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ABSTRACT
Background: Low serum magnesium (Mg) concentrations have
been associated with higher coronary artery disease (CAD) risk.
A previous Atherosclerosis Risk in Communities (ARIC) Study
article that evaluated the Mg–CAD association, based on 319 events
occurring over 4–7 y, identified a sex-interaction whereby the inverse
Mg–CAD association was much stronger among women than men.
More than 1700 additional ARIC CAD events have since accrued.
Objective: We aimed to test our hypothesis that serum Mg is
inversely and independently associated with long-term CAD risk in
ARIC and in a meta-analysis with other prospective studies.
Methods: A total of 14,446 ARIC study participants (baseline
mean ± SD age: 54 ± 6 y, 57% women, 27% African American)
were followed for incident CAD through 2017. CAD events were
defined by myocardial infarction or CAD mortality. Serum Mg was
modeled as quintiles based on mean visit 1 (1987–1989) and visit 2
(1990–1992) concentrations. Cox regression models were used. We
also conducted a random-effects meta-analysis incorporating these
contemporary ARIC findings.
Results: Over a median follow-up of 27 y, 2131 incident CAD cases
accrued. Overall, low serum Mg was associated with higher CAD
risk after adjustment for demographics, lifestyle factors, and other
CAD risk factors than was higher serum Mg (HR Q1 compared
with Q5: 1.28; 95% CI: 1.11, 1.47; P-linear trend <0.001). The
association was stronger among women (HR Q1 compared with Q5:
1.53; 95% CI: 1.22, 1.92) than men (HR: 1.11; 95% CI: 0.92, 1.34)
(P-interaction = 0.05). In the meta-analysis including 5 studies, the
pooled RR (95% CI) for CAD in the lowest compared with the
highest circulating Mg category was 1.18 (1.06, 1.31) (I2 = 22%, P-
heterogeneity = 0.27).
Conclusions: In this large community-based cohort and updated
meta-analysis, low circulating Mg was associated with higher CAD

risk than was higher Mg. Whether increasing Mg concentrations
within healthy limits is a useful strategy for CAD prevention remains
to be seen. Am J Clin Nutr 2020;111:52–60.
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Introduction
Magnesium (Mg) is an abundant cation and micronutrient that

plays many crucial roles in the body by activating enzymes,
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contributing to energy production, and regulating concentrations
of calcium and related biomarkers (1). Serum total Mg has
traditionally been used to assess Mg status in both research
and clinical settings (2, 3). Low serum Mg has been associated
with increased risk of many outcomes, including increased
incidence of cardiovascular disease (CVD) (4, 5), hypertension,
and diabetes (6) in observational studies. In meta-analyses of
randomized controlled trials, Mg supplementation has incon-
sistently been associated with reductions in blood pressure (7,
8), and reductions in fasting glucose concentrations among
individuals with diabetes (9). The strongest evidence that serum
Mg may be causally related to CVD risk comes from a recent
Mendelian randomization study, in which genetically predicted
higher serum Mg was associated with lower risk of coronary
artery disease (CAD) (10). The association between low Mg
and CVD may arise through numerous physiological pathways,
such as elevated blood pressure, chronic inflammation, hyper-
glycemia, or impaired vasomotor tone and peripheral blood flow
(2, 11).

A previous publication from the Atherosclerosis Risk in
Communities (ARIC) Study cohort evaluated serum Mg in
relation to incident CAD. That analysis, based on 319 events
occurring over 4–7 y, identified a sex-interaction whereby the
inverse Mg–CAD association was much stronger among women
than men (i.e., quartiles 4 compared with 1 HR in women: 0.55;
95% CI: 0.27, 1.14; men: 0.84; 95% CI: 0.53, 1.31) (12). Since
then, associations between low circulating Mg and CAD risk
have been inconsistently found in the NHANES Follow-up I (13),
Prevention of Renal and Vascular End-Stage Disease study (14),
Framingham Offspring Study (15), and the Nurses’ Health Study
(16). Three meta-analyses on the association between serum
Mg and CVD have been conducted; all incorporated the sex-
stratified results from this early ARIC analysis and showed low
serum Mg to be associated with greater risk of CAD (4–6).
However, ∼1700 more incident CAD events over 22 additional
years of follow-up have been ascertained since the original ARIC
publication.

