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ABSTRACT Nonsegmented negative-strand (NNS) RNA viruses possess a ribonucleo-
protein template in which the genomic RNA is sequestered within a homopolymer
of nucleocapsid protein (N). The viral RNA-dependent RNA polymerase (RdRP) re-
sides within an approximately 250-kDa large protein (L), along with unconventional
mRNA capping enzymes: a GDP:polyribonucleotidyltransferase (PRNT) and a dual-
specificity mRNA cap methylase (MT). To gain access to the N-RNA template and or-
chestrate the LRdRP, LPRNT, and LMT, an oligomeric phosphoprotein (P) is required. Ve-
sicular stomatitis virus (VSV) P is dimeric with an oligomerization domain (OD)
separating two largely disordered regions followed by a globular C-terminal domain
that binds the template. P is also responsible for bringing new N protomers onto
the nascent RNA during genome replication. We show VSV P lacking the OD (PΔOD)
is monomeric but is indistinguishable from wild-type P in supporting mRNA tran-
scription in vitro. Recombinant virus VSV-PΔOD exhibits a pronounced kinetic delay in
progeny virus production. Fluorescence recovery after photobleaching demonstrates
that PΔOD diffuses 6-fold more rapidly than the wild type within viral replication
compartments. A well-characterized defective interfering particle of VSV (DI-T) that is
only competent for RNA replication requires significantly higher levels of N to drive
RNA replication in the presence of PΔOD. We conclude P oligomerization is not re-
quired for mRNA synthesis but enhances genome replication by facilitating RNA en-
capsidation.

IMPORTANCE All NNS RNA viruses, including the human pathogens rabies, measles,
respiratory syncytial virus, Nipah, and Ebola, possess an essential L-protein cofactor,
required to access the N-RNA template and coordinate the various enzymatic activi-
ties of L. The polymerase cofactors share a similar modular organization of a soluble
N-binding domain and a template-binding domain separated by a central oligomer-
ization domain. Using a prototype of NNS RNA virus gene expression, vesicular sto-
matitis virus (VSV), we determined the importance of P oligomerization. We find that
oligomerization of VSV P is not required for any step of viral mRNA synthesis but is
required for efficient RNA replication. We present evidence that this likely occurs
through the stage of loading soluble N onto the nascent RNA strand as it exits the
polymerase during RNA replication. Interfering with the oligomerization of P may
represent a general strategy to interfere with NNS RNA virus replication.
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The 241-kDa large (L) protein of vesicular stomatitis virus (VSV) contains all the
enzymatic activities necessary to copy its viral ribonucleoprotein (RNP) template

(1–4). That RNP template comprises the genomic RNA completely encased within the
viral nucleocapsid (N) protein (5, 6). Responding to specific RNA signals, the RNA-
dependent RNA polymerase of L (LRdRP) transcribes the RNP template into a 47-
nucleotide (nt) 5= triphosphate leader RNA and 5 monocistronic mRNAs that are
indistinct to host cell mRNA with respect to their 5= cap and 3= polyadenylate (7–10).
The enzymatic activities necessary for formation of the viral 5= mRNA cap structure
reside within L and differ markedly from those of the host cell and other organisms (11).
During viral mRNA cap formation, a GDP:polyribonucleotidyltransferase (LPRNT) trans-
fers the 5= end of the nascent RNA chain onto a GDP acceptor through a covalent
L-pRNA (L-monophosphate RNA) intermediate. The resulting GpppA cap structure is
then modified by a dual-specificity L-encoded RNA cap methylase (LMT), which first
modifies the ribose-2=-O position associated with first transcribed nucleotide generat-
ing GpppAm and subsequently methylate, the guanine ring of the cap at the N7
position, to yield 7mGpppAm (12). The 3= polyadenylate tail is generated by a chat-
tering mechanism in which the LRdRP reiteratively copies one or more members of an
oligo(U) tract resident at the end of each gene (13).

The RNP template is also used to generate full-length genomic RNPs through an
antigenomic RNP intermediate. RNA replication requires the LRdRP and a continuous
supply of soluble N protein that coats the nascent RNA chain during its synthesis (14).
Although the mRNA capping enzymes are not required during replication, as the 5= end
of the replication products are unmodified triphosphate, this process of terminal
initiation depends on a priming loop donated from the LPRNT into the LRdRP (4, 15).
Despite containing all of the enzymes necessary for RNA synthesis, L cannot copy the
N-RNA template without forming a complex with its cofactor, a 29-kDa oligomeric
phosphoprotein (P) (1). Complex formation of L with P plays a key role in also
organizing the various enzymatic domains of L with respect to one another (16). This
defines the minimal viral machinery for RNA synthesis as the N-RNA template and the
viral P and L proteins.

