultured on cartilage T-dECMs and C-dECMs, 

which were made of nanoscale ECM fibers, exerted obvious cell proliferation and 

chondrogenic differentiation [31,140,141], also indicating that fiber diameter may be 

attributed to the differences in chondrogenesis.

Increasing evidence shows that fiber diameter could influence scaffold pore size which, in 

turn, affects chondrogenesis. Smaller diameter fibers generating smaller average pore sizes 

decreased cellular infiltration and reduced the advantages of 3D culture by limiting cell 

growth to the top of scaffolds. Larger diameter fibers resulting in larger pore size have been 

shown to improve cell infiltration and promote higher levels of stem cell differentiation 

[107,135]. Therefore, cells seeded onto fiber matrices with smaller pore sizes tend to spread, 

attach and, in some cases, extend along the length of the fibers, which facilitates cell 

proliferation. In contrast, fiber scaffolds with larger pore sizes achieve a 3D 

microenvironment for cellular infiltration, which more likely supports chondrogenic 

differentiation.

5.2. Micromechanical properties

Numerous studies have demonstrated that micromechanical properties of substrates, such as 

elasticity and stiffness, could influence cell adhesion, spreading and differentiation [142–

144]. A well-known example is that human BMSCs efficaciously differentiated into bone, 

muscle or neuronal lineages, respectively, when cultured on stiff, medium or soft substrates 

[143], suggesting that inherent stiffness similar to that of corresponding native tissues more 

likely induced stem cells to differentiate into targeted tissues. Substrates with the lowest 

stiffness (0.5 kPa) directed rat BMSCs toward a chondrogenic lineage, but the stiffest 

scaffolds (1.5 kPa) resulted in BMSCs that differentiated toward an osteogenic lineage 

[145], suggesting that substrate elasticity can affect stem cell differentiation.

Studies on various stiffnesses of substrates, fabricated by hydrogels [146–153] and porous/

fibrous materials [145,154,155], indicate that soft substrates more likely support 

chondrogenesis compared to stiffer substrates [156]. Interestingly, human SDSCs expanded 

on C-dECMs have greatly enhanced proliferation and chondrogenic potential compared to 

TCPS whose elasticity could be considered as infinite, suggesting that a lower stiffness of C-

dECMs may be responsible for enhanced chondrogenic potential of expanded cells [31,140]. 

Moreover, lower elasticity of C-dECMs deposited by fetal SDSCs maintained better 
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chondrogenic potential compared to those of adult C-dECMs or TCPS that had higher 

elasticity [69], suggesting that controlled elasticity of dECM provides great potential in 

regulating reseeded cell chondrogenesis.

Interestingly, higher stiffness of materials supported better cartilage regeneration compared 

to those with less stiffness [157–159]. For example, a storage modulus of about 45 Pa 

(weaker than naturally occurring cartilage) of HA:poly(ethylene glycol) hydrogel supported 

better chondrogenic differentiation of human BMSCs compared to lower stiffnesses of other 

scaffolds [157]. Chondroitin sulfate-containing hydrogels with a stiffness of ~7–33 kPa 

resulted in neocartilage formation after subcutaneous implantation into nude mice by co-

encapsulating human ADSCs and calf chondrocytes; in contrast, soft stiffness (~1kPa) 

scaffolds failed to maintain structural integrity and broke into pieces in vivo [159], 

indicating that minimal initial stiffness is required to retain micromechanical integrity over 

time.

Despite the fact that micromechanical properties of natural cartilage varied due to different 

types of cartilage [160,161], compared to the native tissue, decreased linear modulus of 

meniscus/nasal septum T-dECM [60] and equilibrium and dynamic modulus of cartilage T-

dECM [74] after decellularization supported chondrogenic differentiation. Furthermore, 

Abdelgaied and coworkers found a lower compressive elastic modulus in meniscus T-dECM 

compared to the nature structure, which could be explained by a 60% loss of GAG content 

[162]. The extraction of GAGs during decellularization resulted in the loss of water 

[163,164], contributing to an increase of stiffness [165,166]. An increasing number of 

studies showed that micromechanical properties of the scaffolds, which match native 

cartilage, supported chondrogenic differentiation by directing stem cells into the 

chondrogenic lineage and enhancing cartilage formation in vitro and in vivo [158,167,168]. 

Therefore, the micromechanical properties may be involved in regulating chondrogenesis of 

chondrocytes/stem cells by designing scaffolds with appropriate elasticity to control 

chondrogenic differentiation.

5.3. Chemical components

In addition to the abovementioned microstructural-micromechanical functionality, ECM is 

also composed of insoluble components such as collagen and GAGs as well as soluble 

factors such as growth factors, which play a significant role in cell-ECM interaction and cell 

proliferation and lineage-specific differentiation.

Insoluble factors—Collagens are primary insoluble components of cartilage ECM that 

form a tensile meshwork with a high compressive strength. Among various collagens, type II 

collagen is a dominant component of cartilage, while type I collagen and type X collagen are 

primarily located in the fibrocartilage and calcified regions, respectively [169,170]. Many 

studies have shown that collagens contribute to chondrogenic differentiation of 

chondrocytes/stem cells in vitro and in vivo [171,172]. For example, type II collagen alone 

promoted GAG level and the re-expression of cartilaginous marker mRNAs in human 

senescent chondrocytes (Passage 7) in 2D culture in a dose-dependent fashion [173]. 