Given growing interest in the association between Mg and
CAD, we sought to update the ARIC analysis on Mg and CAD
risk in order to achieve greater precision and to conduct an
updated meta-analysis. We hypothesized that serum Mg would
be inversely associated with incidence of CAD.

Methods

The ARIC study

The ARIC study (17) is a prospective community-based
cohort study which began in 1987–1989, and has >30 y of
follow-up. Participants were recruited from 4 locations (suburbs
of Minneapolis, MN; Forsyth County, NC; Jackson, MS; and
Washington County, MD). ARIC has conducted continuous
surveillance for hospitalizations by annual or semiannual follow-
up telephone calls, and performed several postbaseline clinic vis-
its (visit 2: 1990–1992; visit 3: 1993–1995; visit 4: 1996–1998;
visit 5: 2011–2013; and visit 6: 2016–2017). Institutional review
board approval was obtained at each study site for each visit. Par-
ticipants provided written informed consent at each clinic visit.

Measurements

Participants were asked to fast for >8 h before each ARIC
clinic visit. At each visit, participants were interviewed and un-
derwent anthropomorphic measurements, sitting blood pressure
measurements (after 5 min rest), and a blood draw. Participants
were also asked to bring bottles of current medications to
the visit; medication names and dosages were transcribed and
coded. Systolic blood pressure was quantified based on the mean
of the second and third blood pressure measurements. BMI
was calculated as kg/m2. Physical activity (sports index) was
quantified using the validated Baecke questionnaire (18).

Blood samples were frozen until analysis (soon after the
clinic visit) at the University of Minnesota Central Chemistry
Laboratory. Blind duplicate samples from the original samples
taken at visit 1 were sent ∼1 wk apart in order to calculate the
laboratory CV. Serum Mg was measured at visit 1 (1987–1989)
using metallochromic dye calmagite [1-(1-hydroxy-4-methyl-
2-phenylazo)-2-naphthol-4-sulfonic acid] based on the Gindler
and Heth procedure (CV: 3.6%) (19). Serum Mg was measured
at visit 2 (1990–1992) using similar procedures (CV: 3.6%).
At both visits 1 and 2, serum Mg was reported to 1 decimal
place.

Serum creatinine was measured using a modified kinetic
Jaffe method (CV: 3.7%). Diabetes was defined as having a
fasting glucose concentration ≥126 mg/dL, nonfasting glucose
concentration ≥200 mg/dL, self-reported use of diabetes
medication, or self-reported physician diagnosis. Estimated
glomerular filtration rate (eGFR) was calculated using serum
creatinine (20) and eGFR was categorized using established
clinical cutoffs (≥90, 60 to <90, and 15 to <60 mL · min−1 ·
1.73 m−2). Total cholesterol and HDL cholesterol were measured
in plasma using enzymatic methods (21).

CAD ascertainment

Prevalent CAD at baseline was defined by self-reported
previous physician diagnosis of myocardial infarction (MI), or
prevalent MI by 12-lead electrocardiogram. Potential incident
CAD events were identified by 1) recent hospitalizations
identified during follow-up phone calls to participants, 2) ongoing
surveillance of community hospital discharge lists and death
certificates, and 3) linkage to state and national death indexes.
International Classification of Diseases, 9th revision codes were
recorded from all hospitalizations and possible hospitalized
CAD events were abstracted onto standardized forms. Possible
coronary deaths occurring out-of-hospital were investigated
through physician questionnaires and next-of-kin interviews. All
CAD events were adjudicated by physician review. CAD events
were defined as either definite or probable MI or definite fatal
CAD based on ARIC criteria (22). ARIC criteria for fatal CAD
involved history of CAD or chest pain, underlying cause of death,
or presence or absence of a noncardiac cause of death.

Statistical analysis

Prospective analysis of the ARIC study.

As depicted in Supplemental Figure 1, we excluded partic-
ipants with prevalent CAD (n = 766) or missing information
(n = 344) on prevalent CAD at visit 1, those missing a visit 1
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serum Mg measurement (n = 122), and those with stage 5 chronic
kidney disease (eGFR <15 mL · min−1 · 1.73 m−2) (n = 19).
In addition, owing to small numbers, participants who reported
a race other than white or African American (n = 44) as well
as African Americans at the Minnesota and Washington County
sites (n = 51) were excluded. A total of 14,446 ARIC study
participants were included in this analysis.