Structural studies of the VSV replication machinery highlight the master role of P in
orchestrating RNA synthesis. The genomic RNA is completely coated by N, which must
be transiently dissociated during copying by L. A globular C-terminal domain of P
(PCTD), corresponding to residues 195 to 265, contacts the N-RNA template by binding
at a unique interface that forms between adjacent N molecules on the template (17).
That PCTD is separated from a largely disordered N-terminal region of P by an oligomer-
ization domain (POD) comprising residues 107 to 177 (18). Although the N-terminal
domain of P is largely disordered, complex formation with L defines key contacts
between L and two segments of P encompassing residues 49 to 56 and 82 to 105 (19).
A short stretch of the N terminus of P (residues 5 to 34) also binds a groove between
the N- and C-terminal lobes of monomeric N (N0), occluding binding of RNA (20). This
likely reflects how soluble N protein is loaded onto the nascent RNA chain during RNP
assembly that is concomitant with viral genome replication.

The central role of P in regulating gene expression prompted us to probe the
requirement for its oligomerization in VSV. We deleted the oligomerization domain of
P, validated that the resulting protein is monomeric, interrogated the consequences for
gene expression in vitro and in cells, and generated a recombinant virus lacking POD.
The data demonstrate that viral mRNA synthesis is unaffected by P protein oligomer-
ization, and they identify a pronounced kinetic delay in viral RNA replication for
monomeric P. Probing of the underlying mechanism behind this delay demonstrates
that the oligomerization of P facilitates genome RNA replication at a lower N protein
concentration, likely by directly influencing the loading of N onto the nascent tran-
script. This work defines a key function for oligomerization of the P protein of VSV that
likely extends to other viruses in the order Mononegavirales.
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RESULTS
VSV P lacking its oligomerization domain is monomeric in solution. To probe

the function of P protein oligomerization in assembly and function of the VSV replica-
tion machinery, we expressed and purified from bacteria a variant of P lacking residues
107 to 177, termed PΔOD (Fig. 1A and B). Comparison of identically prepared wild-type
P (PWT) and PΔOD on denaturing and native protein gels reveals that deletion of the
oligomerization domain yields a P variant whose mobility is altered, consistent with the
loss of the 8-kDa OD (Fig. 1B). To provide evidence that PΔOD is present as a monomer
in solution, we used size exclusion chromatography and multiple-angle laser light
scattering (SEC-MALS). Both PWT and PΔOD elute as single monodisperse peaks (Fig. 1C)
and allowed us to calculate the molar mass of the corresponding protein. For PWT, the
measured weight-averaged molar mass of 56.2 kDa was within the range of the
expected mass of a full-length P dimer (60.6 kDa). The weight-average molar mass
(22.6 kDa) for PΔOD is in good agreement with the expected molar mass for a monomer
(22.4 kDa). Thus, deletion of the oligomerization domain of VSV P renders the protein
monomeric in solution.

P�OD is functional for RNA synthesis in vitro. We next compared the ability of PWT

and PΔOD to stimulate LRdRP activity using an in vitro assay with chemically synthesized
RNA as the template (21). At equimolar amounts, PΔOD and PWT stimulate the LRdRP

indistinguishably (Fig. 2A). The natural template for RNA synthesis is, however, the

FIG 1 Characterization of PΔOD. (A) Schematic of VSV PWT and PΔOD showing their modular organization
with the N-terminal domain (NTD), L-binding domains (LBD), oligomerization domain (OD), and
C-terminal domain (CTD) represented as rectangles. (B) Analysis of purified PWT and PΔOD proteins by
polyacrylamide gel electrophoresis on a denaturing gel (left) and a native gel (right). Sizes of two bands
of the protein ladder (m) are indicated. (C) SEC-MALS analysis of purified PWT (solid lines) and PΔOD

