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Abstract

There has been a spurt in structural neuroimaging studies of the effect of hearing loss on the brain.
Specifically, magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) technologies
provide an opportunity to quantify changes in gray and white matter structures at the macroscopic
scale. To date, there have been 32 MRI and 23 DTI studies that have analyzed structural
differences accruing from pre- or peri-lingual pediatric hearing loss with congenital or early onset
etiology and postlingual hearing loss in pre-to-late adolescence. Additionally, there have been 15
prospective clinical structural neuroimaging studies of children and adolescents being evaluated
for cochlear implants. The results of the 70 studies are summarized in two figures and three tables.
Plastic changes in the brain are seen to be multifocal rather than diffuse, that is, differences are
consistent across regions implicated in the hearing, speech and language networks regardless of
modes of communication and amplification. Structures in that play an important role in cognition
are affected to a lesser extent. A limitation of these studies is the emphasis on volumetric measures
and on homogeneous groups of subjects with hearing loss. It is suggested that additional measures
of morphometry and connectivity could contribute to a greater understanding of the effect of
hearing loss on the brain. Then an interpretation of the observed macroscopic structural
differences is given. This is followed by discussion of how structural imaging can be combined
with functional imaging to provide biomarkers for longitudinal tracking of amplification.

This article is categorized under:

Developmental Biology > Developmental Processes in Health and Disease Translational,
Genomic, and Systems Medicine > Translational Medicine Laboratory Methods and Technologies
> Imaging

CorrespondenceJ. Tilak Ratnanather, Center for Imaging Science, Johns Hopkins University, Clark 301, 3400 N Charles Street,
Baltimore, MD 21218. tilak@cis.jhu.edu.

CONFLICT OF INTEREST
The author has declared no conflicts of interest for this article.

Wiley Interdiscip Rev Syst Biol Med. Author manuscript; available in PMC 2021 March 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Ratnanather Page 2

Keywords
brain mapping; computational anatomy; deafened brain; morphometry

11 INTRODUCTION

Sensorineural hearing loss is the most common type of deafness resulting in degraded
transmission of acoustic information from the dysfunctional cochleae in the inner ears to the
primary auditory cortex and secondary or association cortices in the brain (see Section 2).
Such sensory deprivation results in a brain that is structurally different from one with normal
hearing. This difference is likely to be related to the degree of hearing loss as well as
plasticity induced by the brain adapting to auditory stimuli provided by a hearing aid or
cochlear implant and/or visual stimuli provided by lipreading (or speechreading). Further
differences can accrue from developing cognitive strategies to compensate for the hearing
loss. Thus, the deafened brain has been both an attractive and challenging target of
neuroimaging studies since the turn of the new millennium. These studies have been fueled
by advances in technologies such as positron emission tomography (PET), magnetic
resonance imaging (MRI), functional MRI (fMRI), diffusion tensor imaging (DTI),
functional near-infrared spectroscopy (fNIRS), and cortical auditory evoked potential
(CAEP) to name but a few.

Figure 1 illustrates the different structural and functional neuroimaging modalities used to
examine the brain. At the macroscopic scale, three types of brain tissues can be discerned in
a 3D volume of about 250 x 250 x 200 (12.5 M) voxels of 1 mm3 resolution. These are gray
matter, white matter, and cerebrospinal fluid. In general, gray matter is associated with
cortical regions and subcortical structures while white matter is associated with connections
between cortical regions and subcortical structures. The gray matter within the cortical
region contains mostly neuronal cell bodies and unmyelinated fibers while subcortical
regions contain deep gray nuclei and white matter contains axonal, usually myelinated,
fibers.

The different tissue contrasts provided by MRI scans and the scalar images of fractional
anisotropy, mean diffusivity, axial and radial diffusivity derived from DTI scans make it
possible to parcellate the brain into hundreds of regions (or groups of regions called lobes)
by mapping to atlases. The DTI scan can also generate a color map to indicate the 3D
orientation of the white matter connections. Finally, structural images can be registered in
common coordinates with functional ones such as fMRI, PET, CAEP, and fNIRS (described
in Section 8) so that brain activity in different parts of the brain in response to acoustic and
visual stimuli can be studied.

With respect to the three magnetic resonance modalities that exploit the magnetic properties
of water molecules in the brain, fMRI has been by far the most popular imaging modality
with about a hundred studies of brain activity in the deafened brain in response to visual and
acoustic stimuli. In contrast, there have been fewer but an increasing number of MRI and
DTI studies examining structural properties of the deafened brain.
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The review begins with a brief description of the deafened auditory pathway from the two
cochleae to the brain. This is followed by summaries of structural MRI, DTI, and clinical
studies of people with hearing loss. The focus will be on populations of pre- or peri- lingual
hearing loss with congenital or early onset etiology and postlingual hearing loss in pre-to-
late adolescence whose pathologies are distinct from those who acquired hearing loss in
adulthood. Next, a discussion on the limited focus on volumetric measures suggests how
additional measures of morphometry and connectivity widely used in other structural
neuroimaging studies could contribute to a greater understanding of the effect of hearing loss
on the brain. Then, an interpretation of the observed macroscopic structural differences is
given. This is followed by a summary of how structural imaging can be combined with
functional imaging to provide potential biomarkers for longitudinal tracking of
amplification. The review concludes with a discussion of future directions and opportunities
for expanding neuroimaging studies beyond those done so far.