Multivariable Cox proportional hazards regression models
were used to estimate the association between serum Mg and
CAD. Serum Mg was categorized into quintiles based on the
mean of the visit 1 and 2 concentrations (to improve precision),
with ties going to the lowest group. For individuals who did not
attend visit 2 or were censored before visit 2, their visit 1 serum
Mg measurement was used for ranking. For those individuals who
attended both visits and were censored after visit 2, the mean
value of their 2 serum Mg measurements was used for ranking.
There were 1250 individuals who did not attend visit 2 and 70
nonfatal CAD events occurred between visits 1 and 2. Person-
time was calculated from visit 1 to the CAD event, date of death,
date of last contact, or through 31 December, 2017, whichever
came first.

Restricted cubic splines were used to examine the presence of
a dose–response association. We also tested for linear trend by
including Mg quintiles in the models as an ordinal variable and
per 1-SD (i.e., 0.14 mEq/L) decrement. We tested for violations of
the proportional hazards assumption by assessing whether there
was a multiplicative interaction between Mg and ln(time), and by
visual inspection of ln(−ln) survival curves.

We employed multiple models to sequentially adjust for
potential confounders of the association between Mg and CAD.
In Model 1, we adjusted for demographic variables: age, sex,
and race-center. In Model 2, we further adjusted for adiposity
and behavioral confounders: BMI, education, smoking status
(current/former/never), pack-years of smoking, physical activity
sports index, drinking status (current/former/never), and ethanol
intake (in grams per week). In Model 3, we further adjusted
for traditional CAD risk factors: diabetes, HDL cholesterol,
total cholesterol, use of lipid-lowering medications, systolic
blood pressure, use of antihypertensive medications, and eGFR
(categorized as ≥90, 60 to <90, or 15 to <60 mL · min−1 · 1.73
m−2), and, in women, the use of hormone therapy. We examined
multiplicative interactions of Mg quintiles with age, race, sex,
and eGFR (modeled continuously and categorically) by including
cross-product terms in the models. Based on the early findings in
ARIC suggesting a sex-interaction, we decided a priori to provide
sex-stratified results.

To test the robustness of our findings, we conducted several
sensitivity analyses. First, we excluded individuals on diuretics,
which tend to decrease serum Mg concentrations. Second,
we examined the association using the visit 1 serum Mg
measurement only to see if the results were similar to the results
using both visit 1 and visit 2 serum Mg measurements. Lastly, we
looked at the associations of serum Mg with nonfatal CAD and
fatal CAD as separate outcomes.

Two-tailed P values of 0.05 were used for tests of statistical
significance. For tests of interactions, if this threshold was met,
stratum-specific estimates were examined. SAS version 9.4 (SAS
Institute) was primarily used for the ARIC analysis, whereas
STATA version 14.1 (StataCorp LLC) was used to generate the
restricted cubic splines.

Meta-analysis.

In the meta-analysis, we include our ARIC findings and all
prospective observational (cohort or nested case-control) studies
of circulating Mg and incident CAD that were published before
July 2019, were written in English, and included an effect
estimate and a measure of statistical uncertainty. Published
articles were identified via PubMed searches from inception
until September 2018. The following Medical Subject Headings
search terms were used: (“micronutrients” OR “magnesium”
OR “magnesium deficiency”) AND (“cardiovascular disease”
OR “myocardial infarction” OR “ischemic heart disease” OR
“coronary heart disease”) AND (“cohort studies” OR “follow-up
studies” OR “longitudinal studies” OR “prospective studies” OR
“nested case-control studies”). We then used a similar approach
with EmBase, SCOPUS, or Google Scholar, or after hand-
searching citation lists. For eligible studies, we then extracted
information related to inclusion criteria, an effect estimate, and
a measure of variability from the fully adjusted model. Many
of the prior studies published estimates comparing the highest
category with the lowest category (referent). However, because
low Mg may be problematic we felt it important to have high
Mg as the reference group in the present ARIC analysis and
meta-analysis. In order for high Mg to be the common reference
group across all articles, for articles that were published with the
lowest category as the reference group, we used a standard (23)
approach to recalculate the RR estimate and CIs using the highest
category as the reference. Study estimates for Mg categories were
pooled using random-effects meta-analysis and in a sensitivity
analysis using fixed effects. We used the Newcastle-Ottawa
quality assessment scale to estimate the quality of the eligible
studies (24). Heterogeneity was assessed using the I2 statistic. We
examined results for publication bias, visually using funnel plots
and statistically using Egger’s (25) and Begg’s (26) tests. STATA
version 14.1 (StataCorp LLC) was used for the meta-analysis.