(dashed lines) proteins. The horizontal red traces show the inferred molecular mass. Predicted molecular
masses for monomeric and dimeric PWT are 30.3 kDa and 60.6 kDa, respectively. For monomeric and
dimeric PΔOD, predicted molecular masses are 22.4 kDa and 44.8 kDa, respectively. Observed experimen-
tal molecular masses are 56.2 kDa and 22.6 kDa for PWT and PΔOD, respectively.
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genomic RNA completely encased in a nucleocapsid protein sheath. To compare the
ability of PWT and PΔOD to facilitate L-mediated copying of the natural template, we
isolated N-RNA from virions and reconstituted RNA synthesis in vitro. Briefly, N-RNA is
incubated with purified L and equimolar amounts of PWT or PΔOD, and RNA synthesis
assessed by incorporation of [32P]GTP with subsequent analysis of the products on
acid-agarose gels (Fig. 2B). The results of this analysis demonstrate that both PΔOD and
PWT have the ability to produce the 5 viral mRNAs, confirming that the oligomerization
domain of P is not required for mRNA synthesis. We observed, however, an apparent
increase in mRNAs produced by PΔOD, and this was seen consistently among experi-
ments.

A recombinant VSV lacking the oligomerization domain of P is defective in
viral multiplication. To examine whether oligomerization of P is required for viral
amplification in cell culture, we deleted residues 107 to 177 of P in an infectious
molecular clone of the virus that expresses enhanced green fluorescent protein (eGFP)
as a marker of infection (Fig. 3A). The resulting virus, VSV-eGFP-PΔOD, exhibits a growth
defect in cell culture, as is evident by both its plaque size (Fig. 3B) and a 4-h delay
before the onset of the exponential phase of virion production in a single-step growth
assay (Fig. 3C). Molecular characterization of the virus revealed that the genomic
sequence retained the desired deletion and that the composition of purified VSV-eGFP-
PΔOD virions is indistinct to those of VSV-eGFP-PWT by SDS-PAGE with respect to the
relative amounts of the 5 viral proteins and the particle-to-PFU ratio (Fig. 3D). This result
indicates that ablation of the oligomerization domain of P has little effect on protein
incorporation into particles but attenuates viral growth in cell culture.

To begin to understand the mechanism underlying the kinetic delay in viral multi-
plication, we compared the ability of VSV-eGFP-PWT and VSV-eGFP-PΔOD to undertake
primary transcription in cells. Cells were treated with cycloheximide and actinomycin D
to block protein and cellular RNA synthesis, respectively, and infected with the indi-
cated virus at a multiplicity of infection (MOI) of 100, and viral RNA synthesis was
monitored by metabolic incorporation of [32P]orthophosphate. At various times postin-
fection, total cellular RNA was extracted and analyzed by acid-agarose gel electropho-
resis, and the products of primary transcription were detected by phosphor image
analysis. The abundance of each viral mRNA was similar for VSV-eGFP-PWT and VSV-

FIG 2 Functional analysis of PΔOD in vitro. Reactions were performed in the absence (Ø) or presence of
equimolar amounts of PWT or PΔOD using purified L and either a synthetic, naked 19-nt RNA template
corresponding to the 3= leader sequence of the VSV genome (A) or a purified, encapsidated N-RNA
template (B). Radioactive products were analyzed by gel electrophoresis on a 20% acrylamide gel (A) or
a 1.75% acid-agarose gel containing 6 M urea (B). (A) n � 1 replicate; (B) representative experiment (n � 3
replicates).
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eGFP-PΔOD (Fig. 3E), demonstrating that loss of the oligomerization domain of P does
not compromise transcription. Consistent with the experiments of Fig. 2B, VSV-eGFP-
PΔOD primary transcription appears to generate more mRNA than VSV-eGFP-PWT.
Quantitation of the N mRNA signal coupled with statistical analysis yields a P value of
0.0562 (Fig. 3E). This result demonstrates that the polymerase packaged into particles
remains associated with the N-RNA template in the absence of the POD and that there
is no apparent consequence for the stability of the polymerase complex. Furthermore,
because the relative proportions of the viral mRNAs are indistinct, POD is not required
to retain the L protein on the template as it navigates gene junctions. These data imply
that a step downstream of transcription, likely RNA replication, is responsible for the
observed kinetic delay in viral growth.