21 THE DEAFENED AUDITORY PATHWAY

Figure 2 is a simplified schematic illustration of the transmission of acoustic information
along the auditory pathway from the cochleae to the brain. Sensorineural hearing loss is
attributed to missing or damaged hair cells in the cochlea in the inner ear (e.g., Ashmore et
al., 2010; Fettiplace & Kim, 2014). The result is the diminished ability of the cochlear hair
cells to transduce acoustic energy to electrical energy that is transmitted by nerves to the
brain. Thus there is a cascade of atrophy resulting in degraded transmission of acoustic
information (e.g., Kral, Hartmann, Tillein, Heid, & Klinke, 2000; Saada, Niparko, & Ryugo,
1996; Sanes & Kotak, 2011). Not even amplification provided by hearing aids is sufficient to
provide neural activity levels for optimal transmission particularly at high frequencies (e.g.,
Takesian, Kotak, Sharma, & Sanes, 2013). However, it is clear that the high level stimulation
rates provided by cochlear implants improve or restore integrity of neuroanatomical
structures at different stages of the auditory pathway (e.g., Chen, Limb, & Ryugo, 2010;
Muniak, Connelly, Tirko, O'Neil, & Ryugo, 2013; O'Neil, Connelly, Limb, & Ryugo, 2011,
Ryugo & Limb, 2009). Thus, sensory deprivation causes plastic changes within the brain.
These changes can be seen clearly at the microscopic scale albeit in post mortem human
studies or animal models. There have been few post mortem studies of the auditory cortex
and understandably none of babies with hearing loss (Huttenlocher & Dabholkar, 1997;
lyengar, 2012; Moore, 2002; Moore & Guan, 2001; Moore & Linthicum, 2007; Pundir et al.,
2012). So, animal models have been used to understand the nature of atrophy at different
stages of the auditory pathway (Butler & Lomber, 2013). Yet these microscopic studies have
to be reconciled with structural neuroimaging studies at the macroscopic scale in humans
which are reviewed in the next three sections.

31 MRI ANALYSIS OF GRAY MATTER AND WHITE MATTER STRUCTURES
IN PEOPLE WITH HEARING LOSS

MRI provides the opportunity to examine gray matter and white matter tissue in the brain at
the macroscopic scale of 1 mm3. Here gray matter characterizes cellular contents of cortical
and subcortical structures, while white matter characterizes connections between cortical
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and subcortical structures. The different biophysical properties of the water molecules in
gray matter and white matter result in different responses to the magnetic field of the
scanner. These differences provide the necessary contrasts between gray matter and white
matter in 3D volumetric images of the brain (Figure 1). Thus it is possible to quantify
morphometric properties of cortical and subcortical gray matter such as volume, surface
area, and thickness.

Table 1 indicates there have been 32 structural MRI studies comparing populations of people
with and without hearing loss. Figure 3 provides a visualization of the location of the
structures implicated in many of these studies. A few observations can be made. First, there
is a wide variation in the sample size with larger groups associated with large population
centers (Shibata, 2007). Second, these groups are by design homogeneous, that is, the
subjects are native users of sign language and generally have not been using hearing aids
since infancy. Third, there is also a wide variation in the age in these groups and only one
study focused on babies who were being evaluated for cochlear implants (K. M. Smith et al.,
2011). Fourth, while morphometry analysis focused on mostly volumes of gray matter and
white matter structures, nine measured cortical thickness (Hribar et al., 2014; Kumar &
Mishra, 2018; W. Li et al., 2013; J. Li et al., 2012; Pereira-Jorge et al., 2018; Ratnanather et
al., 2019; Shiell et al., 2016; Shiohama et al., 2019; Smittenaar et al., 2016) and one
measured surface area (Kara et al., 2006). Fifth, weak differences were observed in several
structures. Prominent among these are Heschl's gyrus and planum temporale considered as
primary and secondary auditory cortices, respectively, which both lie on the dorsal (upper)
surface of the superior temporal gyrus (see also Figure 1). Other affected structures included
motor cortex; frontal cortex including Broca's area; occipital cortex including early visual
areas; corpus callosum; insula; fusiform; cerebellum. Sixth, some reported unilateral
differences; others reported that asymmetry was mainly preserved in the temporal lobe
specifically Heschl's gyrus, planum temporale, and superior temporal gyrus. The two gray
matter connectivity studies (E. Kim et al., 2014; W. Li et al., 2015) suggested increased
connectivity between auditory and visual areas as well as weaker connectivity between
regions such as temporal and parietal (motor) ones.

Thus, MRI is potentially useful in providing quantitative differences in volumes of cortical
regions that play an important role in speech, language and hearing networks. But none of
these studies have provided a deeper understanding of the biological effects of hearing loss.

DTl ANALYSIS OF WHITE MATTER STRUCTURES IN PEOPLE WITH

HEARING LOSS

DTI provides an opportunity to specifically examine white matter tissue in the brain at the
resolution of 1 mm3. Here, white matter tissue is characterized by the orientation of neural
connections between the cortical and subcortical gray matter structures. DT1 is a variant of
MRI based on the diffusion of water molecules in white matter structures and provides
another noninvasive way of analyzing connections between brain structures. The 3 x 3
matrix representing the tensor model of water diffusion at each voxel in the DTI scan yields
an ellipsoid representing the orientation of the neural fibers within the voxel from which
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eigenvalues are used to compute scalar quantities (Figure 1) such as fractional anisotropy,
radial diffusivity, and mean diffusivity. These measures reflect the biophysical properties of
the neurons passing through the voxel. For example, larger fractional anisotropy values
indicate “dense axonal packing” (Feldman, Yeatman, Lee, Barde, & Gaman-Bean, 2010)
while larger values of radial diffusivity indicate “axonal degeneration” and mean diffusivity
is sensitive to “cellularity” (Tromp, 2016). The three corresponding eigenvectors are used to
compute the color contrast map (Mori, Wakana, & Van Zijl, 2004).

Table 2 indicates there have been 23 DTI studies comparing populations of people with and
without hearing loss. Aside, Table 2 is similar to a summary table (Tarabichi et al., 2018).
Figure 3 provides a visualization of the location of the white matter structures implicated in
these studies. Again, a few observations can be made. First, with the exception of three
studies all focused on homogeneous groups of hearing loss. One exceptional group consisted
of adults who started using sign language in adolescence (Lyness et al., 2014), and two
groups consisted of babies and young children prior to cochlear implantation (S. Wang et al.,
2019; H. Wang et al., 2019). Second, there is again a wide variation in larger sample sizes
from large population centers. Third, the analyses are mostly confirmatory in that
differences in scalar measures, that is, fractional anisotropy (and sometimes radial
diffusivity, mean diffusivity, and axial diffusivity) are seen in the temporal and occipital
regions such as the acoustic radiation (or auditory tract), the optic radiation, superior
temporal gyrus, corpus callosum, and with one exception (Cheng et al., 2019) the
longitudinal fasisculi which connect the auditory and language cortical regions. Fourth, the
two studies that focused on white matter connectivity were the ones at the scanner strength
of 1.5 T, and one study not surprisingly revealed correlations in thalamo-cortical connections
with temporal, parietal, motor, somatosensory, frontal and occipital lobes (Lyness et al.,
2014).