Results

Prospective analysis of the ARIC study

Participants’ mean ± SD age at baseline was 54 ± 6 y, 57%
were women, and 27% were African American. Mean ± SD
serum Mg at visit 1 and visit 2 was 1.62 ± 0.14 mEq/L overall,
1.62 ± 0.14 mEq/L among women, and 1.63 ± 0.14 mEq/L
among men. Serum Mg at visit 1 and at visit 2 were moderately
correlated (Pearson’s r = 0.46, P value < 0.001). Those with
lower serum Mg tended to be female, African American, have
diabetes, and use antihypertensive medications (Table 1).

Over a median follow-up of 27 y, 2131 incident CAD cases
were identified. Overall, after adjustment for demographics,
serum Mg was inversely associated with CAD risk at con-
centrations of ≤1.8 mEq/L; for Mg concentrations above this
cutoff, there was no apparent association (Figure 1). The inverse
Mg–CAD association was stronger in women than in men
(Supplemental Figure 2). In quintile analyses, serum Mg was
inversely and monotonically associated with CAD risk after
demographic adjustment (Model 1 HR Q1 compared with Q5:
1.69; 95% CI: 1.47, 1.93; P value for linear trend <0.001; Table
2). A similar association between low serum Mg and higher CAD
risk was observed after further adjustment for lifestyle factors
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TABLE 1 Unadjusted baseline characteristics by serum magnesium quintiles: the ARIC study, 1987–19891

Quintiles of serum magnesium

Characteristic 1 2 3 4 5

n 3278 2669 3094 2726 2679
Magnesium, mEq/L 1.45 [0.60–1.50] 1.55 [1.55–<1.60] 1.65 [1.60–<1.70] 1.70 [1.70–<1.75] 1.80 [1.75–2.35]
Age, y 54 ± 6 54 ± 6 54 ± 6 54 ± 6 54 ± 6
Female 1986 (60.6) 1562 (58.5) 1706 (55.1) 1467 (53.8) 1452 (54.2)
African American 1439 (43.9) 671 (25.1) 745 (24.1) 529 (19.4) 442 (16.5)
Education

<High school 1029 (31.5) 564 (21.2) 625 (20.2) 536 (19.7) 541 (20.2)
High school graduate 1243 (38.0) 1125 (42.2) 1329 (43.0) 1144 (42.0) 1080 (40.4)
>High school 1000 (30.6) 977 (36.7) 1135 (36.7) 1042 (38.3) 1053 (39.4)

Sport index 2.3 ± 0.8 2.4 ± 0.8 2.4 ± 0.8 2.5 ± 0.8 2.5 ± 0.8
Smoking status

Current 927 (28.3) 666 (25.0) 813 (26.3) 667 (24.5) 680 (25.4)
Former 974 (29.8) 819 (30.7) 977 (31.6) 886 (32.5) 885 (33.1)
Never 1373 (41.9) 1181 (44.3) 1303 (42.1) 1170 (43.0) 1113 (41.6)

Pack-years smoking 315 ± 446 296 ± 416 310 ± 419 299 ± 416 303 ± 406
Drinking status

Current 1558 (47.8) 1511 (56.8) 1766 (57.2) 1672 (61.7) 1621 (60.7)
Former 702 (21.5) 459 (17.2) 564 (18.3) 432 (15.9) 464 (17.4)
Never 1002 (30.7) 692 (26.0) 755 (24.5) 606 (22.4) 586 (21.9)

