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The suppressor of T-cell receptor (TCR) signaling (Sts) pro-
teins Sts-1 and Sts-2 suppress receptor-mediated signaling
pathways in various immune cells, including the TCR pathway
in T cells and the Dectin-1 signaling pathway in phagocytes. As
multidomain enzymes, they contain an N-terminal ubiquitin-
association domain, a central Src homology 3 domain, and a C-
terminal histidine phosphatase domain. Recently, a 2-histidine
(2H) phosphoesterase motif was identified within the N-termi-
nal portion of Sts. The 2H phosphoesterase motif defines an
evolutionarily ancient protein domain present in several
enzymes that hydrolyze cyclic phosphate bonds on different
substrates, including cyclic nucleotides. It is characterized by
two invariant histidine residues that play a critical role in cata-
lytic activity. Consistent with its assignment as a phosphoester-
ase, we demonstrate here that the Sts-1 2H phosphoesterase
domain displays catalytic, saturable phosphodiesterase activity
toward the dinucleotide 29,39-cyclic NADP. The enzyme exhib-
ited a high degree of substrate specificity and selectively gener-
ated the 39-nucleotide as the sole product. Sts-1 also had
phosphodiesterase catalytic activity toward a 5-mer RNA oligo-
nucleotide containing a 29,39-cyclic phosphate group at its 39
terminus. To investigate the functional significance of Sts-1 2H
phosphoesterase activity, we generated His-to-Ala variants and
examined their ability to negatively regulate cellular signaling
pathways. Substitution of either conserved histidine compro-
mised the ability of Sts-1 to suppress signaling pathways down-
stream of both the TCR and the Dectin-1 receptor. Our results
identify a heretofore unknown cellular enzyme activity associ-
ated with Sts-1 and indicate that this catalytic activity is linked
to specific cell-signaling outcomes.

A balanced immune response requires the participation of
numerous immunoregulatory kinases and phosphatases acting
in an oft-opposing manner to provide the optimal level of posi-
tive and negative biochemical signals (1–4). Sts-1 and Sts-2 are
a pair of homologous phosphatases that share overlapping and
redundant functions as negative regulators of immune signal-
ing pathways in a number of different hematopoietic cell types,
including T cells (5). The realization that they have a role in reg-

ulating T-cell signaling pathways emerged from an analysis of
mice lacking Sts expression. In particular, T cells isolated from
Sts2/2 mice display a pronounced hypersensitivity to T-cell re-
ceptor (TCR) stimulation. This is manifested by an increase in
TCR-induced proliferation and cytokine production by mutant
T cells relative toWT T cells (6). At a biochemical level, the Sts
proteins negatively regulate the activation of the TCR-proximal
tyrosine kinase Zap-70 (6–8). The Sts proteins also negatively
regulate diverse signaling pathways within other cell types,
including mast cells, platelets, and bone marrow–derived den-
dritic cells. For example, Sts-1 has been shown to regulate
GPVI–FcRg signaling in platelets, FceRI signaling in mast cells,
and Dectin-1 signaling in bone marrow–derived dendritic cells
by targeting the Zap-70 homologue Syk (9–11). The role of the
Sts proteins as critical regulators of immune cell activation
pathways is also supported by a large number of genome-wide
association studies that link Sts variants within the human pop-
ulation to a number of autoimmune disorders (12–14).
In recent years, it has been shown that the absence of Sts

expression can substantially alter the outcome of a pathogen
infection. Studies investigating the host immune response to sys-
temic infection by the human fungal pathogen Candida albicans
demonstrated that, unlike infected WT mice in which extensive
fungal proliferation leads to progressive sepsis and rapid lethality,
infected Sts2/2 mice are substantially resistant (15). Sts2/2 mice
also display significantly increased survival following infection
with Gram-negative Francisella tularensis (LVS) (16). Impor-
tantly, in response to both pathogens, enhanced microbial clear-
ance within Sts2/2 animals was apparent. These results indicate
that Sts activity is linked to critical host anti-microbial pathways.
The Sts phosphatases are distinguished from the large num-

ber of immunoregulatory protein-tyrosine phosphatases by a
unique structure. They have an N-terminal ubiquitin-associa-
tion (UBA) domain, a central Src-homology 3 (SH3) domain,
and a C-terminal histidine-phosphatase (HP) domain, which is
named for two conserved catalytic histidines within the active
site. The HP domain is structurally and evolutionarily distinct
from the phosphatase domain of protein-tyrosine phosphatase
enzymes (17) and instead bears a higher degree of homology to
a group of structurally related enzymes that hydrolyze phos-
phate from small molecules such as phosphoglycerate and fruc-
tose-2,6-bisphosphate (18). In addition to containing UBA,
SH3, and HP domains, the Sts proteins possess a region span-
ning the UBA and SH3 domains that contains a 2H
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phosphoesterase motif (19). The 2H phosphoesterase motif
contains two conserved histidine residues that are essential for
catalytic activity and defines a superfamily of enzymes whose
members can be found in all three taxonomic domains.
Although the substrates of many 2H phosphoesterases have
not been definitely established, many family members exhibit
phosphodiesterase activity and have been shown to hydrolyze
cyclic phosphodiester bonds present on free nucleotides, oligo-
nucleotides, or at the 39 termini of RNA. Family members
include human myelin 29,39-cyclic nucleotide 39-phosphodies-
terase (CNPase) (20), cyclic phosphodiesterase from Arabidop-
sis thaliana (21), Saccharomyces cerevisiae tRNA splicing ligase
Trl1 (22), and Escherichia coli 29-59 RNA ligase (23). In spite of
considerable differences in primary amino acid sequence, all
2H phosphoesterases have several important features in com-
mon. These features include a compact bilobed structure, an
active site located within a narrow cleft between the two lobes,
and a catalytic core formed in part by two conserved quartets of
amino acids (the 2H phosphoesterase motif, HX(S/T)X, where
X is any hydrophobic residue) that are arrayed in a 2-fold sym-
metric conformation with respect to one another (24).
The presence of a putative 2H phosphoesterase motif within