Thus, DTI can be potentially useful in providing quantitative differences in connections
between cortical and subcortical regions affected by hearing loss. Also combining MRI and
DTI could be one way to uncover how people with hearing loss perform audio-visual
integration tasks such as lipreading. To address this one would need to examine whether the
long range white matter optic radiation tract connecting the occipital lobe and thalamus
overlaps with the short range white matter tracts connecting the Heschl's gyrus and planum
temporale (Figure 4).

51 CLINICAL MRI AND DTl SCANS OF PEOPLE WITH HEARING LOSS

The advent of cochlear implants has dramatically changed the landscape of auditory
habilitation and rehabilitation for more than 350,000 children and adults with hearing loss
worldwide (Zeng & Canlon, 2015). This achievement was recognized by the 2013 Lasker-
DeBakey Clinical Research Award (Hampton, 2013; Holmes, 2013; Niparko, 2013; Roland
& Tobey, 2013; Williams, 2013), the 2015 National Academy of Engineering Russ Prize
(Clark, 2014; Hochmair, Hochmair, Nopp, Waller, & Jolly, 2014; Merzenich, 2015; Wilson,
2014), and the 2018 Shambough Prize for the developers of the multichannel cochlear
implant.
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Prior to surgery, patients have computer tomography or MRI scans of the temporal bones
encasing the cochleae (Schwartz & Chen, 2014; Sweeney et al., 2014; Teschner, Polite,
Lenarz, & Lustig, 2013; Young, Ryan, & Young, 2014). With respect to whole brain scans,
Table 3 lists 15 reports of structural MRI and DT studies. These studies are prospective and
thus the sample sizes are larger than those reported in research studies. Not surprisingly
many studies involved pediatric subjects if only to exclude the possibility of abnormalities in
the central nervous system. In general, the observed white matter changes are linked with
immature myelination possibly due to abnormal neuronal processes that occur in the
developing embryo (Long, Wan, Roberts, & Corfas, 2018). But two studies correlated
structural differences mainly in the connections from thalamus to the frontal and temporal
cortical lobes with positive outcomes. Due to the risk of device displacement, MRI and DTI
are contraindicated for people with cochlear implants. So it is imperative that quantitative
analysis such as connectivity and topography be considered at baseline in future studies if
reasonable imaging biomarkers for predicting positive outcomes with cochlear implants are
to be developed.

61 MORPHOMETRY AND CONNECTIVITY OF STRUCTURES AFFECTED
BY HEARING LOSS

A concern about MRI and DT studies so far is the focus on volume. Volumes for closed
structures such as subcortical ones can be interpreted. But that may be not the case for the
cortical regions forming the highly folded ribbon that constitutes the cortex (Figure 1). This
raises three points. First, the above studies were based on whole brain analyses which
revealed inconclusive information about the effect of hearing loss on brain structures. In
contrast, a region of interest approach based on networks of hypothesized structures maybe
more meaningful and sensitive (e.g., Giuliani, Calhoun, Pearlson, Francis, & Buchanan,
2005) for generating biomarkers for positive outcomes for clinical procedures such as
auditory training. This is where information from functional neuroimaging studies of
language, speech and hearing may be helpful in focusing on structures hypothesized to be
affected by hearing loss (see Section 8). Second, volume should be viewed as the product of
two independent measures—surface area and thickness—to reflect the laminar structure of a
cortical region (Dahnke & Gaser, 2018; Wagstyl & Lerch, 2018). This structure is brought
about by the folding of the cortex to maximize cortical surface area in a confined space.
Each cortical region is composed of fundamental units called cortical columns (Rakic, 1995,
1988) that traverse from the white matter to just beneath the skull. Also, each cortical region
is composed of six layers which are stacked on top of each other such that thin layers in one
part of the region are thicker in another part via the equivolumetric model of the cortex
(Bok, 1929, 1959). Thus surface area and thickness may be associated with the distribution
or density of cortical columns and the total thickness of the six layers, respectively. So,
decreased or increased cortical volume may be misleading. In fact, decomposing volume
into surface area and thickness was suggested for the primary auditory cortex in people with
normal hearing by Meyer, Liem, Hirsiger, Jancke, and Hanggi (2014) who concluded that
thickness and surface area should be quantified as separate measures. Also, given the
possible effect of genetics on hearing loss (Dror & Avraham, 2009; R. J. H. Smith, Shearer,
Hildebrand, & Van Camp, 1993) specifically in the development of cortical columns, it may
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be best to analyze thickness and surface area separately (Panizzon et al., 2009; Winkler et
al., 2010). A more recent study suggested that cortical thickness may be an useful biomarker
for identifying shape and location of the primary auditory cortex (Zoellner et al., 2019). In
addition, more realistic measures of cortical thickness can be developed via sophisticated
equivolumetric models for the cortex (Ratnanather et al., 2019; Younes, Kutten, &
Ratnanather, in press). Third, in particular for subcortical structures which have not been
examined in great detail, it may be helpful to perform shape analysis (Faria et al., 2015;
Miller et al., 2013, 2014; Mori et al., 2013; Ratnanather, Liu, & Miller, 2020) given the role
the thalamus plays in the auditory pathway (Figure 2). Here, shape biomarkers are
determined from computations of deformations of the structure relative to a template. This
allows for determining atrophied subregions of the structure. Such data could be useful in
determining specific pathways of degeneration between structures.

Furthermore, thickness may be correlated to brain activity in auditory cortical areas. First,
acoustic fMRI studies have shown increased neural activity in the primary auditory cortex
(Patel et al., 2007; Tan et al., 2013). Second, given the importance of CAEP biomarkers in
assessing neural activity with amplification via hearing aids or cochlear implants (J. D.
Campbell, Cardon, & Sharma, 2011; Sharma, Dorman, & Spahr, 2002), Liem, Zaehle,
Burkhard, Jancke, and Meyer (2012) showed that the first negative amplitude (N1) of CAEP
waveform responses strongly correlated with cortical thickness of the superior temporal
gyrus which encompasses both the Heschl's gyrus and planum temporale (see Figure 1).
Third, following PET studies gray matter density (Duncan, Gravel, Wiebking, Reader, &
Northoff, 2013) and thickness (la Fougere et al., 2011) were found to correlate with gamma-
aminobutyric acid (GABA) binding within cortical regions. As GABA is the primary
inhibitory neurotransmitter in the brain and plays a crucial role in regulating neuronal
activity, different rates of neural activity from the thalamus to the auditory cortex may be
attributed to differences in GABA density distribution (Takesian et al., 2013) and possibly
thickness.

