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Insulin-like growth factor 2 mRNA-binding protein 1
(IGF2BP1) is an mRNA-binding protein that has an oncofetal
pattern of expression. It is also expressed in intestinal tissue, sug-
gesting that it has a possible role in intestinal homeostasis. To
investigate this possibility, here we generated Villin CreERT2:
Igf2bp1flox/flox mice, which enabled induction of an IGF2BP1
knockout specifically in intestinal epithelial cells (IECs) of adult
mice. Using gut barrier and epithelial permeability assays and
several biochemical approaches, we found that IGF2BP1 abla-
tion in the adult intestinal epithelium causes mild active colitis
and mild-to-moderate active enteritis. Moreover, the IGF2BP1
deletion aggravated dextran sodium sulfate–induced colitis. We
also found that IGF2BP1 removal compromises barrier function
of the intestinal epithelium, resulting from altered protein
expression at tight junctions. Mechanistically, IGF2BP1 inter-
acted with the mRNA of the tight-junction protein occludin
(Ocln), stabilizing Ocln mRNA and inducing expression of
occludin in IECs. Furthermore, ectopic occludin expression in
IGF2BP1-knockdown cells restored barrier function. We con-
clude that IGF2BP1-dependent regulation of occludin expres-
sion is an important mechanism in intestinal barrier function
maintenance and in the prevention of colitis.

Insulin-like growth factor 2 mRNA–binding protein 1
(IGF2BP1, also known as CRD-BP/ZBP1/IMP1/VICKZ1) is
a protein with an oncofetal pattern of expression exhibiting
higher levels in fetal and neonatal tissues and low levels in
adult tissues and is re-expressed in a variety of cancers (1, 2).
IGF2BP1 binds a diverse set of mRNAs, affecting their sta-
bility and subcellular localization (3, 4). Well-established
mRNA targets of IGF2BP1 include c-MYC, bTrCP1, GLI1,
MITF, MDR1, H19, CD44, and PTGS2 (5–16). IGF2BP1 is
also known to regulate cellular polarity and cell migration
by escorting its target mRNAs to their proper subcellular
site of protein synthesis (8, 10, 17). Photoactivatable ribonu-
cleoside–enhanced cross-linking and immunoprecipitation
(PAR-CLIP) and enhanced cross-linking and immunopreci-
pitation (eCLIP) experiments identified additional IGF2BP1
targets, suggesting its role in a multitude of cellular proc-
esses (18, 19). Identification of IGF2BP1 as a reader of N6-

methyladenosine modification further added a new dimen-
sion to its regulatory function (20, 21).
Intestinal epithelial cells (IECs) establish and maintain a bar-

rier to separate the submucosa from the intestinal lumen (22).
This epithelial integrity is controlled by the junction complex
comprised of the tight junction (TJ) and the adherent junction
(23). The principle determinant of intestinal permeability and
trans-epithelial transport is the TJ complex. Disrupted TJ and
increased intestinal permeability may lead to intestinal inflam-
mation (23, 24). Occludin is one of the key TJ proteins that con-
tributes to the maintenance of an intact intestinal epithelium.
Interestingly, Ocln mRNA is unstable and has been shown to
undergo post-transcriptional regulation (23, 25, 26).
Inflammatory bowel disease (IBD) is a chronic inflammatory

condition of the intestine and canmanifest severe chronic active
mucosal injury with restricted therapeutic options (27, 28).
There are twomain types of IBD, Crohn’s disease and ulcerative
colitis (29). One of the major factors in the development of IBD
is the loss of intestinal epithelial barrier function, which elicits
an inflammatory response that contributes to further barrier
disruption (29). IGF2BP1 hypomorphic mice manifested vari-
ous developmental defects and embryonic lethality (2). The
intestine of these mice displayed abnormal crypt and villous
architecture indicating a role for IGF2BP1 in intestinal develop-
ment. Moreover, the role of IGF2BP1 was also implicated in
healing of a mechanical wound across an epithelial monolayer
of cells (11, 30). Interestingly, the deletion of IGF2BP1 in intesti-
nal epithelial cells was recently shown to ameliorate experimen-
tal colitis in mice (31). Together, these findings hint to the func-
tion of IGF2BP1 inmaintaining intestinal homeostasis.
For the current study, we generatedmice that allow inducible

knockout of IGF2BP1 specifically in the adult intestinal epithe-
lium to study pathological processes independent of potential
developmental defects. Here, we demonstrate that the ablation
of Igf2bp1 in adult IECs leads to acute colitis in mice, and
IGF2BP1 deficiency in IECs decreases occludin levels, resulting
in a defective barrier function. These findings uncover an im-
portant function of IGF2BP1 in IECs to protect against colitis.