The oligomerization domain of P affects protein diffusion in viral replication
compartments. Following infection of cells, the viral replication machinery is found in
the cytoplasm in a compartment that is not bounded by a membrane (22, 23). Work
with rabies virus implicates the oligomerization domain of its phosphoprotein as
required for the reconstitution of such compartments (24). We therefore generated a
recombinant virus expressing PΔOD fused to eGFP at its N terminus (termed VSV-eGFP/

FIG 3 Characterization of a recombinant VSV expressing PΔOD. (A) Schematic representation of the
recombinant virus genomes. (B) Viral spreading as seen by plaque assay on Vero cells infected with
VSV-eGFP-PWT or VSV-eGFP-PΔOD. (C) Viral growth kinetic on Vero cells infected with VSV-eGFP-PWT (PWT,
black line) or VSV-eGFP-PΔOD (PΔOD, dotted line) at an MOI of 3. Supernatants were harvested and titers
determined at 4, 6, 8, 10, 12, and 24 h postinfection. Statistical analysis was performed by a paired t test.
* P, � 0.05; ** P, � 0.005; *** P, � 0.0005; ns, nonsignificant. (D) Analysis of virion protein content.
Gradient-purified virions (108 PFU) were denaturated by SDS and heat and analyzed by SDS-PAGE and
Coomassie staining. (E) In phosphate-free media supplemented with radioactive [32P]orthophosphate,
BSR-T7 cells were treated with 10 �g/ml actinomycin D and 100 �g/ml cycloheximide and infected at an
MOI of 100 with VSV-eGFP-PWT or VSV-eGFP-PΔOD. RNA was extracted at 2, 3, 4, 5, and 6 h postinfection
and analyzed on a 1.75% acid-agarose gel containing 6 M urea. Representative experiment (n � 4).
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PΔOD), which allows visualization of the replication compartment (Fig. 4A). The eGFP/P
viruses differ from eGFP-P, which encodes an eGFP reporter from a separate transcrip-
tion unit inserted between the leader and N genes. As seen for wild-type P, we found
the eGFP/PΔOD concentrates in structures that look morphologically similar (Fig. 4B). We
next compared the properties of the compartments by measuring fluorescence recov-
ery after photobleaching (FRAP) of eGFP/P. To take into account the growth delay of
VSV-eGFP-PΔOD, experiments were performed at 6 and 10 hpi for VSV-eGFP/PWT and
VSV-eGFP/PΔOD, respectively. Previous work demonstrated that the size of viral repli-
cation compartments impacts the diffusion properties of the viral proteins (25). We
therefore selected similar-sized structures for this analysis which were present in cells
infected with VSV-eGFP/PWT at 6 hpi and cells infected with VSV-eGFP/PΔOD at 10 hpi.
We measured a half-maximal recovery time of 12.3 s for eGFP/PWT containing com-
partments compared with 2.1 s for compartments containing eGFP/PΔOD (Fig. 4B and

FIG 4 FRAP analysis of replication compartments. (A) Schematic representation of the recombinant virus
genomes. (B, C) Vero cells were infected at an MOI of 3 with VSV-eGFP/PWT or VSV-eGFP/PΔOD, and eGFP
was visualized with a spinning disk confocal microscope at 6 and 10 h postinfection for VSV-eGFP/PWT

and VSV-eGFP/PΔOD, respectively. Fluorescence recovery after photobleaching (FRAP) experiments were
performed on areas of 4 �m2 located inside compartments. Recovery fluorescence was measured every
500 ms for 50 s. (B) Infected cells before photobleaching (left), and zoomed-in pictures taken at indicated
times after photobleaching (right). Dashed and dotted lines delimit the cells and the nucleus, respec-
tively. Squares represent the zoomed-in sections. (C) FRAP data were corrected for background, normal-
ized to the minimum and maximum intensities. The mean is shown on the black line, with the gray zone
representing the SD. Mean experimental curves were fitted with double-exponential models (red line;
VSV-eGFP/PWT, R2 � 0.997; VSV-eGFP/PΔOD, R2 � 0.996). Statistical comparison of the two data sets was
performed using the Kolmogorov-Smirnov test. P � 0.0001.
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C). This result demonstrates that PΔOD recovers more rapidly from photobleaching,
which means that the protein must undergo a more rapid diffusion and exchange of
PΔOD than wild-type P. This is consistent with the expected reduction in intermolecular
interactions following ablation of the oligomerization domain.

RNA replication requires higher N protein concentrations for monomeric P.
Viral genome replication is obligatorily coupled to encapsidation of the nascent RNA
chain by soluble nucleocapsid proteins, and available evidence underscores the central
role of P in that assembly process (26, 27). To directly measure the influence of the
oligomerization domain of P on RNA replication, we employed a cell-based assay of
RNA replication for a well-characterized defective interfering (DI) particle of VSV, DI-T
(28). The genome of DI-T contains a 5= copyback arrangement in which the antigeno-
mic promoter, which exclusively supports replication, drives synthesis from both the
genomic and antigenomic strands. In this assay, BSR-T7 cells are infected with DI-T
particles and transfected with different amounts of plasmids expressing L, N, and PWT

or PΔOD. The products of RNA replication are then directly detected by metabolic
incorporation of radioactive orthophosphate in the presence of actinomycin D, purified,
and analyzed by acid-agarose electrophoresis (Fig. 5A). The acid-agarose gels facilitate
the separation of the positive and negative strands of the DI genome RNA, allowing us
to measure both genome and antigenome synthesis. Quantitation of the DI-T genome
and antigenome bands demonstrates that they increase over time at a similar rate and
reach the same levels for PWT and PΔOD, but it highlights a delay in accumulation of
replication products for PΔOD (Fig. 5A).