Sts prompted us to investigate its functional significance. We
determined that each of the two invariant histidines within the
Sts-1 2H phosphoesterase motif play an important role in the
ability of Sts-1 to function as a negative regulator of cell signal-
ing pathways.We also report the discovery of a novel phospho-
diesterase (PDE) catalytic activity associated with Sts-1, derived
from the region of Sts-1 located between the UBA and SH3
domains. This catalytic activity is both substrate-specific and
stereoselective in nature and depends on the invariant histi-
dines within the 2H phosphoesterase motif. Henceforth, we
denote this region the Sts-1 PDE domain. Our results identify a
novel enzyme activity associated with Sts-1 and link this novel
catalytic activity to specific signaling effects. These findings
broaden our understanding of the role that Sts-1 plays in estab-
lishing a balanced and productive immune response.

Results

Identification of a functionally relevant 2H-phosphoesterase
motif within Sts-1

The 2H phosphoesterase motif is characterized by two iden-
tical short amino acid sequences (HX(S/T)X, where X is a
hydrophobic residue) that are spaced ;80–85 amino acids
apart. Both invariant histidine residues are thought to play an
essential role in catalysis (25). The 2H-phosphoesterase domain
of human Sts-1 (Sts-1PDE), located between the Sts-1 UBA and
SH3 domains, was identified based on two histidine-containing
tetrapeptide sequences, HITL and HVTL, that conform to the
2H-phosphoesterase consensus motif (Fig. 1A). Sts-2 and Sts
evolutionary orthologues also contain an identical domain,
with the Sts-2 PDE domain exhibiting 79% homology to hSts-
1PDE and the corresponding region of Drosophila melanogaster
Sts having 73% homology to hSts-1PDE (Fig. 1A). However, Sts-
1PDE displays very limited homology to other enzymes of the
2H phosphoesterase superfamily, including human CNPase
(20), S. cerevisiae tRNA ligase (22), E. coli 29-59 RNA ligase (23),

and a putative RNA ligase enzyme from the archeal species
Pyrococcus furiosus (26) (Fig. 1A). This is consistent with previ-
ous observations that diverse 2H phosphoesterase enzymes,
aside from having the dual histidine–containing tetrapeptide
motif in common, display very little overall sequence similarity.
To determine whether Sts-1PDE is critical for Sts-1 intracellu-

lar functions, we generated cDNAs encoding two Sts-1
mutants, H126A and H212A, in which the conserved catalytic
histidines of the 2H phosphoesterase motif were individually
altered to alanine residues. We then examined signaling path-
ways known to be regulated by Sts-1. Within T cells, the Sts
proteins negatively regulate proximal signaling pathways
downstream of the TCR (6). NFAT is a transcription factor
whose level of activation following TCR engagement depends
on the overall strength of activation of signaling pathways
downstream of the TCR (27). As previously demonstrated,
overexpression of WT Sts-1 in T cells leads to reduced NFAT
activation following TCR stimulation, whereas an HP phospha-
tase-inactive Sts-1 variant (H391N) is ineffective at suppressing
TCR signaling (Fig. 1B) (28, 29). Similar to Sts-1 H391N, Sts-1
H126A and H212A fail to suppress NFAT activation to the
same extent as WT Sts-1 (Fig. 1B). This suggests an important
role for the Sts-1PDE catalytic histidine residues in negatively
regulating TCR signaling in T cells.
Dectin-1 is a C-type lectin receptor involved in the innate

immune response to fungal pathogens (30, 31). It is expressed
on innate immune cells, engages b-glucan moieties on the sur-
face of different fungal species, and activates downstream
innate immune effector pathways, including NFAT, by activat-
ing the Zap-70 homologue Syk (32, 33). Signaling pathways
downstream of Dectin-1 have been shown to be negatively
regulated by the Sts proteins (11). To evaluate a role for Sts-1
PDE domain conserved histidine residues in Sts-1–mediated
suppression of C-type lectin receptor signaling, we reconsti-
tuted the Dectin-1–Syk signaling axis in 293T cells and com-
pared the ability ofWT Sts-1 versus PDE domain point mutants
H126A or H212A to suppress NFAT activation. Whereas WT
Sts-1 negatively regulated zymosan-induced NFAT activation,
Sts-1 mutants H126A and H212A each failed to suppress
NFAT activation, in spite of equivalent levels of protein expres-
sion (Fig. 1C). Similar to our observations with the TCR path-
way, these results suggest that the conserved histidine residues
of Sts-1PDE are necessary for Sts-1–mediated suppression of
Dectin-1 signaling.