Results and discussion

Deletion of IGF2BP1 in IECs leads to acute colitis in mice

To investigate the role of IGF2BP1 in intestinal homeostasis,
we generated Villin-CreERT2-Igf2bp1fl/fl transgenic mice. In these
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mice, transient knockout of Igf2bp1 (hereafter, Igf2bp1IEC-Ind KO)
is induced via tamoxifen. Immunoblotting with anti-IGF2BP1
antibody was performed to confirm the ablation of Igf2bp1 from
intestinal epithelium cells of Igf2bp1IEC-Ind KO mice (Fig. 1A).
Intriguingly, adult Igf2bp1IEC-Ind KO mice displayed loss in body
weight compared with Igf2bp1fl/fl littermates (Fig. 1B). Next, we
examined the gross appearance of intestine and length of colon to
inspect colon shortening, which is considered as the indicator of
inflammation. In our analysis, we did not observe any significant
change in gross appearance of intestine and in colon length of
Igf2bp1IEC-Ind KO mice (Fig. 1C). Histological analysis of small
intestines revealed that all Igf2bp1IEC-Ind KO mice exhibited
increased lamina propria cellularity with mild to moderate active
enteritis and patchy to diffuse neutrophilic and lymphocytic infil-
tration, when compared with control mice (Fig. 1D and Fig. S1B).
Likewise, the colons of Igf2bp1IEC-Ind KO mice displayed mild
active colitis with increased lamina propria cellularity andmild to
moderate patchy to diffuse neutrophilic and lymphocytic infiltra-
tion. At places, there were loss of crypts with abscess formation
(Fig. 1D and Fig. S1A). Based on the hematoxylin/eosin (H&E)-
stained sections, analyzed by the pathologist in blinded manner,
the samples were scored on two major histomorphological cri-
teria: (i) severity of inflammatory cell infiltrates and (ii) epithelial
changes (cryptitis, crypt abscesses, and erosion) (Fig. 1E). These
results illustrate the importance of epithelial IGF2BP1 for nor-
mal intestinal physiology.

IGF2BP1 deficiency sensitizes mice to dextran sodium
sulfate-induced colitis

Next, we examined whether induced intestinal epithelial
IGF2BP1 knockout affects sensitivity of mice to DSS, which is a
toxic chemical that when delivered in the drinking water causes
colitis by disrupting the intestinal epithelium. Here we per-
formed chronic DSS treatment as it is the most relevant model
for experimental colitis in mice. In the first cycle of this experi-
ment, mice were treated with 2% DSS for 5 days, followed by
intermittent periods of normal drinking water. This cycle was
repeated two more times, and mice were then euthanized and
examined. This experiment conferred 75% mortality in
Igf2bp1IEC-Ind KO mice (Fig. 2A). We also observed significant
loss in weight and increases in disease activity index (DAI)
scores (32) in Igf2bp1IEC-Ind KO mice when compared with con-
trol littermates (Fig. 2, B and C). As severe chronic inflamma-
tion is known to decrease colon lengths, we evaluated colons at
the conclusion of the experiment and found significantly
shorter colons in Igf2bp1IEC-Ind KO mice than in the control lit-
termates (Fig. 2D).We have also analyzed the H&E-stained sec-
tions of these colons and observed that the colon sections from
DSS-treated Igf2bp1IEC-Ind KO mice showed increased disrup-
tion of colonic mucosa along with crypt abscesses, loss of colo-
nic surface epithelium and crypts, and diffuse infiltration of
inflammatory cells when compared with control mice (Fig. 2E
and Fig. S1C). These tissue sections were analyzed and histo-
morphologically scored based on established criteria (Fig. 2F)
(33, 59). These results indicate that IGF2BP1IEC-Ind KO mice are
more sensitive to DSS challenge and develop more disease-
related phenotypes in the intestine.