Chondrocytes cultured in scaffolds, made by processing both type I and type II collagen, 
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maintained chondrocyte phenotypes and accumulated cartilaginous ECMs during the culture 

period [171,173,174]. These collagen-based scaffolds also supported stem cell 

chondrogenesis as evidenced by promotion of chondrogenic differentiation and production 

of cartilaginous ECMs [175–177]. Furthermore, incorporation of collagens with natural 

polymers and synthetic polymers, such as agarose [178], poly(epsilon-caprolactone) [179] 

and chitosan [180], could enhance stem cell chondrogenesis in both micromechanical and 

biological properties. Though type I collagen is extensively used in cartilage engineering, 

interestingly, chondrogenic differentiation was more prominent in type II collagen when 

chondrocytes/stem cells were cultured in these collagen-based scaffolds [173,181,182]. 

These studies indicate that collagens can be biomaterials for providing chondroinductive 

cues to support chondrogenic differentiation for cartilage regeneration.

GAGs are polysaccharides that either link to protein cores to form proteoglycans or are free 

within cartilage ECM. Important types of GAGs include sulfated chondroitin sulfate, non-

sulfated HA, keratan sulfate, sulfated heparin sulfate, heparin and dermatan sulfate 

[183,184]. Many studies have demonstrated that GAGs may regulate chondrogenic 

differentiation of chondrocytes/stem cells. For example, exogenous heparin sulfate 

stimulated chondrogenic differentiation of mesenchymal cells from embryonic chick limb 

buds and murine mesenchymal stem cells (MSCs) [185,186]. However, exogenous 

chondroitin sulfate did not show a significant effect on chondrocytes (Passage 7), while HA 

inhibited the expression of SRY (sex determining region Y)-box 9 and aggrecan mRNAs 

[173]. These findings suggest that various types of GAGs exert different capacities in 

regulating chondrogenic differentiation.

Recent studies showed that incorporation of GAG with hydrogel or PLGA could induce 

chondrogenic differentiation of stem cells in vitro and synthesize cartilage tissues in vivo 
[187–189]. Importantly, collagen-GAG scaffolds used to fabricate biocompatible scaffolds 

supported substantial chondrogenesis of chondrocytes/stem cells [108,109,145,190,191]. 

Interestingly, collagen-GAG scaffolds exerted various capacities in promoting 

chondrogenesis due to GAG types and contents [145,192]. For instance, incorporating HA 

into the scaffolds significantly enhanced chondrogenic differentiation compared to 

chondroitin sulfate, suggesting that HA may be more suitable for cartilage engineering 

[145,193]. Although HA supplementation into type I collagen hydrogels promoted 

chondrogenic differentiation of human ADSCs and chondrocytes, 1% HA showed the best 

overall effect compared to 5% HA [192]. These studies indicate that a combination of 

collagens and GAGs could promote chondrogenesis, perhaps depending on GAG types and 

contents within collagen-based scaffolds.

Increasing evidence indicates that collagens and GAGs in cartilage T-dECMs were preserved 

or partially reduced, maintaining an ECM-rich microenvironment to provide structural 

support and chondroinductive cues [22,27,59,73]. Reduced GAGs or collagens resulting in a 

3D porous structure with decreased micromechanical properties after decellularization 

[27,55,60,194] may facilitate chondrogenic differentiation. However, C-dECMs were 

predominantly composed of type I collagen with negligible levels of type II collagen and 

GAGs [31], which might be responsible for promoting reseeded cell expansion and 

chondrogenic potential rather than chondrogenic differentiation [61].
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Soluble factors—Numerous studies have demonstrated that native cartilage ECM 

scaffolds can act as reservoirs of bioactive factors, which influence cell behavior and 

regulate ECM production [57,58,78,195]. The soluble factors, such as transforming growth 

factor beta (TGF-β) [196–198], bone morphogenetic protein (BMP) [199,200], fibroblast 

growth factor (FGF) [201–204], insulin-like growth factor I (IGF-I) [205] and growth and 

differentiation factor 5 (GDF-5)[206,207], influenced cell proliferation and chondrogenic 

differentiation. Soluble factors individually and synergistically supported chondrocytes/stem 

cells toward chondrogenesis in both monolayer and pellet culture [91,99,200,208,209]. 

Supplementation with soluble factors, such as TGF-β, BMP and Mechano Growth Factor 

(MGF) IGF-I, into various scaffolds promoted efficient cartilage formation in human MSCs 

[210,211], indicating that these soluble factors could enhance chondrogenesis. Furthermore, 

it has been reported that TGF-β could bind to heparin sulfate [212] while GAGs stimulated 

the release of free and bioactive IGF-I in vitro [213], indicating that the interaction of 

soluble factors and GAGs may potentially influence chondrogenic differentiation.