Enzyme activity of Sts-1PDE

Members of the 2H phosphoesterase family canonically uti-
lize two catalytic histidine residues to cleave a 29,39-cyclic phos-
phodiester linkage of a small molecule substrate. This activity is
exemplified by the vertebrate brain 29,39-phosphodiesterase
(CNPase) (20, 34) that can hydrolyze phosphodiester bonds in
cyclic nucleotides, oligonucleotides, and NADcP. In the latter
case, the product of the ester hydrolysis reaction is the nucleo-
tide or oligonucleotide with a 29-phosphate and 39-hydroxyl
group.
To determine whether Sts-1PDE exhibits canonical PDE ac-

tivity, we first tested whether the protein could hydrolyze the
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phosphodiester linkage in NADcP using a coupled assay that
measures the production of 29-NADP (35). We were unable to
observe any enzyme activity for either the full-length Sts-1 pro-
tein or the isolated PDE domain, Sts-1PDE. We then developed
and utilized an HPLC-based assay to monitor the products of
NADcP esterolysis by Sts-1 or Sts-1PDE. Using this assay, we
observed enzyme-dependent formation of a product peak over
time (Fig. 2A). The product that we observed was the 39-phos-
phate 39-NADP, which results from hydrolysis of the 29-ester
linkage (Fig. 2B). Analysis of the kinetics of this reaction
revealed that this activity saturated with a Km of 5.4 6 0.4 mM

and a kcat of 0.0126 0.003 s21 (Fig. 2C). These results stand in
contrast to human CNPase, which displays a Km of 533 6 56
mM and a kcat of 9406 38 s21 for the 39-phosphodiestease ac-
tivity that converts 29,39-cNADP to 29-NADP (34). Overall, our

results demonstrate that the PDE domain of Sts-1 possesses an
enzyme-dependent 29-phosphodiestease activity for a 29,39-
cyclic nucleotide substrate.
To confirm the role of the conserved histidines in catalyzing

the PDE reaction, we also measured the activity of the H126A
and H212A mutants. Both the Sts-1 H126A and Sts-1 H212A
had activities barely above the level of noise, turning over at less
than 5% the rate of theWT protein (Fig. 2D). This is consistent
with the proposed essential role in the catalytic mechanism for
this pair of conserved histidine residues (25).

Substrate specificity and active site features of Sts-1PDE

Members of the 29,39-cyclic phosphodiesterase family of
enzymes have been shown to hydrolyze the ester linkage on
several types of small molecule, predominantly nucleotides and

Figure 1. A functional 2H PDE domain within Sts-1. A, top panel, the Sts-1 PDE domain, located between the UBA and SH3 domains, is defined by the pres-
ence of two tetrapeptide sequences His-Xaa-Ser/Thr-Xaa (where Xaa indicates a hydrophobic residue). Within human Sts-1, the catalytic histidine residues are
His-126 and His-212. The triangle indicates the location of a 39-amino acid insert region present within a splice variant of Sts-2. Bottom panel, alignment of the
2H phosphoesterase motif of Sts-1 with the identical region from Sts-2, the D. melanogaster Sts orthologue (Dm Sts), and four additional 2H phosphoesterase
enzymes: human 29,39-cyclic-nucleotide 39-phosphodiesterase (hCNPase), S. cerervisiae tRNA ligase (Sc Trl1), E. coli 29-59 RNA ligase (Ec RNA lig), and P. furiosus
29-59 RNA ligase (Pf RNA lig). % values indicate degrees of homology to hSts-1PDE. B, Sts-1 mutants H126A and H212A display impaired regulation of TCR-
induced NFAT activation. Jurkat cells transfected to express the indicated Sts-1 proteins and a firefly luciferase reporter construct under the control of NFAT-
binding sequences were stimulated for 6 h with anti-TCR antibody and then processed for analysis of luciferase activity. The illustrated results are combined
from five separate experiments, each with three replicates. Sts-1 H391A is a phosphatase-inactive mutant of Sts-1. EV, empty vector. ***, p ≤ 0.001 (one-way
analysis of variance, Holm–Sidak method). C, left panel, Sts-1 mutants H126A and H212A display impaired regulation of Dectin-1–induced NFAT activation.
293T cells transfected to express Dectin-1, the indicated Sts-1 proteins, and a luciferase reporter construct under the control of NFAT-binding sequences were
stimulated for 4 h with zymosan (Zym) and then processed for analysis of luciferase activity. The illustrated results are combined from four separate experi-
ments, each performed in duplicate. ***, p ≤ 0.001 (one-way analysis of variance, Holm–Sidak method). Right panel, representative levels of Syk and FLAG-
tagged Sts-1 expression were assessed by Western blotting. Molecular mass marker controls were separated on the right lane of the each gel and spliced to
the indicated position because of the presence of unnecessary intervening lanes (as indicated by dotted line).
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nucleic acids. To determine the breadth and specificity of sub-
strates for Sts-1PDE, we tested over a dozen different nucleotides
as possible substrates (Fig. S1). The nucleotides (listed in Table
1) included mononucleotides with 29,39- or 39,59-cyclic esters
and several dinucleotides with varying linkages, including a
number of known STING ligands (36, 37). Under the reaction
conditionsused, onlyNADcPwas a substrate forSts-1PDE (Table
1). Even 29,39-cAMP, which is structurally very similar to