We next hypothesized that the oligomerization domain of P could serve to concen-
trate N during the process of nascent strand encapsidation, which would suggest that
a higher concentration of N would further stimulate replication for PΔOD. It was
previously established that altering the concentration of N plasmid transfected into
cells alters the concentration of N protein and that there is an optimal N-P ratio to
support maximal replication (29). The optimal N plasmid concentration to support
maximal replication is higher for PΔOD than PWT, consistent with higher concentrations
of N protein being required for replication (Fig. 5B). Together with the time course
experiment, these results suggest that P oligomerization plays a role in genome
replication by lowering the N concentration threshold required to initiate the replica-
tion phase of the cycle.

DISCUSSION

The major conclusions of this study are (i) the oligomerization domain of VSV P
results in its dimerization, (ii) P dimerization is dispensable for all aspects of viral mRNA
transcription, and (iii) P dimerization stimulates RNA replication. We also present
evidence in support of a mechanism where the dimerization-mediated stimulation of
replication is likely accomplished by facilitating encapsidation of the nascent replicative
product at an optimal N protein concentration that is lowered by the presence of the
oligomerization domain. We suggest that this is a central function of the P proteins of
all Mononegavirales and that interfering with the oligomeric state of P may serve as a
general mechanism to inhibit replication of these viruses.

VSV P protein dimerization. The oligomeric status of VSV P has been variably
reported as trimer (30), tetramer (31), and, most recently, following structural studies of
the oligomerization domain, as a dimer (18, 32). The SEC-MALS data presented here
provide support that P exists as a homodimer and that homodimerization is mediated
by the oligomerization domain. During the preparation of the manuscript, Gérard and
colleagues published structural analyzes of purified PΔOD confirming PΔOD is mono-
meric in solution and showing its global architecture is not affected by the loss of the
OD (33). In addition to forming a homodimer, P has additional viral binding partners,
including N-RNA, N0, and L. Using electron cryomicroscopy, we recently defined key
contacts between L and two regions of the P N-terminal domain (PNTD) (19). In that
structure, however, P is noncontiguous; thus, we cannot exclude the possibility that 2
separate molecules of P can bind L. Crystallographic studies showed the PCTD binds the
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N-RNA at an interface only formed by adjacent N protomers (17). The engagement of
the N-RNA by the PCTD raises the possibility that even in the absence of an oligomer-
ization domain, P may be able to effectively function as an oligomer with respect to L
through its template-binding properties. Additional structural studies are likely to help
unravel this question.

Virion production. Since the production of infectious viral particles is delayed for
a virus expressing PΔOD, one or several of the viral cycle steps, including viral entry,

FIG 5 Effect of PΔOD on viral RNA synthesis. (A) BSR-T7 cells were infected with DI-T for 1 h and
transfected with plasmids coding for L, N, and PWT or PΔOD. At 1.5, 2, 2.5, 3, 3.5, or 4 h posttransfection,
cells were incubated for 3 h in phosphate-free media supplemented with radioactive [32P]orthophos-
phate and 10 �g/ml actinomycin D. RNA was harvested and analyzed on a 1.75% agarose gel containing
6 M urea (left). DI-T band intensities were quantified and plotted as percentage of maximal intensity
(right). Times of harvest posttransfection are indicated. DI-T bands are marked with an asterisk. Repre-
sentative experiment (n � 4). (B) BSR-T7 cells were infected with DI-T for 1 h and transfected with
plasmids coding for L, N, and PWT or PΔOD. Increasing amounts of plasmid coding for N were transfected
with 0.4, 1, 1.6, 2.2, 2.8, and 3.4 �g for PWT and 1, 1.6, 2.2, 2.8, 3.4, and 4 �g for PΔOD. Five hours
posttransfection, cells were incubated for 3 h in phosphate-free media supplemented with radioactive
[32P]orthophosphate and 10 �g/ml actinomycin D. RNA was harvested and analyzed on a 1.75% agarose
gel containing 6 M urea (left). DI-T band intensities were quantified and plotted as percentage of maximal
intensity (right). Representative experiment (n � 2).
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primary transcription, genome replication, or particle assembly, must be affected. Using
a similar recombinant virus, Gérard and colleagues did not see any strong effect of the
loss of the OD on virion production (33). We cannot explain the different conclusion of
this earlier study, but this may reflect strain differences or the use of different assays
between our studies. Our conclusion that the loss of the OD affects viral replication by
influencing a key step involved in viral RNA replication and genome encapsidation
comes from biochemical analysis of the RNA products synthesized from a naturally
occurring defective interfering particle of VSV. This assay differs from the use of
synthetic minigenome in the earlier work. Additional work will be required to under-
stand the basis for this distinction.