Recent studies demonstrated that various soluble factors resulted in obvious differences in 

chondrogenesis. For example, TGF-β was always required for chondrogenic differentiation 

[198,209], while BMP-2, −4, −6, −7, acid FGF and IGF-I (10 ng/mL) alone lacked sufficient 

chondrogenic inductivity [214]. TGF-β3 supported more efficient chondrogenesis [215], 

while human BMSCs differentiated in a pellet culture system with TGF-β1 had significantly 

less mineralization than those cultured with TGF-β3 [216], despite the fact that both TGF-β 
isoforms performed similarly in directing porcine SDSC chondrogenesis [217]. Interestingly, 

some soluble factors, such as BMP-2, GDF-5 and TGF-β1, induced chondrogenic 

differentiation of chondrocytes/stem cells that was accompanied by hypertrophic expression, 

such as type X collagen and matrix metallopeptidase 13 (MMP13) [206,218,219]. These 

studies indicate that various soluble factors support chondrogenesis but exert different 

capacities.

Despite few reports to evaluate and compare the effect of soluble factors in dECM, Xue et 
al. found that soluble factors such as TGF-β1, basic FGF, IGF-I and BMP-2 remained in T-

dECM after decellularization [78]. dECM from porcine NP cells partially retained TGF-β 
and its membrane bound receptor TGF-β receptor I after decellularization, which promoted 

differentiation toward a NP cell-like lineage in vitro and in vivo, suggesting that the presence 

of these soluble factors may contribute to the altered phenotype in reseeded MSCs [105]. 

Recently, a region-specific distribution was found with the existence of basic FGF only in 

outer meniscus dECM but higher TGF-β concentrations in inner meniscus dECM following 

decellularization [72], indicative of a site-dependent influence of these soluble factors on 

chondrogenesis.

6. Conclusion and perspective

As novel biomaterials used for cartilage regeneration, dECMs from cartilage tissues and 

cartilage-forming cells can be fabricated through physical, chemical and/or enzymatic 

methods. Both types of dECM demonstrate biocompatibility to support chondrogenesis by 

regulating cell proliferation and chondrogenic differentiation. Interestingly, cartilage T-

dECMs are more likely to facilitate chondrogenic differentiation, while C-dECMs support 
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chondrocyte/stem cell proliferation and promote chondrogenic potential. Various parameters, 

including microarchitecture such as mean pore size and fiber diameter, micromechanical 

properties, insoluble components (such as collagen and GAGs) and soluble factors, may be 

responsible for differences in these dECMs in supporting chondrogenesis. The above data 

suggest that both C-dECMs and T-dECMs may be ideal biomaterials to support the 

sequential chondrogenesis of reseeded cells, providing optimal scaffolds for the treatment of 

cartilage diseases.

However, some limitations exist to prevent further investigation into potential clinical 

applications. Currently there is no standard method of decellularization for cartilage. Despite 

an exploration of varying methods in the literature, decellularization of cartilage dECM may 

not only alter matrix architecture and micromechanical properties, but also remove some 

important components in native ECM, which may affect the capacity of dECMs to support 

chondrogenesis. dECMs with large pore size and soft micromechanical properties more 

efficiently support chondrogenesis, while increasing exposure time to decellularization 

agents results in a decrease in micromechanical integrity and structure as well as the loss of 

native components. Furthermore, both C-dECMs and T-dECMs during chondrogenesis exert 

unique capacities in supporting proliferation and chondrogenic differentiation. Cartilage T-

dECMs with a larger pore size mostly retained type II collagen and GAGs [27], while 

negligible levels of type II collagen and GAGs as well as smaller pore sizes were observed 

in C-dECMs [31,91,93]. Other parameters such as fiber diameter, micromechanical 

properties and retention of soluble factors also influence chondrogenesis. Thus, the key 

components in dECMs should be further investigated to elucidate the variables that direct 

reseeded cells toward chondrogenesis.
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Figure 1. 
Diagram design. Decellularized extracellular matrix (dECM) from either tissue (T-dECM) or 

cell (C-dECM) supported chondrogenesis of stem cells and chondrocytes. Inherent 

properties and components of dECM scaffolds, such as microarchitecture characteristics 

including pore size and fiber diameter, micromechanical properties, insoluble components 

including glycosaminoglycan (GAG) and collagen, and soluble factors, were involved in the 

regulation of cell proliferation and chondrogenic differentiation. Cartilage T-dECMs with 

retained type II collagen and GAGs as well as larger pore sizes were more likely to facilitate 

seeded cells’ chondrogenic differentiation, which resulted in a round or elliptic morphology 

similar to chondrocyte-like cells [27]. C-dECMs with negligible levels of type II collagen 

and GAGs as well as smaller pore size had a superior tendency to support cell proliferation 

and chondrogenic potential, which led to a small and fibroblast-like shape [31]. Reprints 

with permission from “He, F.; Chen, X.; Pei, M. Tissue Eng. Part A 2009, 15, 3809. 

Copyright (2009) Mary Ann Liebert, Inc. Publications” and “Yang, Q., Peng, J., Guo, Q., 

Huang, J., Zhang, L., Yao, J., et al., Biomaterials 2008, 29, 2378. Copyright (2008) Elsevier 

Publications”.
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