NADcP, was not turned over by the enzyme. Ligase activity (for-
mation of any cyclic nucleotides or dinucleotides) was not
observed for any of the monophosphates as substrates. Because
Sts-1 possesses an HP domain, we also measured phosphatase
activity in the context of Sts-1PDE and full-length Sts-1 protein.
Although full-length Sts-1 displayed high phosphatase activity,
Sts-1PDE exhibited no measureable p-nitrophenyl phosphate
(pNPP)–hydrolysis activity (Table 1). The PDE activity was not

Figure 2. The PDE domain of Sts-1 has 29,39-cyclic nucleotide 29-phospodiesterase activity. A, using an HPLC-based assay, the phosphodiesterase activ-
ity of Sts-1PDE was tested on the cyclic dinucleotide substrate b-NADH–29,39-cyclic monophosphate (NADcP). When compared with the vehicle control, a new
peak was observed that increased in size over time when NADcP was treated with Sts-1PDE (shown in the highlighted region). B, the new peak observed in the
choromatograms co-eluted with the 39-NADP standard (highlighted in red; the 29-NADP standard is highlighted in green, and the substrate is highlighted in
blue). C, measurement of the kinetics of the Sts-1PDE–catalyzed esterase activity over a range of substrate concentrations shows that the enzyme saturates and
reaches a turnover number of 8.5 mM/min. D, the PDE domain of Sts-1 was identified primarily based on the presence of two occurrences of an HX(S/T)Xmotif
(where X is a hydrophobic residue). Mutation of either of these conserved histidine residues to alanine (H126A or H212A) effectively eliminates the esterase
activity.
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measurably different over a range of temperatures (20–40 °C),
norwas it affected by preincubation of the enzymewith divalent
cations. In sum, our results suggest that Sts-1PDE possesses a
high degree of substrate selectivity with regard to its ability to
target cyclicphosphorylated substrates.
As many of the cyclic PDE enzymes act upon nucleic acid

substrates, we next tested the activity of Sts-1PDE on a 29,39-
cyclic RNA substrate. We treated an RNA 5-mer (rArArUr-
ArA) bearing a 29,39-cyclic phosphate terminus with Sts-1PDE
and examined the resulting products with our HPLC-based
assay. A new peak that co-eluted with the 39-phosphate stand-
ard was observed (Fig. 3A). This confirms that the Sts-1PDE has
29,39-cyclic PDE activity that selectively cleaves the 29-phos-
phoester bond. In addition, this shows that this enzyme can
take both a small molecule nucleotide (NADcP) and an RNA
oligonucleotide as a substrate. Although solubility limitations
of the RNA substrate preclude a complete investigation, the
kinetics of this reaction were observed to be relatively slow.

To further analyze substrate selectivity, we compared the
PDE activity of full-length Sts-1 protein to the Sts-1PDE isolated
domain. Under the same reaction conditions, the full-length
protein had a significantly reduced activity for the cyclic RNA
substrate, turning over at a 20-fold lower rate than the PDE do-
main alone (Fig. 3B). The rate for NADcP turnover was similar
for the two proteins, with less than 2-fold difference.

Sts-1 PDE domain biological activity

In response to TCR stimulation, T cells that lack the Sts pro-
teins hyperproliferate and secrete excessive levels of cytokines,
including IFNg (38). Reconstitution of Sts2/2 mutant T cells
with WT Sts-1 suppresses the hyper-responsive phenotype,
whereas reconstitution with Sts-1 variants containing UBA,
SH3, or HP domain–inactivating mutations does not suppress
the Sts2/2 hypersensitivity phenotype (28, 29). To assess a
functional role for the PDE domain of Sts-1, we isolated T cells
from Sts2/2mice and reconstituted themwith equivalent levels

Table 1
Substrates tested in this work

Substrate tested (concentration) Sts-1PDE Sts-1

NADcP1 (1 mM) 0.13 min21 0.065 min21

pNPP (phosphatase substrate) (1 mM) N.D.a 98 min21

2?,3?-cAMP (1 mM) 1.13 1024 min21 N.D.
2?,3?-cGMP (1 mM) N.D. N.T.b

2?,3?-cCMP (1 mM) N.D. N.T.
3?,5?-cAMP (1 mM) N.D. N.T.
3?,5?-cGMP (1 mM) N.D. N.T.
pApA (3?,5?) (1 mM) N.D. N.T.
c[A(2?,5?)pG(3?,5?)p] (1 mM) N.D. N.T.
c[A(3?,5?)pG(2?,5?)p] (1 mM) N.D. N.T.
c[A(2?,5?)pA(2?,5?)p] (1 mM) N.D. N.T.
c[A(2?,5?)pG(2?,5?)p] (1 mM) N.D. N.T.
Cyclic ADP-ribose (1 mM) N.D. N.T.
(ligase substrate) (1 mM) 39 AMP N.D. N.T.
(ligase substrate) (1 mM) 39 GMP N.D. N.T.
Substrate (rArArUrArA.P) (20 mM)c 2939-cRNA 4.43 1023 min21 5.63 1024 min21

aN.D., no detectable activity at the concentration tested.
bN.T., this substrate was not tested with this enzyme.
cNote that a lower concentration was used for the cyclic RNA substrate because of poor solubility of the substrate.