IGF2BP1 deficiency increases intestinal permeability by
affecting the occludin expression in IECs

The intact epithelium imparts a protective barrier against
entry of foreign antigens from the intestinal lumen into the
lamina propria. The aforementioned data suggest that IGF2BP1
may be important for maintaining barrier function of intestinal
epithelium. To assess the permeability of intestine, we ex-
tracted serum from blood for quantifying specific IgG levels by
ELISA. We found elevated levels of IgG to LPS (serological
bacterial marker) in the serum of Igf2bp1IEC-Ind KO mice,
which was indicative of increased intestinal permeability
(Fig. 3A). To confirm these results, we used the FITC-dex-
tran permeability assay, which is a classical method for eval-
uating the status of intestinal barrier function. Four hours
after oral administration of FITC-dextran, we isolated se-
rum and examined the level of FITC-dextran in the samples.
Significantly higher levels of FITC-dextran were found in
Igf2bp1IEC-Ind KO mice compared with Igf2bp1fl/fl littermates
(Fig. 3B). These results indicate that IGF2BP1 is involved in
the maintenance of intestinal barrier function, and its ab-
sence disrupted the barrier.
A disrupted TJ is a major cause of intestine barrier dysfunc-

tion (34), and this motivated us to investigate the levels ofmajor
TJ proteins in IECs of Igf2bp1IEC-Ind KO mice. We found
decrease specifically in the levels of occludin TJ protein in the
IECs from the intestines of Igf2bp1IEC-Ind KO mice, whereas
other TJ proteins, CLAUDIN-1, CLAUDIN-2, ZO-1, and ZO-
3, remained unaffected when compared with control litter-
mates (Fig. 3C). Immunostaining analysis revealed significantly
lower levels of occludin in colon IECs of Igf2bp1IEC-Ind KO mice
when compared with control mice (Fig. 3D). These results sug-
gest that IGF2BP1 affects the expression of occludin TJ protein
andmaintains intestine barrier function.

IGF2BP1 regulates occludin expression by directly binding to
and stabilizing its mRNA

To investigate the mechanism of regulation of occludin TJ
expression by IGF2BP1, we chose the human CCD841-CoTr
normal colon epithelial cell line with moderate expression of
Igf2bp1. Knockdown of IGF2BP1 using shRNAs in this cell line
resulted in significant inhibition of occludin expression (Fig.
4A). IGF2BP1 is an RNA-binding protein (RBP) that often sta-
bilizes its mRNA targets (6, 14), and to evaluate whether
IGF2BP1 binds to the mRNA of occludin directly, we per-
formed the CLIP assay. In our CLIP analysis, we found enrich-
ment ofOCLNmRNA to a similar extent as bona fide IGF2BP1
targets, such as MYC and b-TRCP1 (Fig. 4B). To elucidate
whether IGF2BP1 regulates the turnover of OCLNmRNAs, we
performed an actinomycin D chase experiment in a pair of
colorectal cell lines. The loss-of-function experiments (by
knocking down IGF2BP1) were performed in Caco-2 cells char-
acterized by high expression of IGF2BP1. The knockdown of
IGF2BP1 and its effect on occludin expression were confirmed
by immunoblotting (Fig. 4C). The actinomycin D chase experi-
ments in Caco-2 cells showed that the knockdown of IGF2BP1
resulted in accelerated rate of OCLN mRNA degradation (Fig.
4D) but not of Claudin2 mRNA (Fig. S3A). The gain-of-
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function experiments (by overexpressing IGF2BP1) were per-
formed in RKO cells that have negligible expression of endoge-
nous IGF2BP1. Overexpression of IGF2BP1 protein in this cell
line resulted in increased levels of occludin protein compared
with control cells (Fig. 4E). Additional mRNA stability assays
using these cells detected an increased t1/2 of OCLN mRNA

upon overexpression of IGF2BP1 (Fig. 4F), whereas there was
no significant change in t1/2 of Claudin2 mRNA (Fig. S3B).
These results show that IGF2BP1 protein regulates occludin
expression by directly interacting withOCLNmRNA and stabi-
lizing it, establishing OCLN mRNA as a novel direct target of
IGF2BP1.