Viral replication compartments. For rabies virus, the POD is reported to be
essential for the formation of the viral replication compartment in infected cells (24).
This is not the case for VSV-eGFP/PΔOD, which still forms compartments. While such
compartments form in cells infected with VSV-eGFP/PΔOD, the properties of the com-
partments differ with respect to the diffusion of eGFP/PWT, as evidenced by a 6-fold
faster recovery rate following photobleaching. We interpret that increased recovery
rate as reflective of the loss of the oligomerization domain, effectively decreasing the
number of partners for P in its monomeric versus dimeric states, and that those
interactions contribute to the slower recovery observed in wild-type infected cells. As
the properties of inclusions alter with their size, which itself is related to the stage of
the infectious cycle, we cannot exclude that the difference in P diffusion might also be
linked to the acquisition of the data at 6 versus 10 hours postinfection (hpi) rather than
intrinsic differences between PWT and PΔOD.

Viral transcription. Reconstitution of transcription in vitro on naked RNA or on
purified N-RNA templates was unaffected by the loss of the OD. Consistent with this
observation, measures of primary mRNA transcription by the polymerase molecules
brought into cells with the infecting virus were also unaffected. Collectively, those data
provide compelling evidence that no step of transcription, including initiation, cap
formation, elongation, polyadenylation, termination, and reinitiation, require the pres-
ence of the OD. We consistently observed an increase in levels of transcription with
PΔOD, although quantitation of the N mRNA indicated that this difference was not
significant. Additional work will be required to understand the basis of this observation.
An earlier model of migration of the polymerase complex of Sendai virus, a related virus
in the family Paramyxoviridae, posited that the polymerase cartwheels along the N-RNA
template via the interaction between the PCTD of its tetrameric P and the nucleocapsid
(34). Such a cartwheeling model suggests that dissociation of the polymerase at gene
junctions would be favored when interactions between P and the N-RNA template are
compromised. Studies with measles virus found that modulation of the interaction
between its PCTD and the N-RNA alters the relative abundance of viral mRNAs (35, 36).
In contrast, deletion of the oligomerization domain of VSV P does not alter the gradient
of transcripts produced from the template, suggesting that the interaction between the L
protein and template is not compromised. This suggests that either modifying the strength
of the VSV PCTD-N-RNA interaction by tuning its affinity or its avidity has different outcomes,
or the interaction of VSV PCTD with the N-RNA is not a key determinant of transcription
reinitiation at gene junctions.

RNA replication. During RNA replication, in addition to the requirements for P as a
cofactor for the polymerase and its role in binding the N-RNA template, P loads soluble
N protomers onto the nascent RNA (26, 27). The availability of a pool of N0-P for loading
onto that nascent strand is thought to regulate polymerase activity during leader
synthesis, coupling the nascent strand encapsidation to genome replication (14, 37).
Absent robust assays for the in vitro reconstitution of RNA encapsidation, direct tests of
the role of the POD in encapsidation are not possible, and therefore, in this study, we
used a cell-based assay that reports on encapsidation indirectly by measuring the
accumulation of the products of RNA replication. Using that assay, we attained evi-
dence that when equal amounts of N and L are available, the kinetics with which RNA
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replication is established with PΔOD are slower. We also found that replication is further
stimulated by increasing the amount of N in cells through increasing levels of an N
expression plasmid. The structure of the VSV L-P complex reveals that the region of P
that binds N0 is positioned by the RNA exit channel from the polymerase poised to
encapsidate the nascent RNA strand (19). We cannot exclude the possibility that the OD
itself plays a role during the replication, nor that changing the spatial arrangement of
the N-terminal and C-terminal domains impairs proper function. However, as both PNTD

of a PWT dimer can bind simultaneously an N monomer, perhaps dimerization of P
facilitates a local increase in the concentration of N0 at the site of encapsidation
favoring RNA replication (32). As PWT is a dimer, its interaction with N0 is likely enhanced
by avidity, thus potentially further increasing the recruitment of N0 at the encapsidation
site. Robust in vitro encapsidation assays and structural studies of polymerase com-
plexes during RNA replication will likely prove informative.