Figure 3. The nucleotide 29-phosphodiesterase activity of the PDE domain acts upon a cyclic RNA substrate, and the other domains of Sts-1 are
implicated in substrate specificity. A, when a RNA 5-mer with a 29,39-cyclic phosphoester at the terminus (AAUAA.p) was treated with Sts-1PDE, a single
new product, the 39-phosphate (39-PO4) product, was generated. The chromatograms show the results of the reaction of the cyclic RNAmolecule treated with
Sts-1PDE at several time points (1 Sts-1PDE), and the control reaction shows the cyclic nucleotide treated with vehicle for 4 h (No Enzyme 4 hrs). B, comparison of
the nucleotide phospodiesterase activity of the full-length Sts-1 protein (Sts-1) with that of the isolated PDE domain (PDE) for several substrates illustrates the
selectivity of the active site and the possible role of other Sts-1 protein domains. Although neither form of the enzyme turns over 29,39-cAMP at an appreciable
rate, the PDE domain has a slightly higher activity for the cyclic RNA substrate (AAUAA.P) than the full-length protein. The full-length Sts-1 catalyzes the ester-
olysis of NADcP nearly 10-fold faster than with the cyclic RNA substrate.

Sts-1 phosphodiesterase activity
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of WT Sts-1 or PDE mutants H115A and H210A (murine Sts-1
protein numbering) (Fig. 4A). Unlike WT Sts-1, Sts-1 H115A
and Sts-1 H210A each failed to efficiently suppress IFNg pro-
duction (Fig. 4B). Their inability to suppress IFNg production
to the same extent as WT Sts-1 was evident over a range of
stimulatory antibody concentrations (Fig. 4, B and C). These
results suggest an important role for the critical catalytic resi-
dues of the Sts-1 2H phosphoesterase motif in the regulation of
IFNg production by primary T cells and support the hypothesis
that Sts-1 PDE activity is important for the function of Sts as a
negative regulator of T-cell biological responses.

Discussion

A number of studies have identified the Sts proteins as nega-
tive regulators of key signaling pathways, with the unique Sts
C-terminal phosphatase domain playing a prominent role in
their molecular mechanism of action (29). Importantly, the Sts
UBA and SH3 domains have also been shown to play non-
redundant functional roles. Indeed, in a currentmodel of Sts in-

tracellular activity, the UBA and SH3 protein-interaction
domains are proposed to localize the phosphatase domain to
putative intracellular substrates such as activated Syk or Zap-
70 (7). This present study identifies a fourth functional domain
within Sts-1 that is located between theUBA and SH3 domains,
a domain that we refer to as the Sts-1 PDE domain. Preliminary
analysis suggests that Sts-1PDE functions to inhibit the activa-
tion of signaling pathways downstream of select surface
receptors.
Our investigation was prompted by the observation that a

region within the N terminus of Sts-1 contains two short
sequence motifs that define membership in a superfamily of
diverse enzymes known as 2H phosphoesterases. Interestingly,
many 2H phosphoesterases have been shown to have an associ-
ated cyclic nucleotide PDE activity (19, 24). For example, mye-
lin-associated CNPase produces 29-AMP from 29,39-cAMP
(20), cyclic phosphodiesterase from A. thaliana cleaves the
cyclic phosphate bond of ADP-ribose 19,29-cyclic phosphate
(21), and yeast Trl1 hydrolyzes the 29,39-cyclic nucleotide bond
that is formed on the 59-oligonucleotide half-molecule during

Figure 4. Requirement for Sts-1 2H phosphoesterase catalytic residues in the regulation of IFNg expression in primary T cells. A, levels of expression
of murine Sts-1 and PDE mutants H115A and H201A in primary Sts2/2 T cells, following retroviral-mediated reconstitution. B and C, primary T cells infected
with retrovirus expressing empty vector, WT Sts-1, Sts-1 H115A, or Sts-1 H201A were stimulated for 4 h with the indicated concentrations of anti-TCR stimula-
tory antibody, and levels of intracellular IFNg were determined by flow cytometry. Cytokine-expressing T cells are visible in the upper right quadrant, with the
percentage of cells indicated. Illustrated are representative data (B) or the averages of three independent experiments (C). *, p ≤ 0.05.
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splicing reactions that remove tRNA introns (22). In keeping
with the presence of a 2H phosphoesterase catalytic signature
within Sts-1, we demonstrated that it possesses an associated
cyclic nucleotide PDE enzymatic activity. Our analysis revealed
that Sts-1PDE has activity consistent with a 29,39-cyclic-nucleo-
tide 29-phosphodiesterase (EC 3.1.4.16). This specific chemistry
has been observed in several prokaryotic species, and the 39-
PDE activity (CNPase; EC 3.1.4.37) is well-known in many
organisms, including humans. The observed 29-PDE activity,
however, is relatively unprecedented in humans (39).
Because the Sts proteins have very minimal amino acid