Figure 1. Induced deletion of IGF2BP1 in IECs confers acute mild colitis in mice. A, immunoblot in the top panel showing depletion of Igf2bp1 from in-
testinal epithelium cells of Villin-CreERT2-Igf2bp1fl/fl mice upon tamoxifen treatment. Signals are quantified in the bottom panel from three independent
Igf2bp1 immunoblot analyses using ImageJ software. B, body weight of age-matched female (10–12-week) littermates after the induction of IGF2BP1
knockout from IECs. The data are means6 S.D. (error bars) (n = 8 for each genotype). C, colon length comparison after knocking out Igf2bp1. Top, repre-
sentative image of colon from mentioned genotypes. Scale bar, 12 mm. Bottom, quantification of colon length. The data are means 6 S.D. (n = 7 for
Igf2bp1fl/fl mice and n = 5 for Villin-CreERT2-Igf2bp1fl/fl mice). D, H&E-stained sections of colon and small intestine tissue from Villin-CreERT2-Igf2bp1fl/fl and
control mice showing mild acute colitis and mild to medium acute enteritis. Scale bars, 50 mm (micrograph) and 12.5 mm (inset). E, histomorphological
scores given to H&E-stained small intestine and colon tissue sections of Igf2bp1fl/fl and Villin-CreERT2-Igf2bp1fl/fl mice by a sample-blinded pathologist for
colitis and enteritis. Scores are provided to each sample based on general criteria of histomorphological characters reported previously (33, 59). *, p ,
0.05; **, p, 0.01; ***, p, 0.001; ns, not significant.
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Re-expression of occludin in IGF2BP1 deficient cells restores
the tight-junction barrier function
Occludin plays an important role in the formation of the

tight-junction seal by regulating macromolecule flux across the
barrier (23, 26). To determine whether disregulation of occlu-
din contributes to altered barrier function induced by down-
regulation of IGF2BP1, we analyzed the permeability of Caco-2
cells grown as a monolayer. As predicted, IGF2BP1 knockdown

resulted in decreased occludin expression in Caco-2 cells
(Figs. 4C and 5A). To analyze the barrier, we grew Caco-2,
with or without knockdown of IGF2BP1, on transwell plates.
We found that IGF2BP1 knockdown caused a significant
decrease in trans-epithelial electrical resistance (TER), indi-
cating increased permeability in the Caco-2 monolayer (Fig.
5B). The TER levels were completely restored after re-
expressing occludin in IGF2BP1 knockdown cells (Fig. 5B).

Figure 2. Deletion of IGF2BP1 sensitizes mice to DSS colitis. A, survival curve for chronic DSS treatment showing significant loss of mice in the Villin-
CreERT2-Igf2bp1fl/fl group. Age-matched (8–10-week) male and female Villin-CreERT2-Igf2bp1fl/fl (n = 8) and Igf2bp1fl/fl (n = 8) mice were treated with 2%
DSS in drinking water for 5 days followed by two additional cycles of 2% DSS with a 10–14-day interval between cycles. Mice were sacrificed on the
45th day of the experiment. B, percentage weight profile of mice during the experiment for chronic DSS treatment. C, DAI score plotted against time
for chronic DSS treatment. D, representative pictures of colon and colon length comparison shown in the top. Scale bar, 25 mm. The lengths of age-
matched female (14-16-week) Villin-CreERT2-Igf2bp1fl/fl (n = 3) and Igf2bp1fl/fl (n = 3) mouse colons are quantified in the bottom panel. The data are
mean6 S.D. (error bars). E, H&E-stained sections of colon from chronic DSS-treated Villin-CreERT2-Igf2bp1fl/fmice showing severe loss of colonic surface
epithelium and crypts when compared with control mice. Scale bar, 50 mm. F, histomorphological scores were plotted for H&E-stained colon sections
from the chronic DSS experiment. Colon sections were scored by a pathologist who was blinded for sample identity. *, p , 0.05; **, p , 0.01; ***,
p, 0.001.
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We had also found increase flux in IGF2BP1 knockdown
cells while this flux was restored after re-expression of occlu-
din in IGF2BP1 knockdown cells (Fig. 5C).
Occludin knockout mice displayed retarded growth and

chronically inflamed gastrointestinal tracts (35). Studies on
Ocln knockout mice had revealed that occludin is an important
factor in regulating the leak pathway in the mouse intestine
(36–39). Our results demonstrate that deletion of Igf2bp1 from
intestinal epithelium leads to the disruption of occludin, which
in turn increases the permeability of intestine. Re-expression of

occludin restores the barrier function in the IGF2BP1-depleted
monolayer of Caco-2 cells. These results suggest that IGF2BP1
maintains the intestinal barrier function at least partially by
binding to and stabilizing occludinmRNAs.
The epithelial barrier function is required to maintain intes-

tinal homeostasis, and any alterations contribute to diseases
such as IBD (23). Actively inflamed tissue was found to be leaky
in various studies (22). However, occludin was the only tight-
junction protein found to be down-regulated even in nonac-
tively inflamed tissue in ulcerative colitis (40). This supports