To illustrate the possible benefits of analyzing cortical thickness, consider the Labeled
Cortical Distance Mapping (LCDM) technique (Miller et al., 2003; Miller, Massie,
Ratnanather, Botteron, & Csernansky, 2000; Ratnanather et al., 2013, 2014). LCDM
generates histograms of distances of gray matter voxels relative to the gray/white surface of
the cortical region. In turn this gives rise to laminar thickness derived as the 95th percentile
and the corresponding volume (as the area under the histogram). The shape of an individual
LCDM for a cortical region is influenced by the folding of the region. A flat region yields a
“top-hat” LCDM while a folded region with variable thickness yields a “skewed” LCDM,;
similar profiles have been observed for whole brains (Hutton, De Vita, Ashburner,
Deichmann, & Turner, 2008). Together with the corresponding surface areas, LCDMs can be
analyzed in different ways via statistical tools (Ceyhan et al., 2011, 2013). Figure 5 shows
individual LCDMs for the left and right Heschl's gyrus and planum temporale in a pilot
study of five adults with hearing loss and matched controls (Ratnanather et al., 2019). This
study was challenging because more subjects could not be recruited having acquired a
cochlear implant by the time they were contacted. Nonetheless, the statistical power of
pooled (grouped) analysis (Ceyhan et al., 2011) can provide useful information with
significant p-values from one-sided Kolmogorov—Smirnov tests (<.0001) for the pooled
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LCDM for the adults with hearing loss to be the left of that for the control subjects. As
discussed in the next section, this suggests that in these auditory cortical areas there may be
some similarities at smaller distances but differences at larger distances which have
interesting interpretations at the microscopic level.

It is worth noting that after using hearing aids since infancy, four of the five subjects with
hearing loss now have cochlear implants with excellent speech comprehension in quiet
situations. This suggests the structural benefit of providing auditory stimulus to the brain via
hearing aids as soon as hearing loss is diagnosed. The difference in the shape of the LCDMs
may reflect the delayed maturation of synaptic activity (Huttenlocher & Dabholkar, 1997)
followed by synaptic pruning (Selemon, 2013) in the developing brain. The pooled
distributions suggest little differences in the left Heschl's gyrus which is associated with
temporal processing (Marie, Maingault, Crivello, Mazoyer, & Tzourio-Mazoyer, 2016) and
some differences on the right Heschl's gyrus which is associated with spectral processing
(Marie et al., 2016). The former may be attributed to auditory training used in listening and
spoken language after early detection and intervention with hearing aids as infants while the
latter may be attributed to high frequency hearing loss. By comparison, thicker visual
cortical areas have been observed in people blinded since infancy (J. Jiang et al., 2009).

As for DTI, two studies combined with functional studies of hearing loss have yielded
interesting correlations. First, brain waveform activity correlated with increases in fractional
anisotropy measures of the brainstem specifically the inferior colliculus (Reiman et al.,
2009). Second, aerobic exercising by children with hearing loss resulted in improved
executive function associated with reshaping white matter integrity in several structures
(Xiong et al., 2018). DTI also offers the potential to visualize the topography of structures
such as the acoustic radiation and optic radiation (Figure 4) as well as other long range white
matter tracts that play different but important roles in processing of speech and language
(Friederici, 2012). Recently, Dhir et al. (2020) showed that it was possible to generate the
acoustic radiation in clinical scans as opposed to research scans which require long scan
times. For the same deaf adults studied in Figure 5, they confirmed the findings of Maffei
(2017) who suggested that lower fractional anisotropy values may be associated with poor
myelination in the acoustic radiation which may account for weaker neural transmission.

71 INTERPRETING STRUCTURAL MRI AND DTI CHANGES CAUSED BY
HEARING LOSS

It would appear from MRI and DTI studies so far that subtle structural changes occur in the
Heschl's gyrus and planum temporale. These two structures are the primary and secondary
auditory cortical regions, respectively. Granted that other structures particularly association
cortical regions in the speech and language network are also affected, an interpretation of
these macroscopic changes with respect to the microscopic observations from animal models
of hearing loss is now given.

One of the most advanced and well developed animal model of cortical activity stemming
from cochlear implants has been the cat (Kral, 2013; Raggio & Schreiner, 1994, 1999, 2003;
Ryugo & Menotti-Raymond, 2012; Schreiner & Raggio, 1996). Specifically,
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electrophysiological measurements across the six layers of the primary and secondary
auditory cortices have revealed the effect of the absence of neural activity in the sensitive
period of development (Eggermont & Ponton, 2003; Kral, 2013; Kral & Tillein, 2006; Kral
& Eggermont, 2007; Kral, Tillein, Heid, Hartmann, & Klinke, 2005; Kral, Tillein, Heid,
Klinke, & Hartmann, 2006). Specifically, there is a delay in the synaptic activation of the
upper (supragranular) layers and virtual absence of activity in the lower/deep (infragranular)
layers. The absence of activity in the lower/deep layers may be attributed to incomplete
development and alteration of information flow to and within the primary auditory cortex.
While neurons project from the upper layers of the primary area to the secondary areas,
some project back to lower/deep layers of the primary area. Thus the absence of activity in
the lower/deep layers suggests that the primary auditory area is decoupled from the
secondary area, and the feedback loop is weakened. In this decoupling hypothesis (Kral et
al., 2005) illustrated in Figure 6, the secondary area is no longer able to provide “top-down”
cognitive processing which is helpful for comprehension of spoken language (Kral &
Eggermont, 2007). At the same time, the upper layers are unable to perform “bottom-up”
processing which is helpful for discerning phonemes that are the basic elements of spoken
language.