sequence similarity to other 2H phosphoesterase family mem-
bers, there is little in the Sts-1 primary sequence that offers
insights into potential substrates. For example, although struc-
tural analysis of CNPase has identified amino acids important
for its interactions with 29,39-AMP, the same substrate specific-
ity determinants are not conserved within the Sts proteins (34).
Our data clearly indicate that the Sts-1PDE active site can differ-
entiate between subtle differences in substrate structure. The
data showing that NADcP is turned over by the enzyme,
whereas the structurally similar 29,39-cAMP is not a substrate
suggests that a larger, perhaps polynucleotide substrate, is nec-
essary for binding or efficient catalysis. Complicating this is the
observation that the larger, 29,39-cyclic RNA substrate,
although turned over reasonably well by Sts-1PDE, is a much
poorer substrate in the context of the intact Sts-1 protein. This
could indicate that some other domain of the protein plays a
role in defining substrate specificity and perhaps influences cat-
alytic efficiency. It is also possible that the contribution from
other domains within the protein is substrate-specific and that
selectivity may be more or less pronounced in the context of
the native substrate(s).
The Sts-1 PDE reaction mechanism also remains to be eluci-

dated. Although putative reaction mechanisms have been pro-
posed for 2H-phosphoesterase enzymes (21–23, 40), the low
sequence similarity to other PDE family proteins, the lack of
structural information, and the unusual 29-PDE activity make
the assignment of any particularmechanism to Sts-1PDE nontri-
vial. One proposed mechanism for 2H-PDE enzymes involves a
direct, one-step ligation (or direct hydrolysis) of the 29,39-cyclic
nucleotide, typically yielding the 39-product (23, 40). In this
case, the active-site histidine residues act predominantly to
position the substrate and activate the water molecule for
nucleophilic attack. Alternatively, in the eukaryotic CNPase
enzyme, the active-site histidine residues are proposed to
jointly coordinate the phosphate group for the chemistry to
proceed and also participate directly in the reaction (20, 34).
The structural studies of CNPase reveal that the mechanism
appears to be accompanied by conformational changes that, at
least in part, reposition residues that are involved in binding to
and properly positioning the substrate (20, 34). Ultimately,
insights into potential substrates, further understanding of Sts
PDE domain–substrate interactions, and a proposed Sts PDE
reaction mechanism, await additional molecular and structural
analysis.
Full-length Sts-1, including the entire Sts PDE domain and

the two catalytic histidine residues within the 2H phosphoes-
terase motif, has been highly conserved throughout metazoan

evolution. Interestingly, whereas the Sts gene is present in some
of the most primitive multicellular organisms (e.g. the demo-
sponge Amphimedon queenslandica), it is absent in the
genomes of unicellular choanoflagellates and othermore primi-
tive eukaryotes. Therefore, from an evolutionary perspective,
one can speculate that sometime during the transition tomulti-
cellularity, a unique Sts PDE-like enzyme evolved from an an-
cestral 2H-phosphesterase enzyme and was eventually incorpo-
rated into full-length Sts as one of four functional domains.
The high degree of Sts PDE-domain conservation between dis-
tant evolutionary orthologues strongly supports the hypothesis
that StsPDE function is vital to the overall role of Sts as a regula-
tor of intracellular signal transduction pathways.
Although full mechanistic insights await further analysis, our

current data indicate that Sts-1PDE negatively regulates path-
ways downstream of select surface receptors. Interestingly, the
C-terminal HP domain of Sts-1 also has a role in negatively reg-
ulating the activation of different receptor-initiated pathways
by targeting key receptor proximal kinases for dephosphoryl-
ation. In the case of TCR signaling, the Sts-1 phosphatase do-
main targets Zap-70 tyrosine kinase activity, whereas in the
case of other diverse receptors, Sts-1 targets the Zap-70 homo-
logue Syk. It will be important to determine whether StsPDE and
StsHP function independently or together in a cooperative man-
ner within the same biochemical pathway. Additional clarity
will be provided by identifying the bona fide intracellular sub-
strate(s) of Sts-1PDE. Although we utilized 29,39-cyclic NADP
for our analysis to demonstrate Sts-1 PDE catalytic activity,
NADcP is not considered an endogenous cellular compound.
With regard to the natural substrate(s) of Sts-1PDE, it is interest-
ing to speculate that an unidentified cyclic nucleotide within
cells could be processed by Sts-1PDE to yield a regulatory factor
that participates in the regulation of intracellular signaling.
Studies are currently in progress to identify substrates, relevant
cellular signaling pathways, and effector responses that are
regulated by Sts-1PDE. These studies will help determine how
the Sts PDE domain contributes to the regulation of important
cellular responses such as the expression of key cytokine mole-
cules by activated T cells. Finally, considering the role that Sts
plays in host immune modulation, it is also important to
acknowledge the unique properties of the Sts PDE domain as a
possible target for the development of small molecule
therapeutics.