Figure 3. Deletion of IGF2BP1 from IECs increases the intestinal permeability in mice. A, LPS-specific IgG levels in the serum of Villin-CreERT2-Igf2bp1fl/fl

(n = 5) and Igf2bp1fl/fl (n = 5) mice. Rag1 knockoutmice (n = 5) were taken as a negative experimental control. The data are means6 S.D. (error bars). B, analysis
of intestinal epithelial permeability of mice by measuring FITC-dextran levels in the serum of mice Villin-CreERT2-Igf2bp1fl/fl (n = 7) and Igf2bp1fl/fl (n = 7). The
data are means 6 S.D. C, immunoblot of tight-junction proteins in mouse intestinal epithelium (representative picture of three independent experiments).
Shown is whole-cell extract from IECs of Igf2bp1fl/fl (n = 3) and Villin-CreERT2-Igf2bp1fl/fl (n = 3) mice analyzed for occludin, CLAUDIN-1, CLAUDIN-2, ZO-1, and
ZO-3 protein expression.b-Actin was evaluated as loading control.D, colon sections with occludin staining (green) showing the level of occludin expression in
Igf2bp1fl/fl (n = 5) and Villin-CreERT2-Igf2bp1fl/fl (n = 3) mice. Scale bar, 10 mm. Images are quantified for occludin by ImageJ software, and data aremeans6 S.D.
**, p, 0.01; ***, p, 0.001. N.D., not detected; RFU, relative fluorescence units.
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the importance of occludin in barrier function and disease.
OCLN was shown to be regulated post-transcriptionally by
RBPs and miRNAs (41, 42). The miRNA-429 and RBP
CUGBP1 regulate OCLN negatively by binding to its 39-UTR,
whereas another RBP, HuR, regulates OCLN expression posi-
tively by binding to its 39-UTR (25, 43). Our results provide fur-

ther evidence for the importance of post-transcriptional re-
gulation of OCLNmRNA at the level of mRNA stability. Inter-
estingly, the reported miR-429–binding site (at positions 139-
145 in the 39-UTR of theOCLNmRNA) is in close proximity to
one of the IGF2BP1 consensus-binding sequences, CA(A/U)
(C/U)A (positions 133-137) (19). It is therefore plausible that

Figure 4. IGF2BP1 deletion alters the expression of tight-junction proteins. A, immunoblot analysis of occludin proteins. CCD-841-CoTr cells transduced
with scramble or Igf2bp1-specific shRNA were analyzed for occludin protein expression. Igf2bp1 immunoblotting demonstrates the extent of knockdown.
The picture is representative of three independent experiments. b-Actin was evaluated as a loading control. B, CLIP in CCD-841-CoTr cells shows -fold enrich-
ment of the indicated RNA. RNAs were co-immunoprecipitated with anti-IGF2BP1 antibodies with an isotype IgG serving as a control. Two independent
repeats were performed, and the data are representative of the mean of two repeats with error bars showing S.D. RPS18 was evaluated as a negative control,
whereasMYC and b-TRCP served as positive controls. C, immunoblotting of Caco-2 cells transduced with scramble or Igf2bp1-specific shRNA with anti-occlu-
din antibody. The anti-IGF2BP1 immunoblot shows the efficiency of IGF2BP1 knockdown. The picture shown is representative of three independent experi-
ments. b-Actin was evaluated as loading control. D, mRNA degradation assay in Caco-2 cells transduced with doxycycline-inducible scramble or Igf2bp1-
specific shRNA. Cells were grown for 4 days with doxycycline treatment to induce knockdown of IGF2BP1. Actinomycin D was added at time 0, and cell sam-
ples were collected at 0-, 2-, 4-, and 8-h time points from the same plate. Occludin mRNA levels were evaluated via quantitative RT-PCR. The data are means6
S.D. (error bars) of three independent experimental repeats. E, immunoblot analysis of occludin in RKO cells transduced with control or IGF2BP1 overexpres-
sion (Igf2bp1-OE) constructs. b-Actin was shown as loading control. F, the mRNA degradation assay in RKO cells transduced with control or IGF2BP1 overex-
pression (Igf2bp1-OE) constructs to show the stabilization of OCLN mRNA upon IGF2BP1 overexpression. Actinomycin D was treated at 0 h, and cells were
collected at 0, 2, 4, and 8 h from the same plate. Total RNA was isolated followed by quantitative RT-PCR to analyze the occludin mRNA levels. *, p , 0.05;
**, p, 0.01; ***, p, 0.001.
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IGF2BP1 protects OCLN mRNA from microRNA-dependent
degradation. This mechanism of action of IGF2BP1 has been
reported previously for other IGF2BP1 targets (12, 13, 20, 44)
It is plausible that other targets of IGF2BP1 contribute to the