The LCDMs of adults with hearing loss (Figure 5) who had been using listening and spoken
language via hearing aids since infancy suggest that the decoupling mechanism can be
averted with consistent use of amplification. Indeed, the similarities (with small variance) at
smaller LCDM distances corresponding to the lower/deep layers suggest that sufficiently
aided adults with hearing loss can develop linguistic understanding and the larger differences
(with larger variances) at LCDM distances corresponding to the upper layers suggest that
these adults may be able to understand speech only in quiet. Thus the shapes of LCDMs may
reveal a little more information about the upper and lower layers than just the overall
laminar thickness that is computed from the distance between the gray/white and gray/inner
surfaces. But for morphometry of the layers one may need to consider equivolumetric
models of cortical folding (Ratnanather et al., 2019; Younes et al., in press).

However, the weaker input from the thalamus to the auditory cortex may manifest in
diverted inputs to other cortical areas such as the parietal (motor) cortex as observed in 3D
reconstruction of CAEP activity in late implanted children (lower right panel in Figure 6
[fig. 3 of Gilley et al., 2008]). This suggests that hearing loss results in two-speed thalamic
transmission (Takesian et al., 2013). One conjectures that the demyelinated thalamo-parietal
pathway cannot tolerate the high activity levels stemming almost immediately after
activation of the cochlear implant, thus enforcing the neural transmission along the acoustic
radiation to the Heschl's gyrus (top and middle right panels in Figure 6 [fig. 2 of Gilley et
al., 2008])).

However, more substantial quantitative analysis of morphometry and connectivity is needed
to provide a more complete model of the structure and functional relationship between
cortical and subcortical structures in the deafened brain.
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81 COMBINING STRUCTURAL AND FUNCTIONAL IMAGING FOR
LONGITUDINAL TRACKING OF AMPLIFICATION

It is constructive to see how recent functional neuroimaging technologies could be combined
with structural imaging to shed light on the benefits of amplification on the deafened brain.
The importance of functional changes accruing from amplification cannot be understated (J.
D. Campbell et al., 2011; Cardin et al., 2013; Shiell, Champoux, & Zatorre, 2015). So
changes in the brain due to amplification should correlate morphometric and connectivity
measures with data derived from CAEP (Gilley et al., 2008; Liem et al., 2012), PET
(Barone, Lacassagne, & Kral, 2013; Lazard, Lee, Truy, & Giraud, 2013; Liem, Hurschler,
Jancke, & Meyer, 2014; Strelnikov et al., 2014), fMRI (Patel et al., 2007; Tan et al., 2013),
and fNIRS (Lawler, Wiggins, Dewey, & Hartley, 2015; Sevy et al., 2010).

In particular, functional neuroimaging should be combined with structural neuroimaging in
longitudinal studies of amplification or auditory training (Boothroyd, 2010). This could be
achieved via MRI (Teschner et al., 2013) as well as DTI and resting state fMRI (Z. Li et al.,
2015; B. Liu et al., 2015; Zhang et al., 2015) followed by one of PET, CAEP, or fNIRS. In
the case of cochlear implants, MRI, DTI and fMRI can only be done at baseline prior to
surgery. A possible translational study would be to find regional or subregional biomarkers
in the superior temporal gyrus that correlate with phonetic processing of speech with
amplification (Boatman, 2004; Crinion, Lambon-Ralph, Warburton, Howard, & Wise, 2003;
Mesgarani, David, Fritz, & Shamma, 2014; Nourski & Howard 3rd, 2015).

The notion of a “sensitive” period in sensory neurodevelopment (Knudsen, 2004) alluded to
in the previous section is supported by CAEPS which are noninvasive
electroencephalography measurements that track the maturation of the central auditory
system via changes in latency and amplitude (Steinschneider, Nourski, & Fishman, 2013).
The first positive peak (P1), which is a summation of synaptic activities and neuronal
conduction times as the signal travels from the ear to the primary auditory cortex, decreases
with age in children with normal hearing (Eggermont & Ponton, 2003). Prompted by the
seminal work by Ponton et al. (1996), Sharma et al. (2002) performed what is now a
landmark study of children with cochlear implants. They observed that children with
shortest period of deprivation (i.e., absence of auditory stimuli) of 3.5 years or less had P1
latencies fall into the normal range about 6 months after implantation while those with
deprivation periods of 7 years or more had abnormal CAEPs. Similar observations were seen
in children who used hearing aids consistently even before getting a Cl (J. D. Campbell et
al., 2011). Also, the first negative peak (N1) which manifests itself post-adolescence in
normal hearing also occurs in people who had been using amplification since infancy
(Sharma, Campbell, & Cardon, 2015).

Evidence suggests that P1 and N1 latencies reflect neural generators from thalamo-cortical
projections to the primary auditory cortex in the Heschl's gyrus and the secondary auditory
cortex in the planum temporale, respectively (Liegeois-Chauvel, Musolino, Badier, Marquis,
& Chauvel, 1994) together with second order processing via a feedback loop between the
primary and secondary auditory cortices mentioned earlier (Kral & Eggermont, 2007).
Gilley et al. (2008) observed bilateral activation of the auditory cortical areas (superior
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temporal gyrus and inferior temporal gyrus) in normal hearing children. Children who
received cochlear implants at an early age showed activation in the auditory cortical areas
(contralateral to the implant) which were similar to those in normal hearing children while
activation in late-implanted children was severely compromised. This led to the decoupling
hypothesis (Kral et al., 2005) which may be the basis of cross-modal plasticity via increased
activity in occipital and motor lobes. This notion of visual dominance in audio-visual
integration and/or takeover of the auditory areas by visual stimuli was suggested by Bavelier
and Neville (2002). It is worth noting that Shiell et al. (2015) observed that consistent use of
hearing aids (i.e., amplification) resulted in reduced visual fMRI activity in contrast with
those who did not use hearing aids. These differences have also been observed in a recent
fMRI study of different groups of people using hearing aids or sign language (Cardin et al.,
2013).