Ethanol intake, g/wk 40 ± 106 38 ± 87 44 ± 95 44 ± 93 45 ± 92
Diabetes 760 (23.3) 260 (9.8) 288 (9.3) 168 (6.2) 122 (4.6)
BMI, kg/m2 29 ± 6 28 ± 5 27 ± 5 27 ± 5 27 ± 5
HDL-C, mg/dL 53 ± 19 54 ± 18 53 ± 17 54 ± 17 54 ± 17
LDL-C, mg/dL 130 ± 42 133 ± 39 136 ± 41 136 ± 38 138 ± 39
Total cholesterol, mg/dL 213 ± 44 214 ± 41 215 ± 42 215 ± 40 217 ± 42
Lipid-lowering medication use 82 (2.5) 57 (2.2) 97 (3.2) 59 (2.2) 73 (2.7)
Systolic BP, mm Hg 126 ± 20 121 ± 18 120 ± 18 119 ± 18 119 ± 17
Antihypertension medication use 1373 (41.9) 726 (27.2) 813 (26.3) 609 (22.4) 574 (21.4)
eGFR, mL · min−1 · 1.73 m−2 106 ± 18 104 ± 14 103 ± 14 101 ± 14 100 ± 15
eGFR category

≥90 mL · min−1 · 1.73 m−2 2813 (85.8) 2300 (86.2) 2638 (85.3) 2246 (82.4) 2190 (81.8)
60 to <90 mL · min−1 · 1.73 m−2 410 (12.5) 348 (13.0) 436 (14.1) 451 (16.5) 457 (17.1)
15 to <60 mL · min−1 · 1.73 m−2 55 (1.7) 21 (0.8) 20 (0.7) 29 (1.1) 32 (1.2)

Hormone therapy use (in women only) 407 (20.5) 317 (20.3) 295 (17.3) 271 (18.5) 232 (16.0)

1n = 14,446. Values are mean ± SD or median [range] for continuous variables and n (%) for categorical variables. ARIC, Atherosclerosis Risk in
Communities; BP, blood pressure; eGFR, estimated glomerular filtration rate; HDL-C, HDL cholesterol; LDL-C, LDL cholesterol.

(Model 2 HR Q1 compared with Q5: 1.55; 95% CI: 1.35, 1.79;
P-trend < 0.001) and other CAD risk factors (Model 3 HR Q1
compared with Q5: 1.28; 95% CI: 1.11, 1.47; P-trend < 0.001)
(Table 2). The attenuation of the effect estimate from Model
2 to Model 3 was primarily driven by adjustment for diabetes
(i.e., in a model which included Model 2 covariates plus diabetes
the HR was 1.33; 95% CI: 1.16, 1.54). The association was
stronger among women (Model 3 HR Q1 compared with Q5:
1.53; 95% CI: 1.22, 1.92) than men (HR: 1.11; 95% CI: 0.92,
1.34) (Model 1 P-interaction = 0.03, Model 2 P = 0.04, Model 3
P = 0.05). No other meaningful multiplicative interactions were
found between Mg quintiles and age, race, or eGFR in relation to
CAD risk.

In sensitivity analyses, associations were similar when we
excluded diuretic users (n = 2454 excluded; Supplemental
Table 1), used only visit 1 Mg as the exposure (Supplemental
Table 2), and examined fatal and nonfatal CAD as separate
outcomes (Supplemental Table 3). The proportional hazards
assumption was violated statistically [Model 1 P value for
Mg quintiles∗ln(time) <0.001]. In ln(−ln) curves, serum Mg
quintiles crossed over follow-up. HRs and 95% CIs for Mg
quintiles and CAD risk stratified by follow-up time are presented

in Supplemental Table 4. Briefly, the associations were similar
in the extreme quintiles in the first 10 y (Model 3 HR Q1
compared with Q5: 1.42; 95% CI: 1.11, 1.83) and during the
subsequent ∼20-y follow-up period (HR Q1 compared with Q5:
1.43; 95% CI: 1.21, 1.69). In addition, as shown in Supplemental
Table 5, effect estimates were of a similar magnitude to the main
results when stratified by baseline diabetes status, and by BMI
categories (obese ≥30, overweight 25 to <30, healthy weight
18.5 to <25).