observed intestinal phenotype. For example, knockout of one
of the previously identified IGF2BP1 target genes, b-TrCP1
(14), together with heterozygous deletion of its paralog,
Fbxw11, in mouse gut epithelium causes lethal mucosal inflam-
mation (45); however, we did not observe significant changes in
mRNA expression of b-TrCP1 and Fbxw11 genes in IECs
Igf2bp1IEC-Ind KO mice compared with control littermates (Fig.
S2, B and C). We also examined the expression level of Myc,
another IGF2BP1 target gene, shown to maintain intestinal

crypt numbers in juvenile mice (46), but we did not detect sig-
nificant changes in the mRNA expression of Myc between con-
trol and Igf2bp1IEC-Ind KOmice (Fig. S2A).
Wnt signaling and its importance in maintaining stem cell

populations in the intestinal crypts has been reviewed exten-
sively by Gehart and Clevers (47). IGF2BP1 expression is tran-
scriptionally regulated by Wnt/b-catenin signaling (14), and
the mRNAs of several Wnt target genes (e.g. MYC and MITF)
were shown to be stabilized by IGF2BP1 in various cancer cell
lines (5, 13). These findings hint at a possible role that IGF2BP1
plays in supporting some functions of Wnt signaling and sug-
gests that it might be a potentially important component of
Wnt-regulated intestinal homeostasis.

Figure 5. Restoration of barrier function upon re-expression of occludin. A, monolayer of Caco-2 cells, transduced as indicated, were stained with occlu-
din (red) antibody. Five images, each from a different area of the same plate, were captured and quantified using ImageJ software. The data shown below the
images represent three biological replicates. Scale bar, 10 mm. B, determination of paracellular permeability by TER. The TER was measured after growing
Caco-2 cells transduced as indicated for 15 days in chambered plates. The data are mean6 S.D. (n = 3) with p = 0.0030 and p = 0.0024, respectively. C, the api-
cal flux of the paracellular macromolecular probe, inulin (molecular radius, 15 Å) was measured and plotted for filter-grown Caco-2 cells transduced as indi-
cated. **, p, 0.01; ***, p, 0.001; RFU, relative fluorescence units.
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Deletion of Igf2bp1 from mouse intestinal epithelium has
been shown to mitigate experimental colitis (31). Therefore,
one might think that deletion of Igf2bp1 would probably pro-
tect intestinal epithelial barrier function. However, our results
show that Igf2bp1 loss exacerbates experimental colitis in mice,
implying a protective role for this protein. The contrast in
results could potentially be explained by the different knockout
models used. Utilization of inducible knockouts in our studies
is probably more relevant for modeling intestinal inflammation
in adults, whereas constitutive knockouts used by Chatterji et
al. (31) are more useful to model development of intestinal epi-
thelia and intestinal abnormalities during childhood.
Our data imply that in adult animals, the IGF2BP1 regulates

occludin and hence protects the barrier function of intestinal
epithelia. The experimental data summarized in this article
provide novel evidence indicating the importance of IGF2BP1
in post-transcriptional regulation of occludin, via regulating
OCLNmRNA stability.

Experimental procedures

Cell culture and reagents

Normal human colon epithelium CCD-841-CoTr cells,
human colon cancer RKO cells, and Caco-2 cells were cultured
and maintained as monolayers in Dulbecco’s modified Eagle’s
medium (VWR International), supplemented with 10% (v/v) fe-
tal bovine serum (Gibco, Life Technologies, Inc.) and 100
units/ml penicillin and streptomycin (Corning). The cells were
incubated at 37 °C, 5% CO2. All cell lines were tested for myco-
plasma contamination with the MycoAlert PLUS mycoplasma
detection kit (Lonza).