For people with hearing loss, fMRI is challenging because it is uncertain whether the subject
would be able to comprehend speech especially if the degree of hearing loss is profound
given the noisy environment of the scanner. fMRI measures brain activity detecting changes
associated with increased blood flow into a cortical region that is responding to stimuli such
as speech. A few laboratories have been able to provide acoustic stimuli through tubephones
and headphones customized to deliver sound levels up to 130 db with low distortion, flat
frequency response, reliable phase and noise cancellation (Hall & Paltoglou, 2009). While
there have been no reported studies of people with hearing loss with these customized
devices, another group has examined the use of fMRI in sedated babies prior to cochlear
implantation (DiFrancesco, Robertson, Karunanayaka, & Holland, 2013; Patel et al., 2007;
Schmithorst et al., 2005). They demonstrated that levels of brain activity as a reflection of
hearing levels in the primary auditory cortex correlated strongly with the improvement in
hearing after getting a cochlear implant. More recently, the same group applied pattern
classification methods to results of MRI and fMRI data to make some predictions about
speech and language outcomes in babies who then received a cochlear implant (Deshpande,
Tan, Lu, Altaye, & Holland, 2016; Tan et al., 2013). Others have observed brain activity at
low frequencies in the auditory cortex of people with partial hearing loss (Skarzynski et al.,
2013) and positive changes in activation of the auditory cortex after a period of using
hearing aids (Hwang, Wu, Chen, & Liu, 2006). So it ought to be possible to adapt
tubephones or headphones to create a hearing aid-like transfer function rather than a flat one
(e.g., Palmer, Bullock, & Chambers, 1998) to examine how the brain functions with hearing
aids.

Given the contraindication of ferromagnetic properties of cochlear implants with MRI
scanners, PET has emerged as a tool for longitudinal tracking of cochlear implants. PET
measures metabolic processes in the brain so cortical regions that are actively responding to
stimuli such as speech have increased metabolism (D. S. Lee et al., 2001). Significant brain
reorganization in the first few months after cochlear implantation has been observed mainly
in the left superior temporal gyrus and Broca's area in the frontal cortex of subjects with
postlingual hearing loss but not those with prelingual hearing loss (Petersen, Gjedde,
Wallentin, & Vuust, 2013). This suggests that prior experience of language which is the case
in the former group is a good indicator of positive outcomes. Further, visual cues may have a
positive effect on auditory perception (Strelnikov et al., 2014) which suggests audio-visual
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integration plays an important role in brain plasticity (R. Campbell, MacSweeney, & Woll,
2014). Earlier studies reviewed by Giraud and Lee (2007) suggested that resting metabolism
can be a good measure of speech performance after cochlear implantation and changes in
PET activity reflect adaptation in higher order cognitive processes.

A major limitation of PET is the use of radioactive tracers which limits the ability to perform
longitudinal analysis over a short period especially when plasticity changes are significant.
This could be overcome by fNIRS which has just emerged in the past decade as a potentially
useful tool (Sevy et al., 2010). Here as in fMRI, neuronal activity results in changes in levels
of oxygen in blood but with near-infrared light passing through brain tissue. It is now
possible to assess activity in the auditory cortex in response to speech (Lawler et al., 2015),
differentiate from scrambled speech as a measure of outcome with amplification (Pollonini
et al., 2014), lipreading before and after cochlear implantation (Anderson, Lazard, &
Hartley, 2017; Anderson, Wiggins, Kitterick, & Hartley, 2017) and speech and language
processing (Bortfeld, 2019; McKay et al., 2016; Zhou et al., 2018). Limitations such as
sensitivity and accuracy of quantification of brain activity in deeper cortical regions (e.g., the
Heschl’s Gyrus) may be resolved by newer optical measurements (Hasnain, Mehta, Zhou,
Li, & Chen, 2018; Mehta et al., 2017).

91 FUTURE DIRECTIONS AND OPPORTUNITIES

This review has revealed limitations that make it difficult to make inferences about plastic
changes in the brain caused by hearing loss regardless of whether amplification was used or
not. Several suggestions are offered that could increase the impact of structural
neuroimaging as a biomarker to aid the development of speech, language, and hearing.

Future studies should extend beyond homogeneous groups that in fact represent a very small
segment of the spectrum of people with hearing loss. In fact, the World Health Organization
estimated that 15% of the world's population has a hearing loss of which a third, that is, 360
million, have a disabling hearing loss (World Health Organization, 2013) ranging from
partial to profound. Further, the World Federation of the Deaf estimates that 70 million use
sign language (http://wfdeaf.org/faq). This means that these homogeneous groups
characterize just 6% of people with hearing loss. Only one neuroimaging study considered
this limitation and attempted to provide new answers (Olulade et al., 2014).

Studies should go beyond the structures other than the ones known to play an important role
in speech, language, and hearing. Granted that hearing loss has broad consequences for the
developing and maturing brain, it is important to discern the different forms of plasticity in
the brain. Use of more quantitative and sophisticated analyses of morphometry and
connectivity measures could go a long way to deepen understanding of the biological
substrates of plasticity. Further, these methods could be useful for analysis of structural
neuroimaging of other types of hearing loss such as aged-induced hearing loss (Eckert et al.,
2013; Eckert, Cute, Vaden, Kuchinsky, & Dubno, 2012; F. R. Lin et al., 2014; Peelle,
Troiani, Grossman, & Wingfield, 2011; Vaden, Kuchinsky, Ahlstrom, Dubno, & Eckert,
2015), unilateral hearing loss (Rachakonda, Shimony, Coalson, & Lieu, 2014; C. M. Wu,
Ng, & Liu, 2009; Yang et al., 2014) and tinnitus (Husain et al., 2011).
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Studies should also consider federating neuroimaging datasets by archiving data from all
over the world. The sample sizes given in Tables 1 and 2 are relatively small compared to
those in recorded in other structural neuroimaging studies. On the other hand, the wider
spectrum of people with hearing loss calls for alternative and more sophisticated statistical
tests to deal with sizes and heterogeneity of these samples; for example, snowball sampling
(Cardin et al., 2013) or pooling (Ceyhan et al., 2011). Federation is becoming common in
neuroimaging projects such as schizophrenia (Alpert, Kogan, Parrish, Marcus, & Wang,
2015) and the ENIGMA project for many neurodegeneration and neurodevelopmental
diseases (Thompson et al., 2014). This is where “Big Data” analytical tools such as data
mining (Ramos-Miguel, Perez-Zaballos, Perez, Falconb, & Ramosb, 2014; Tan et al., 2013)
could be used to uncover potential biomarkers for positive outcomes for amplification.
Combining such data will require techniques such as diffeomorphometry (Miller et al., 2014;
Ratnanather et al., 2020) to map imaging data to common coordinates for analysis and
comparison. Personalized inference of clinical and behavioral data could then be achieved
(Faria et al., 2015; Miller et al., 2013; Mori et al., 2013). A significant step in that direction
was taken by Feng et al. (2018) who used machine learning methods to find that neural
structures unaffected by auditory deprivation were best predictors for outcomes with
cochlear implants in young children.