Meta-analysis

After evaluating 655 studies for inclusion (Figure 2), 5
studies (including these ARIC findings) were included in this
meta-analysis on circulating Mg and CAD risk (Supplemental
Table 6). A listing of the effect estimates and 95% CIs, as
included in the meta-analysis, is provided in Table 3. There were
37,981 total participants with 5784 CAD events for longitudinal
studies; in the nested case-control study, there were 458 cases
and 458 controls. The lowest Mg category was associated
with an 18% higher CAD risk than was the highest category
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FIGURE 1 Association of serum magnesium with incidence of coronary
artery disease, in the overall cohort: the Atherosclerosis Risk in Communities
study, 1987–2017 (n = 14,446). Serum magnesium modeled as restricted
cubic splines with knots at the 5th, 27.5th, 50th, 72.5th, and 95th percentiles
with adjustment for age, race-center, and sex. For ease of display, those <1
and >99th percentile have been removed.

(RR: 1.18; 95% CI: 1.06, 1.31; Figure 3). A similar pooled
effect estimate was calculated using fixed-effects models (RR:
1.18; 95% CI: 1.08, 1.29; Supplemental Figure 3). There
was moderate between-study heterogeneity (I2 = 22.4%; P-
heterogeneity = 0.27). There was no evidence of publication bias
in Egger’s test (P = 0.80), Begg’s test (P = 0.99), nor by visual
inspection of a funnel plot (Supplemental Figure 4). Because

some readers may be interested in a summary estimate comparing
the highest with the lowest (referent) category of circulating Mg,
we also present results of this comparison, using a random-effects
meta-analysis, in Supplemental Figure 5.

Discussion
In this large community-based cohort, serum Mg was inversely

associated with CAD risk, with most of the excess risk at lower
concentrations. This association was independent of traditional
CAD risk factors, and was slightly stronger among women than
men. In the updated meta-analysis, we found low circulating Mg
was associated with a modestly higher CAD risk than were high
circulating Mg concentrations. Of note, in our study, the favorable
associations of higher circulating concentrations are for those
within healthy limits, and who do not have hypermagnesemia
(>2.6 mEq/L).

The strongest evidence that serum Mg may have a causal
relation with heart disease comes from a recent Mendelian ran-
domization study of Mg-related single nucleotide polymorphisms
and CAD risk. Each 0.1-mmol/L (multiply millimoles per liter by
2 to convert to milliequivalents per liter; ∼1-SD) decrement of
genetically predicted serum Mg was associated with 14% higher
odds of CAD (OR: 1.14; 95% CI: 1.01, 1.28) [results in the
original publication were presented as per 0.1-mmol/L increment
higher circulating Mg (OR: 0.88; 95% CI: 0.78, 0.99)] (10). To
be consistent with the direction of our analysis in ARIC and
the meta-analysis (high Mg referent), the effect estimate was
recalculated to represent per 0.1-mmol/L decrement. Sex-specific

TABLE 2 HRs (95% CIs) for serum magnesium and risk of coronary artery disease, overall and stratified by sex: the ARIC study, 1987–20171

Quintiles of serum magnesium
HR per 1-SD
decrement31 2 3 4 5 P-trend2

Median (range), mEq/L 1.45 (0.60–1.50) 1.55 (1.55 to <1.60) 1.65 (1.60 to <1.70) 1.70 (1.70 to <1.75) 1.80 (1.75–2.35)
Overall (n = 14,446)

No. events/total 599/3278 390/2669 430/3094 369/2726 343/2679
Incidence rate4 8.76 6.29 6.13 5.87 5.47
Model 1 1.69 (1.47, 1.93) 1.20 (1.04, 1.39) 1.13 (0.98, 1.31) 1.08 (0.93, 1.25) 1 (ref) <0.001 1.23 (1.18, 1.29)
Model 2 1.55 (1.35, 1.79) 1.17 (1.01, 1.36) 1.12 (0.97, 1.29) 1.09 (0.94, 1.27) 1 (ref) <0.001 1.19 (1.14, 1.24)
Model 3 1.28 (1.11, 1.47) 1.12 (0.96, 1.30) 1.08 (0.93, 1.25) 1.08 (0.93, 1.26) 1 (ref) <0.001 1.10 (1.05, 1.15)