Generation of IGF2BP1 knockdown, IGF2BP1 overexpression,
and occludin expression cell lines

IGF2BP1 was knocked down using doxycycline-inducible
shRNA constructs (purchased from GE Dharmacon). The
IGF2BP1 doxycycline-inducible overexpression lentiviral plas-
mid was constructed by cloning PCR-amplified human
IGF2BP1ORF into the pInducer-20 vector (48). Lentivirus par-
ticles were produced from the above plasmids in Lenti-X 293T
cells and were used to transduce CCD-CoTr, Caco-2, and RKO
cells to make stable cell lines. Constitutively occludin-express-
ing Caco-2 cell lines in an IGF2BP1 knockdown background
were constructed by transducing Caco-2-Sh-Igf2bp1 cells with
pDUAL OCLN (GFP) lentiviral plasmid, which was gifted from
Joe Grove (Addgene plasmid 86982; RRID:Addgene_86982).

Animals

Animals were maintained and procedures were performed in
accordance with conditions approved by the Institutional Ani-
mal Care and Use Committee, Pennsylvania State University
College of Medicine. Villin-CreERT2-Igf2bp1fl/flmice were gen-
erated by crossing Villin-CreERT2 (49) mice with Igf2bp1f/fl

mice. Igf2bp1fl/fl mice were generated previously and main-
tained on C57Bl/6 background (50). The Igf2bp1fl/fl mice were
used as experimental controls. To knock out Igf2bp1, Villin-
CreERT2-Igf2bp1f/fl mice were treated with a tamoxifen chow

diet (Envigo-TD-130857) on weekdays, whereas a regular diet
was given on weekends. Igf2bp1f/fl mice were also treated with
tamoxifen chow in all experiment to serve as experimental con-
trol. During all animal experiments, Igf2bp1fl/fl and Villin-
CreERT2-Igf2bp1fl/fl mice were co-housed for the reproducibil-
ity of results and to avoid potential contribution of differences
inmicrobiota in observed phenotypes (51).

Tissue staining

Colonic tissues were formalin-fixed, paraffin-embedded, and
H&E-stained. Immunofluorescent and/or immunohistochemi-
cal staining was performed on frozen tissue sections as
described (52). Imaging was performed at the Penn StateMedi-
cal Center Cell Imaging Core. In brief, after blocking, the colon
sections were incubated overnight with primary antibodies
against occludin (Thermo Fisher OC-3F10). Fluorescence-la-
beled secondary antibodies (Jackson Laboratories) were used in
conjunction with nuclear dye 49,6-diamidino-2-phenylindole
to visualize the distribution of occludin in the colon tissues.
Images were quantified using ImageJ software.

Gut barrier assay

Relative levels of serum LPS-specific immunoreactivity were
examined by ELISA, as described previously (53). Briefly,
microtiter plates were coated with purified Escherichia coli LPS
(2 mg/well; from E. coli 0128: B12, Sigma, catalog no. 2887). Se-
rum samples were serially diluted 1:200, 1:600, and 1:1200 and
applied to wells coated with LPS. After incubation and washing,
the wells were incubated with anti-mouse IgG (1:1000) coupled
to horseradish peroxidase. Immunoreactivity to LPS was cap-
tured using the colorimetric peroxidase substrate tetramethyl-
benzidine, and absorbance was read at 450 nm with the use of
an ELISA plate reader. Data are reported as optical density cor-
rected by subtracting background (determined by readings in
blank samples). Serum samples from Rag1-deficient mice were
used as negative controls.

DSS colitis

Sex- and age-matched littermates (8–10 weeks) received
DSS (2%) in drinking water for 5 days. Mouse body weights
were recorded daily. The disease activity index was determined
as described (32). Mice that died or were euthanized prior to
the study end point because of impaired condition were
included in weight loss and DAI calculations where the data
points were available.