CONCLUSION

Plastic changes in the brain due to pre- or peri-lingual pediatric hearing loss with congenital
or early onset etiology and post-lingual hearing loss in pre-to-late adolescence are seen to be
multifocal rather than diffuse. Differences are consistent across most of the regions
implicated in the hearing, speech and language networks in the brain (Friederici, 2012)
regardless of modes of communication and amplification, be these via listening and spoken
language or sign language. To a lesser extent, structures in networks that play an important
role in cognition are affected (X. M. Xu et al., 2019b). Quantitatively differences are subtle
for some structures and variable for other structures. That said, it is remarkable that the
asymmetry properties of the structures in the hearing, speech and language pathways are
mostly preserved. Yet, little is known about the deeper underlying biological effects of
hearing loss on the brain. For example, one asks what are the structural consequences of
limited acoustic stimuli that belies demyelination (Long et al., 2018) and increasing fatigue
and effort associated with listening (Willis, 2018). If the classic tensegrity model of brain
connectivity by Van Essen (1997) holds, then one may expect to see weaker tension in the
white matter fibers connecting cortical regions responsible for auditory function. In turn, the
weaker tension could result in abnormal cortical folding with weaker mechanical forces
upon the thicker and shallower sulcal fundi (cortical folds or valleys). This will have
mechanical and morphological effect on the deep layers that have been observed to be
inactive in animal models of auditory deprivation. Such an interpretation remains to be
tested at the macroscopic level. However, new methods that are capable of analyzing
properties of the acoustic radiation, optic radiation, thalamo-cortical, and cortico-cortical
connections may contribute to a greater understanding of the anatomical pathologies of
hearing loss in the brain. Thus there is a need for clinical neuroimaging to uncover
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biomarkers for longitudinal tracking and monitoring of progress with amplification provided
by either cochlear implants or hearing aids.
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FIGURE 1.
Different image modalities stratified into structural (top row) and functional (bottom row)

imaging. The different contrasts at the macroscopic level of 1 mm?3 provide information
about three types of tissues: gray matter, white matter, and cerebrospinal fluid. An MRI scan
provides a view of the highly folded cortex (shown in light grayscale) and the underlying
white matter (shown in bright grayscale). The scalar modalities (FA, MD, and color map)
derived from DTI scans provide different ways of looking at white matter structures. The
red, green, and blue colors in the color map indicate orientation in the left-right, anterior—
posterior, and superior—inferior directions, respectively. The PET and fMRI scans provide a
view of responses to brain activity. CAEP and fNIRS brain activity are overlaid on MR
scans for reference. Activity associated with the first positive peak in the CAEP waveform
(i.e., P1) is located in the primary auditory cortex contained within the Heschl's gyrus.
(Reprinted with permission from Sharma et al. (2016, fig. 2). Copyright 2016, Wolters
Kluwer Health) Activity associated with speech is located in the superior temporal gyrus
containing Heschl's gyrus and planum temporale (often called the primary and secondary
auditory cortex) on both sides (Reprinted with permission from Figure 2b in Sevy et al.
(2010). Copyright 2010, Elsevier). Mapping these scans to parcellated atlases provides an
opportunity to perform quantitative analysis of structural and functional data in common
coordinates (Miller, Faria, Oishi, & Mori, 2013; Miller, Younes, & Trouvé, 2014; Mori,
Oishi, Faria, & Miller, 2013)
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Simplified schematic illustration of transmission of acoustic information from the left and
right cochleae to the brain. Note information crosses over in the brainstem as well as in the
cortex. Please refer to Figures 3 and 4 for association cortical regions such as planum
temporale. The white matter connections include those between primary and associated
cortical regions and those that project back to other structures via the thalamus and

brainstem
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FIGURE 3.
3D visualization of gray matter and white matter structures found to be different in people

with hearing loss based on Table 1. Please refer to Figure 2 for the possible roles these
structures play in the auditory pathway. Upper left shows the lateral view of the left side of
the JHU-MNI-SS brain (Oishi et al., 2009); lower right shows the lateral view of the left
medial structures adjacent to the mid-sagittal plane of the right hemi-brain. The cortical
structures (Pars Triangularis, Pars Opercularis, Motor Cortex, Superior Temporal Gyrus,
Planum Temporale, Visual Cortex and Cerebellum, Heschl's Gyrus, Insula, Fusiform Gyrus)
and one white matter structure (corpus callosum) were obtained from the JHU-MNI-SS
labels and triangulated. CAWorks (www.cis.jhu.edu/software/caworks) was used for
visualization
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FIGURE 4.

3D visualization of connectivity between cortical and subcortical structures found to be
different in people with hearing loss based on Tables 2 and 3. Please refer to Figure 2 for the
possible roles these structures play in the auditory pathway. The lateral view of the left side
of the gray/white surface of the JHU-MNI-SS template (Oishi et al., 2009) generated by
FreeSurfer and transferred to native space (Fischl, 2012) is shown. The cortical structures
(Pars Triangularis, Pars Opercularis, Superior Temporal Gyrus, Planum Temporale, Heschl's
Gyrus), one subcortical structure (Thalamus), and the white matter Posterior Thalamic
Radiation tract which contains the optic radiation were obtained from the JHU-MNI-SS
labels and triangulated. The other white matter fasisculi structures were obtained from the
IX1 template (Yushkevich, Zhang, Simon, & Gee, 2008) and transferred via diffeomorphic
mapping (Ceritoglu et al., 2009) of the IXI fractional anisotropy image to the corresponding
JHU-MNI-SS image. Short range fiber tracts from the Heschl's Gyrus to Planum Temporale
generated by dynamic programming (M. Li, Ratnanather, Miller, & Mori, 2014; Ratnanather
et al., 2013) are partially hidden. CAWorks (www.cis.jhu.edu/software/caworks) was used
for visualization
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FIGURE 5.
Labeled cortical distance map (LCDM) histograms are normalized frequencies of distances