Women (n = 8173)
No. events/total 318/1986 178/1562 177/1706 147/1467 124/1452

Incidence rate4 7.25 4.69 4.37 4.21 3.47
Model 1 2.17 (1.75, 2.68) 1.46 (1.16, 1.84) 1.33 (1.06, 1.67) 1.26 (0.99, 1.60) 1 (ref) <0.001 1.36 (1.27, 1.44)
Model 2 1.98 (1.59, 2.46) 1.45 (1.14, 1.83) 1.29 (1.02, 1.63) 1.26 (0.99, 1.62) 1 (ref) <0.001 1.31 (1.22, 1.39)
Model 3 1.53 (1.22, 1.92) 1.36 (1.07, 1.72) 1.18 (0.93, 1.49) 1.23 (0.96, 1.57) 1 (ref) <0.001 1.17 (1.10, 1.25)

Men (n = 6273)
No. events/total 281/1292 212/1107 253/1388 222/1259 219/1227

Incidence rate4 11.48 8.80 8.54 7.94 8.10
Model 1 1.40 (1.17, 1.68) 1.06 (0.88, 1.28) 1.03 (0.86, 1.24) 0.98 (0.81, 1.18) 1 (ref) <0.001 1.13 (1.07, 1.20)
Model 2 1.31 (1.09, 1.58) 1.03 (0.85, 1.24) 1.01 (0.84, 1.22) 0.99 (0.82, 1.19) 1 (ref) 0.005 1.11 (1.04, 1.18)
Model 3 1.11 (0.92, 1.34) 0.98 (0.81, 1.19) 1.02 (0.85, 1.23) 0.99 (0.82, 1.20) 1 (ref) 0.36 1.04 (0.98, 1.11)

1n = 14,446. Model 1 was adjusted for age, sex, and race-center; not adjusted for sex in stratified analyses. Model 2 = Model 1 also adjusted for
baseline BMI, education, physical activity, drinking status, ethanol intake (grams per week), smoking status, and pack-years of smoking. Model 3 = Model 2
also adjusted for diabetes, HDL cholesterol, total cholesterol, lipid-lowering medication use, systolic blood pressure, antihypertensive medication use,
estimated glomerular filtration rate categories, and hormone therapy use (in women only). ARIC, Atherosclerosis Risk in Communities.

2P values are based on linear trends across quintiles of serum magnesium.
3One SD of serum magnesium = 0.14 mEq/L.
4Unadjusted incidence rate per 1000 person-years.
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FIGURE 2 Screening and selection of articles on circulating magnesium and risk of coronary artery disease. ARIC, Atherosclerosis Risk in Communities;
CAD, coronary artery disease.

associations were not reported in the Mendelian randomization
study. In the ARIC data, each 1-SD decrement was associated
with a 19% higher risk of incident CAD (model 2 HR: 1.19; 95%
CI: 1.14, 1.24). In our meta-analysis, the RR for lower compared
with higher Mg was 1.18 (95% CI: 1.06, 1.31). Three prior meta-
analyses yielded similar summaries of the prospective association
of circulating Mg and CAD risk (Supplemental Table 7) (4–6).
All incorporated the sex-stratified results from the early ARIC
study (12), and they generally reported trends toward inverse
associations between circulating Mg and CAD risk.

Low circulating Mg likely could increase CAD risk through
traditional pathways, such as hypertension, elevated blood
glucose, or chronic inflammation (2, 11). A meta-analysis of
randomized controlled trials found that Mg supplementation
(mean dosage: 300 mg/d) compared with placebo increased
serum Mg by 0.10 mEq/L (95% CI: 0.06, 0.14 mEq/L) and
decreased systolic and diastolic blood pressure by 2.0 mm Hg
(95% CI: 3.6, 0.4 mm Hg) and 1.8 mm Hg (95% CI: 2.8, 0.7 mm
Hg), respectively (27). Other meta-analyses have reported that
oral Mg supplementation compared with placebo has beneficial
effects on certain cardiometabolic biomarkers among individuals
with type 2 diabetes (9, 28), for example, HDL cholesterol