MATERIALS AND METHODS
Cells. BSR-T7 cells (a kind gift from K. Conzelmann) (38) and African green monkey kidney Vero cells

(ATCC CCL-81) were maintained in Dulbecco’s modified Eagle’s medium (DMEM; Corning Inc.; product
no. 10-013-CV) containing 10% fetal bovine serum (FBS; Tissue Culture Biologicals; catalog no. 101) at
37°C and 5% CO2.

Plasmids. For bacterial expression and purification, a gBlocks gene fragment (Integrated DNA
Technologies, Inc.) coding for 6�His/PΔOD was cloned in a pET16b vector (16). To rescue recombinant
VSV, pVSV1�-eGFP-PΔOD was derived from pVSV1�-eGFP (39). pVSV1�-eGFP and a gBlocks gene frag-
ment containing the sequence of the end of the N gene, the N-P intergenic region, and the PΔOD gene
were digested with AloI and BstZI17I restriction enzymes and ligated together.

pVSV1�-eGFP/PΔOD was derived from pVSV1�-eGFP/P (40) after amplification of the PΔOD gene from
pVSV1�-eGFP-PΔOD and insertion by ligation.

Viruses. VSV-eGFP-PWT and VSV-eGFP/PWT were described previously (39, 40). VSV-eGFP-PΔOD and
VSV-eGFP/PΔOD were rescued following previously described protocol (41) using pVSV1�-eGFP-PΔOD and
pVSV1�-eGFP/PΔOD plasmids, respectively. Virus stocks were grown on BSR-T7 cells, and we determined
the titer by plaque assay on BSR-T7 or Vero cells. Briefly, cells were seeded in DMEM-10% FBS and
infected 1 day later for 1 h with viruses at a multiplicity of infection (MOI) of 0.01. Virus suspensions were
replaced by DMEM-2% FBS, and cell supernatants were harvested when 95% of the cells were infected
and ready to detach (about 24 h for VSV-eGFP-PWT). For gradient-purified viruses, infected cell super-
natant was first concentrated through a 15% sucrose cushion in NTE (10 mM Tris-HCl pH 7.4, 100 mM
NaCl, and 1 mM EDTA) at 110,000 � g for 2 h at 4°C. Pellets were resuspended overnight at 4°C in NTE,
put on top of a linear 15 to 45% sucrose gradient in NTE, and centrifuged at 200,000 � g for 3 h at 4°C.
Bands corresponding to virus were collected in 0.5-ml tubes by side puncture of the tube and diluted 10
times in NTE.

Proteins and nucleocapsid purification. P and PΔOD were purified from BL21(DE3) Escherichia coli
cells and the L protein from Spodoptera frugiperda 21 (Sf21) cells as previously described (16). Briefly, after
cell lysis, proteins were affinity purified with HisTrap HP (Ge Healthcare) followed by gel filtration
(Superdex 200 HR 10/30; GE Healthcare). P proteins were stored in 20 mM Tris (pH 7.4), 150 mM NaCl, and
1 mM dithiothreitol (DTT) buffer, and L proteins were stored in 50 mM Tris-HCl (pH 7.4), 200 mM NaCl,
15% glycerol, and 1 mM DTT buffer. N-RNA templates were purified from gradient-purified VSV-eGFP-
PΔOD virions as previously described (42).

Size exclusion chromatography with multiangle light scattering. SEC-MALS analysis was per-
formed on an Agilent 1260 Infinity liquid chromatography system in phosphate-buffered saline (PBS) by
use of a Wyatt Dawn Heleos II multiangle light scattering detector and Optilab T-rEX refractive index
detector at the Center for Macromolecular Interactions, Harvard Medical School. Data were processed
using Astra 7, and weight-averaged molar mass was fit using the Zimm method and a protein refractive
index increment of 0.185. Fitting errors of 0.7% and 1.4% were achieved for PWT and PΔOD, respectively.