Experimental procedures

Mouse strains, cell lines, and cDNAs

The generation of mice containing the Sts mutations, back-
crossed 10 generations onto the C57/B6 background, has been
described (38). The mice were housed and bred in the Stony
Brook University Animal Facility under specific pathogen-free
conditions. All mice were maintained in accordance with Stony
Brook University Division of Laboratory Animal Resources
guidelines, and all animal experiments were approved by the
Stony Brook University Institutional Animal Care and Use
Committee.
HEK293 cells were cultured in Dulbecco’s modified Eagle’s

medium (Invitrogen) supplemented with 10% fetal bovine
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serum, 100 units/ml penicillin, and 100 mg/ml streptomycin.
Jurkat cells were maintained in RPMI 1640 medium (Invitro-
gen) supplemented with 10% fetal bovine serum, 2 mM gluta-
mine, 100 units/ml penicillin, and 100 mg/ml streptomycin. All
cDNA mutants were constructed by PCR mutagenesis and
sequenced to confirm the presence of the desired mutation and
the absence of additional mutations.
All chemicals were obtained from Sigma–Aldrich, were of

the highest purity available, and were used without further pu-
rification. Nucleotides were obtained from the following sour-
ces: 29,39-NADcP, 29,39-cAMP, pApA, c-(ApGp), c [A (29,59)
pG (29,59) p], c [A (29,59) pA (29,59) p], c [G (29,59) pA (39, 59) p],
and 29,39-cGAMP from BIOLOG Life Science Institute; cyclic
adenosine diphosphate ribose and 39-NADP from Sigma–
Aldrich; 29,39-cCMP from Santa Cruz Biotechnology; 39,59-
cGMP, from Chem-Impex International Inc.; and 29-NADP
fromAlfa Aesar.

Luciferase assays

Jurkat cells were transfected via electroporation (Bio-Rad)
with Sts-1 expression plasmids, a firefly luciferase expression
construct driven by NFAT-binding sequences and a Renilla lu-
ciferase construct for normalization. 24 h post-transfection, the
cells were stimulated by plating on OKT3-coated 96-well plates
at a density of 0.23 106 cells/well for 6 h, after which luciferase
activities were determined using the Dual-Luciferase reporter
assay system (Promega). HEK293 cells were plated at a density
of 0.3 3 106 cells/well of a 24-well plate and allowed to adhere
overnight. The cells were then transfected with Dectin-1, Syk,
and Sts-1 expression plasmids and firefly and Renilla luciferase
constructs. At 24 h post-transfection, the cells were stimulated
by the addition of 200 mg zymosan/well for 6 h. Luciferase
activities were determined as described above, in triplicate
(Jurkat cells) or duplicate (HEK293 cells).

Cloning, expression, and protein purification of the PDE
fragment and full-length sts-1

The Sts-1 PDE fragment (Sts-1PDE) was expressed and puri-
fied based on an established protocol (41). In brief, the cDNA
fragment encoding Sts-1PDE (residues 842256) was amplified
and cloned as a His-tagged protein in the pDB.His.TRX fusion
vector (DNASU), which expresses the protein with an N-termi-
nal thioredoxin fusion. The protein was expressed in E. coli
strain BL21(DE3) at 18 °C after induction at 0.1 mM isopropyl
b-D-thiogalactopyranoside. The cell pellet was resuspended in
the lysis buffer (20mMTES, pH 6.8, 500mMNaCl, 10% glycerol,
and 10 mM imidazole) and purified by nickel– nitrilotriacetic
acid column (Qiagen). The hexahistine tag and TRX fusion
protein were removed from the eluted protein by tobacco etch
virus protease, and the resultant protein mixture was run over
Ni–nitrilotriacetic acid–agarose once again to remove the hex-
ahistidine-tagged TRX and tobacco etch virus protease. The
protein was further purified by size-exclusion chromatography
using a SRT-10 SEC-300 (Sepax) column in 20 mM Tris buffer
(pH 8.0) and 200 mM NaCl. All mutants were generated by
PCR-based site-directed mutagenesis. The mutant proteins
hSts-1PDE H126A and hSts-1PDE H212Awere purified using the

same protocol as the WT hSts-1PDE. Similarly, the full-length
human Sts-1 (Sts-1F) was cloned into the pDB.His.TRX vector,
expressed using the samemethod, and purified the same way as
hSts-1PDE.

Western blotting analysis

Transfected/infected cells were lysed in ice-cold lysis buffer
(50 mM Tris-HCl, pH 7.6, 150 mM NaCl, 5 mM EDTA, 1 mM

EGTA, 1% Triton X-100, 0.2 mM pervanadate, 0.5 mg/ml phen-
ylmethylsulfonyl fluoride, and 13 Roche protease inhibitor
mixture) and clarified by centrifugation for 15 min at 13,200
rpm. Lysates were resolved on 7.5% SDS-PAGE gels and elec-
trotransferred onto nitrocellulose membranes (Whatman). Af-
ter blocking with 3% BSA in Tris-buffered saline, the blots were
probed with anti-FLAG (M2 mAb; Sigma) or anti-Syk (clone
SYK-01 mAb; BioLegend, Inc.) antibodies followed by appro-
priate IR dye–conjugated secondary antibodies. Signals were
detected using theOdyssey IR imaging system (LI-COR).