increased by 0.08 mmol/L (95% CI: 0.03, 0.14 mmol/L) and
fasting glucose decreased by 0.56 mmol/L (95% CI: 1.10, 0.01
mmol/L) (9). Low serum Mg has also been associated cross-
sectionally with markers of subclinical CVD, such as higher
coronary artery calcification scores among Koreans with low
CVD risk (29) and among Mexican individuals with diabetes
(30), as well as with greater carotid intima media thickness
and mitral valve calcification in diabetic patients with mild-to-
moderate chronic kidney disease (31). Cross-sectionally in the
ARIC study, low serum Mg was associated with greater carotid
wall thickness among women (but not men) (32). Mechanisms
accounting for the slightly stronger Mg–CAD association among
women than men remain to be characterized.

There are also other proposed mechanisms connecting Mg
and CAD. Mg plays roles in maintaining normal sinus rhythm
(33), platelet formation (33, 34), vascular smooth muscle
tone, endothelial function (33, 35), and in mitigating oxidative
stress (33). In experimental studies, hypomagnesemia induced
oxidative DNA damage in cardiac tissue (36). Among mice with
high fat diet–induced type 2 diabetes, Mg supplementation in
drinking water resulted in reduced mitochondrial reactive oxygen
species and improved diastolic function (37). Mg also acts as a
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FIGURE 3 Forest plot of RR of nonfatal and fatal CAD in relation to circulating magnesium (lowest compared with highest categories) pooled using
random-effects meta-analysis. The PREVEND study used Q3 as its referent group, so the RR presented is based on Q1 compared with Q3. ARIC, Atherosclerosis
Risk in Communities; CAD, coronary artery disease; PREVEND, Prevention of Renal and Vascular End-Stage Disease; Q, quintile.

natural calcium antagonist in the setting of intracellular calcium
overload during ischemia and helps regulate ion channel transport
in cardiac cells (38). Tissue obtained during autopsy of male fatal
CAD events had lower Mg within myocardial muscle compared
with those who died from noncardiac causes (39). Significant
drops in serum Mg have been reported immediately after an
MI, with normal concentrations returning within 12 d after the
infarction (40). Although high-dose intravenous Mg therapy is
thought to have no survival benefit as a secondary prevention
strategy among MI patients (41, 42), whether Mg administration
or supplementation prevents incidence of CAD is unknown. In
observational studies dietary Mg intake has generally not been
linked to CAD incidence (43); however, given the complexity
of Mg homeostasis, circulating Mg and estimates of dietary Mg
intake tend to correlate poorly (e.g., in ARIC the correlation was
only 0.03) (12, 16, 44).

There are limitations to these analyses. First, despite ad-
justment for numerous potential confounding characteristics,
residual confounding of the association between Mg and CAD
may remain. However, we conducted several sensitivity analyses
and our findings were robust. Second, follow-up was long, and
serum Mg concentrations at baseline may not be reflective of
serum Mg over the life course or immediately preceding CAD
events. However, misclassification of Mg concentrations would
tend to obscure associations with CAD rather than exaggerate
them. We also did not account for changes in confounding factors
over time, which might have biased the observed associations.
Third, circulating Mg may not necessarily reflect intracellular
stores (45); in the body, <1% of Mg is circulating (2, 33). Last,
specific to the meta-analysis, circulating Mg categories were not
defined identically, which may bias the pooled effect estimate.
Nevertheless, there are several notable strengths of these findings,
including the large sample size and power to measure associations
between serum Mg and CAD in a community-based population
which is diverse in terms of both sex and race.

In conclusion, a growing number of epidemiologic studies—
including the present updated analysis of ARIC—have docu-
mented inverse associations between circulating Mg and risk of
cardiovascular outcomes. Although Mg homeostasis is complex,
Mg concentrations can be intervened upon among those with
hypomagnesemia through supplementation and diet modification
(46), thereby suggesting that Mg supplementation could be a
potential candidate for CAD prevention. An adequately powered
randomized controlled trial is needed to test whether increasing
Mg concentrations within healthy limits is a useful target for the
primary prevention of CAD.

The authors’ responsibilities were as follows—MRR and PLL: designed
the research; MRR: conducted the literature search, performed the statistical
analysis, and had primary responsibility for the final content; and all authors:
wrote the paper and read and approved the final manuscript. None of the
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