of gray matter 1 mms3 voxels relative to gray/white cortical surfaces. Shown are individual
LCDMs for the Heschl's gyrus and planum temporale in five adults with hearing loss
(dashed) and five matched controls (solid lines). Horizontal and vertical scales are from -1
to 5 mm and 0.0 to 0.6, respectively. p-Values from one-sided Kolmogorov—-Smirnov tests
for the pooled cummulative distribution function (cdf) for the control subjects to be left of
the pooled cdf for the subjects with hearing loss were significant for all four structures
(<€.0001). For pooled LCDMs, see Ratnanather et al. (2019)
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FIGURE 6.
Interpretation of Kral's decoupling hypothesis (Adapted from Kral and Eggermont (2007,

fig. 3). Copyright 2007 Elsevier) based on LCDM analysis in Figure 5. Similarities at
smaller distances, that is, lower cortical layers may facilitate top-down processing, that is,
contextual or linguistic comprehension. This may be due to priming of the auditory pathway
in childhood via amplification with hearing aids albeit at a lower rate than with cochlear
implants. However, this might be compromised by larger differences at larger distances, that
is, upper cortical layers which may be attributed to weaker thalamic inputs and make
bottom-down processing, that is, comprehension of phonemes comprehension difficult and
complex. In turn, the inputs to the lower layers and thence the other cortical areas are
weakened. Additional evidence of weaker thalamic connections may manifest in those to
other cortical areas such as the parietal cortex as might be in the case in the visualization of
current density reconstruction in late implanted children (lower right panel from fig. 3 in
Gilley, Sharma, & Dorman (2008). Copyright 2008, Elsevier). This suggests that hearing
loss results in two-speed thalamic inputs (Takesian et al., 2013). One conjectures that
amplification provided by hearing aids is weaker than that provided by cochlear implants
and further that the thalamo-parietal pathway cannot tolerate the high activity levels
stemming almost immediately after activation of the cochlear implant, thus forcing the
neural activity to traverse along the acoustic radiation to the Heschl's gyrus (top and middle
right panels from fig. 2 in Gilley et al. (2008))
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TABLE 3

Preclinical MRI and DTI whole brain imaging studies
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Studies Size Group Age Modality Results
Lapointe, Viamonte, 40 SNHL Pediatric Tland T2 Some changes in T2 but eight had abnormalities from
Morriss, and Manolidis myelination delays to migrational anomalies
(2006)
Trimble, Blaser, James, and 92 Preop ClI  Pediatric FLAIR 32% abnormalities in TB; some subcortical signal intensities
Papsin (2007) discrepancies
Roche et al. (2010) 118 ANSD Pediatric MR 40% had brain abnormalities; 28% had CN deficiencies
CT 16% had cochlear dysplasia
Hong, Jurkowski, and 57 Preop ClI  Pediatric MR 18% with white matter abnormalities (two had postop delays
Carvalho (2010) in performance), no serious CNS diseases
Chilosi et al. (2010) 80 SNHL Pediatric MR 48% with additional disabilities (cognitive, behavioral—
emotional and motor). 37 signal abnormalities—brain
malformations (46%) and white matter abnormalities (54%)
Chang et al. (2012) 18 Preop ClI  Pediatric DT FA in Broca's, genu CC, auditory tract and MGN correlated
with auditory scores after CI
Mackeith, Joy, Robinson, 158  Preop CI  Pediatric MR Detected abnormalities (/7= 27.9%, missed by CT in 6.3%) of
and Hajioff (2012) and adults which only 12.7% considered significant
CT 6.3% only noncritical abnormalities in CT
Moon et al. (2012) 177  Preop Cl  Pediatric MR Children with no lesions (7= 150) performed better than
those with lesions
Proctor, Gawne-Cain, 51 Preop ClI  Pediatric MR Five adults and 16 children—whole brain abnormalities; 36
Eyles, Mitchell, and Batty and adults had at least one CI. Of 15 who did not have Cl, eight positive
(2013) findings in whole brain MRI
Jonas et al. (2012) 162  Preop ClI  Pediatric MR 30% had abnormalities mostly white matter changes related
to pre-existing medical conditions
Z. Y. Jiang, Odiase, 188  Preop CI  Adult MR 9% had cochlear pathway and white matter abnormalities; in
Isaacson, Roland, and Kutz others, 65% had normal MRI scans
(2014)
X.-Q. Xu, Wu, Hu, Su,and 157  Preop ClI  Pediatric MR and CT  White matter changes most common but effect on CI minimal
Shen (2015)
Huang et al. (2015) 24 Preop ClI  Pediatric DT Lesser FA in TB, SON, IC, MGB, AR and WMHG in 16 with
CAP <6
Park, Chung, Kwon, and 1 Preop ClI  Pediatric DT Less FA in WMHG, IFOF, UF, SLF and forceps major only
Lee (2018) in age <4 years
Feng et al. (2018) 37 Preop ClI  Pediatric MR Auditory association and cognitive brain regions which are

unaffected by auditory deprivation provide positive outcomes

Abbreviations: ANSD, auditory neuropathy spectrum disorder; AR, acoustic radiation; CAP, category of auditory performance; CC, corpus
callosum; ClI, cochlear implant; CN, cochlear nerve; CNS, central nervous system; CT, computed tomography; DT, diffusion tensor; FA, fractional
anisotropy; FLAIR, fluid-attenuated inversion recovery; IC, inferior colliculus; IFOF, inferior fronto-occiptal fasciculus; MGB, medial geniculate
body; MGN, medial geniculate nucleus; MR, magnetic resonance; Preop, pre-operative; SLF, superior longitudinal fasciculus; SNHL, sensorineural
hearing loss; SON, superior oliviary nucleus; T1/T2, MR-weighted image; TB, temporal bone; UF, uncinate fasciculus; WMHG, white matter

Heschl's gyrus.
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