In vitro phosphatase assay

For recombinant proteins, phosphatase activity analysis was
performed using the established protocol (41). Briefly, 1 mM of
pNPP was used as a substrate to quantify the phosphatase activ-
ities of Sts-1PDE and Sts-1F. The appearance of the product, p-
nitrophenol, was monitored at 405 nm over time to determine
the kinetics of the reaction. For full-length Sts-1 expressed in
HEK293 cells, the cells were lysed in ice-cold buffer, and Sts-1
proteins were immunoprecipitated following addition of anti-
FLAG antibody for 2 h at 4 °C, followed by 1 h at 4 °C with pro-
tein A–Sepharose beads (Sigma). The beads were washed three
times in assay buffer (25 mM Hepes, pH 7.2, 50 mM NaCl, 0.5
mM b-mercaptoethanol 2.5 mM EDTA, and 0.1 mg/ml BSA)
and incubated in a 200-ml reaction mixture containing assay
buffer with 1 mM of pNPP for 15 min at 37 °C. The solution was
sampled every 5 min, and reaction aliquots were placed into a
96-well plate containing 10 ml of 1 M NaOH to stop the reac-
tion. Phosphate hydrolysis of pNPP was determined by meas-
uring absorbance at 405 nm on a Filtermax F3 plate reader
(Molecular Devices). The results displayed are averages of three
experiments.

HPLC-based phosphodiesterase assay

The 29,39-PDE activities of Sts-1 were determined with 29,39-
NADcP as a substrate followed by separation by HPLC to iden-
tify and quantify the products. In brief, the 29,39-NADcP stock
(100 mM in water) was diluted with 80 ml of reaction buffer (100
mM Bis-Tris, pH 7.2, 200 mM NaCl). Purified proteins (Sts-
1PDE, Sts-1F, or mutants) and water was added into the reaction
mixture to a total volume of 100 ml. The reaction mixture was
incubated at 22 °C for the indicated time and then terminated
by boiling the samples for 2 min, followed by centrifugation in
0.5-ml centrifugal filters with a molecular mass cutoff of 10 kDa
(Amicon) to remove proteins. The filtrate was diluted with
water and loaded onto a Zorbax Eclipse Plus C18 4.6 3 100-
mm analytical HPLC column running on an Agilent 1100
HPLC. The 29,39-NADcP and its hydrolyzed products 29-
NADP and 39-NADP were eluted with a linear gradient of 0–
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100% methanol in the running buffer (10 mM tetrabutylammo-
nium hydroxide, 10 mM KH2PO4, pH 6.1) over a period of 20
min at a flow rate of 1 ml/min. Authentic standards of 29-
NADP and 39-NADP were used to identify the retention times
of these compounds and spiking experiments, in which 1 nmol
of the compound was added to the complete reaction, and were
used to confirm that the presumed product co-eluted with the
authentic standard.
To determine the kinetic parameters for the PDE activity of

Sts-1PDE, 9 mM Sts-1PDE was added to varying concentrations of
29,39-NADcP (1 – 40 mM), and aliquots were removed and
measured as described above at two time points to ensure line-
arity of the reaction progress. The production of 39-NADP was
quantified by integrating the product peak in the chromatogram.
The rate of production of 39-NADPwas calculated from the ratio
of 39-NADP to total 29,39-NADcP1 29-NADP1 39-NADP. The
rates of Reeves, production at each concentration were plotted
and fit with theMichaelis–Menten equation to determine the ki-
netic constants. To assess temperature dependence, the reaction
was carried out as described, while incubating over a range of
temperatures from 20 to 40 °C. To determine whether the
enzyme activity showed dependence on divalent cations, we pre-
incubated the enzyme for 30 min with 2 mM of either MnCl2,
ZnCl2, NiCl2, CoCl2, orMgCl2 before initiating the reaction.

T-cell culture, retroviral infection, and intracellular cytokine
analysis

To obtain primary T cells, dissected spleens from Sts2/2

mice were crushed in PBS containing 2% FCS, red blood cells
were lysed by the addition of ACK lysis buffer (pH 7.2), and de-
bris was removed by straining through a 70-mm filter (Becton
Dickinson). Splenocytes were cultured for 24 h in the presence
of 1 mg/ml anti-CD3 (145-2C11) and 1 units/ml IL-2 (Pepro-
tech) and then spin-infected with a retrovirus carrying a bicis-
tronic cassette expressing the gene of interest (WT or mutant
Sts-1) and GFP downstream of an IRES. Infected T cells were
allowed to grow 48 h in the presence of IL2, and 1 3 106 cells
were then plated and stimulated with the indicated amount of
anti-CD3 antibody. Following 4 h of stimulation in the presence
of 0.1mg/ml brefeldin A, the cells were processed for intracellu-
lar IFNg staining using a Cytofix/Cytoperm fixation/perme-
abilization kit (BD Biosciences) according to the manufac-
turer’s instructions. GFP1 cells were analyzed for IFNg
expression using a BD FACSCalibur flow cytometer (38).

Data availability

All data presented in this article are contained within the
article.
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