In vitro RNA synthesis assays. In vitro RNA synthesis assays on naked RNA were performed as
previously described (21) using purified L protein and either PWT or PΔOD. Transcription assays on
encapsidated RNA were performed using N-RNA extracted from VSV-eGFP-PΔOD virions and purified PWT,
PΔOD, and L proteins (42).

Analysis of primary transcripts. BSR-T7 cells were seeded in 6-well plates and incubated 1 day later
in phosphate-free DMEM (Gibco; catalog no. 11971-025) for 30 min followed by a 30-min incubation in
phosphate-free DMEM containing 10 �g/ml actinomycin D (Sigma; catalog no. A5156) and 100 �g/ml
cycloheximide (VWR; catalog no. 94271). Cells were then infected for 30 min with sucrose cushion-
purified virus at an MOI of 100. Virus solutions were replaced by 1 ml phosphate-free DMEM containing
10 �g/ml actinomycin D, 100 �g/ml cycloheximide, and 10 �l of phosphorus-32 radionuclide (Perkin-
Elmer; catalog no. NEX053H005MC). At 2, 3, 4, 5, and 6 h postinfection, RNA was extracted using TRIzol
reagent (Invitrogen; catalog no. 15596018) following the manufacturer’s protocol. RNA was boiled at
100°C for 1 min, incubated on ice for 2 min, mixed with a 1.33� loading buffer (33.3 mM citrate pH 3, 8
M urea, 20% sucrose, and 0.001% bromophenol blue), and analyzed on a 25 mM citrate, pH 3, 1.75%
agarose, 6 M urea gel run for 18 h at 4°C and 180 V. Gels were fixed (in 30% methanol and 10% acetic
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acid), dried, and exposed overnight to a phosphor screen (GE Healthcare), and the radiolabeled RNA
products were visualized using a Typhoon FLA 9500 scanner (GE Healthcare).

Analysis of DI-T replication. BSR-T7 cells were seeded in 6-well plates and infected 1 day later with
a recombinant vaccinia virus expressing the T7 polymerase (vTF7-3) and DI-T particles for 1 h at 37°C in
Dulbecco’s PBS (DPBS; Sigma; catalog no. 59300C). Cells were then transfected using Lipofectamine 2000
with plasmids expressing L (0.24 �g), N (2.9 �g or indicated amounts), and P or PΔOD (0.8 �g). Five hours
later or at indicated hours, the medium was removed, and cells were incubated in 1 ml phosphate-free
DMEM containing 10 �g/ml actinomycin D for 30 min before the addition of 10 �l of phosphorus-32
radionuclide. Cells were incubated for 3 h at 37°C before RNA was harvested by the use of TRIzol reagent
following the manufacturer’s protocol. RNA was boiled at 100°C for 1 min, incubated on ice for 2 min,
mixed with a 1.33� loading buffer (33.3 mM citrate pH 3, 8 M urea, 20% sucrose, and 0.001%
bromophenol blue), and analyzed on a 25 mM citrate, pH 3, 1.75% agarose, and 6 M urea gel run for 18
h at 4°C and 180 V. Gels were fixed (in 30% methanol and 10% acetic acid), dried, and exposed overnight
to a phosphor screen (GE Healthcare), and the radiolabeled RNA products were visualized using a
Typhoon FLA 9500 scanner (GE Healthcare). DI-T band intensities were quantified with ImageJ software.

FRAP of viral replication compartments. Vero cells were plated at 3 � 105 cells per chamber in a
8-well chambered cover glass (Cellvis) and infected 20 and 24 h later at an MOI of 3 by VSV-eGFP/PΔOD

and VSV-eGFP/PWT, respectively. Thirty hours after seeding, the photobleaching was performed using the
Vector photomanipulation module attached to a Marianas spinning disk confocal platform (3i, Denver,
Colorado). The images were acquired using a Plan-Apochromat 100�/1.4 oil lens (Carl Zeiss, Jena,
Germany). The incubation system (Okolab, Naples, Italy) was set at 5% CO2 and 37°C. Four images were
acquired prior to bleaching and imaging with the 488-nm laser.

For data analysis, mean background fluorescence was measured from an area outside the cells and
subtracted from other measurements. Mean fluorescence intensities of each photobleached area were
also corrected for the photobleaching that occurred during image acquisition postbleach and normalized
by the average fluorescence prebleach. Photobleaching postbleach was measured on nonbleached
compartments. After normalization, mean recovery was calculated using EasyFRAP (43) and fit with a
double-exponential model: Y(t) � Y0 � Afast(1 � e�Kfast*t) � Aslow(1 � e�Kslow*t).
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