In vivo epithelial permeability assay

The in vivo intestinal epithelial permeability was measured
as described previously (54). Briefly, age- and sex-matched lit-
termates were orally administered (0.6 mg/g of body weight)
with FITC-dextran solution (4 kDa, 80 mg/ml). After 4 h, the
mice were sacrificed, blood was obtained by cardiac puncture,
and plasma was separated for determination of FITC by a fluo-
rimeter at 488 nm.
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In vitro permeability assay and determination of caco-2
paracellular permeability

Caco-2 cells were cultured on transwells with polyester
membrane insert (Corning, 3421) allowing proper cellular
polarization with formation of an apical (top compartment)
and basolateral face (bottom compartment). The insert was
pretreated with Dulbecco’s modified Eagle’s medium overnight
before cell plating. Caco-2 cells were seeded at a density of
0.53 105 cells/insert. Themediumwas replaced with freshme-
dium every 2 days. The TER of the filter-grown Caco-2 cells
was measured by an epithelial Voltohmmeter (World Precision
Instruments, Sarasota, FL, USA). Beside the measurements of
TER, Caco-2 paracellular permeability was determined using
the inulin (214 °C, Mr = 5000) as paracellular marker for the
determination of apical flux rates. Known concentrations
(1.5mM) of this paracellular marker were added to the apical so-
lution, and radioactivity was measured in basal solution using a
scintillation counter, as described previously (55).

CLIP

CLIP was carried out with minor modifications in accord-
ance with the previously published protocols (56, 57). Briefly,
CCD 841 CoTr cells were cultured for 3 days and then fixed
with 3% formaldehyde in PBS for 10 min followed by lysis
through sonication (10 pulses for 10 s). Overnight immunopre-
cipitation was performed at 4 °C using anti-IGF2BP1 antibodies
(MBL, catalog no. RN007P) linked to Dynabeads (Life Technol-
ogies, Inc.). After collection by magnetic separation and wash-
ing five times with lysis buffer, the RNA-protein complexes
were reverse-cross-linked, and RNA was extracted using TRI-
zol reagent (Invitrogen) according to the manufacturer’s
instructions. Isolated RNA was treated with RNase-free DNase
I (Thermo Scientific) to remove traces of genomic DNA. First-
strand cDNA was generated using a cDNA synthesis kit from
Bio-Rad according to the manufacturer’s instructions, followed
by real-time PCR using an iTaq Universal SYBR Green kit (Bio-
Rad). The conditions for PCR amplification was as follows: ini-
tial denaturation for 3 minutes at 95°C, PCR amplification for
40 cycles with denaturation for the 20 seconds at 95°C, anneal-
ing for 20 seconds at 58°C and elongation at 72°C for 20 sec-
onds. Analysis was done to obtain fold change in expression of
particular gene by using CFX software from BioRad.

SDS-PAGE and immunoblotting analysis

Immunoblotting was done according to protocols described
previously (58). Briefly, CCD-841-CoTr and Caco-2 cells were
harvested, and whole-cell extract (WCE) was made by adding 1
ml of cell lysis buffer per 53 107 cells. TheWCEwas quantified
using a Bio-Rad protein estimation kit. TheWCE was analyzed
by SDS-PAGE (10%) followed by immunoblotting. Blots were
probed with the following antibodies: IGF2BP1, ZO-1, ZO-3,
and b-actin from Cell Signaling, Claudin1 and occludin from
Thermo Fisher, and Claudin2 from Abcam. Either anti-mouse
or anti-rabbit horseradish peroxidase–conjugated secondary
IgGs were used to detect their respective primary antibody.
Quantitative luminescence of immunoblots was performed
using ImageJ software.

Real-time PCR

Quantitative real-time PCR was conducted to quantify the
mRNA levels. Total RNA was extracted using an RNeasy mini-
kit from Qiagen, and cDNA was generated using an iScript
cDNA synthesis kit (Bio-Rad) as per the manufacturer’s
instructions. Real-time PCR was performed using a CFX-96
RT-PCR machine with Bio-Rad SYBR Green mix. The condi-
tions for PCR amplification were as follows: initial denaturation
for 3 min at 95 °C, PCR amplification for 40 cycles with denatu-
ration for the 20 s at 95 °C, annealing for 20 s at 58 °C, and elon-
gation at 72 °C for 20 s. Analysis was done to obtain -fold
change in expression of a particular gene by using CFX software
from Bio-Rad. Three independent experiments were per-
formed, and each sample was run in triplicate.

Data availability

All data relevant to these studies are contained within the
article.
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