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Abstract

There has been a spurt in structural neuroimaging studies of the effect of hearing loss on the brain. 

Specifically, magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) technologies 

provide an opportunity to quantify changes in gray and white matter structures at the macroscopic 

scale. To date, there have been 32 MRI and 23 DTI studies that have analyzed structural 

differences accruing from pre- or peri-lingual pediatric hearing loss with congenital or early onset 

etiology and postlingual hearing loss in pre-to-late adolescence. Additionally, there have been 15 

prospective clinical structural neuroimaging studies of children and adolescents being evaluated 

for cochlear implants. The results of the 70 studies are summarized in two figures and three tables. 

Plastic changes in the brain are seen to be multifocal rather than diffuse, that is, differences are 

consistent across regions implicated in the hearing, speech and language networks regardless of 

modes of communication and amplification. Structures in that play an important role in cognition 

are affected to a lesser extent. A limitation of these studies is the emphasis on volumetric measures 

and on homogeneous groups of subjects with hearing loss. It is suggested that additional measures 

of morphometry and connectivity could contribute to a greater understanding of the effect of 

hearing loss on the brain. Then an interpretation of the observed macroscopic structural 

differences is given. This is followed by discussion of how structural imaging can be combined 

with functional imaging to provide biomarkers for longitudinal tracking of amplification.
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1 ∣ INTRODUCTION

Sensorineural hearing loss is the most common type of deafness resulting in degraded 

transmission of acoustic information from the dysfunctional cochleae in the inner ears to the 

primary auditory cortex and secondary or association cortices in the brain (see Section 2). 

Such sensory deprivation results in a brain that is structurally different from one with normal 

hearing. This difference is likely to be related to the degree of hearing loss as well as 

plasticity induced by the brain adapting to auditory stimuli provided by a hearing aid or 

cochlear implant and/or visual stimuli provided by lipreading (or speechreading). Further 

differences can accrue from developing cognitive strategies to compensate for the hearing 

loss. Thus, the deafened brain has been both an attractive and challenging target of 

neuroimaging studies since the turn of the new millennium. These studies have been fueled 

by advances in technologies such as positron emission tomography (PET), magnetic 

resonance imaging (MRI), functional MRI (fMRI), diffusion tensor imaging (DTI), 

functional near-infrared spectroscopy (fNIRS), and cortical auditory evoked potential 

(CAEP) to name but a few.

Figure 1 illustrates the different structural and functional neuroimaging modalities used to 

examine the brain. At the macroscopic scale, three types of brain tissues can be discerned in 

a 3D volume of about 250 × 250 × 200 (12.5 M) voxels of 1 mm3 resolution. These are gray 

matter, white matter, and cerebrospinal fluid. In general, gray matter is associated with 

cortical regions and subcortical structures while white matter is associated with connections 

between cortical regions and subcortical structures. The gray matter within the cortical 

region contains mostly neuronal cell bodies and unmyelinated fibers while subcortical 

regions contain deep gray nuclei and white matter contains axonal, usually myelinated, 

fibers.

The different tissue contrasts provided by MRI scans and the scalar images of fractional 

anisotropy, mean diffusivity, axial and radial diffusivity derived from DTI scans make it 

possible to parcellate the brain into hundreds of regions (or groups of regions called lobes) 

by mapping to atlases. The DTI scan can also generate a color map to indicate the 3D 

orientation of the white matter connections. Finally, structural images can be registered in 

common coordinates with functional ones such as fMRI, PET, CAEP, and fNIRS (described 

in Section 8) so that brain activity in different parts of the brain in response to acoustic and 

visual stimuli can be studied.

With respect to the three magnetic resonance modalities that exploit the magnetic properties 

of water molecules in the brain, fMRI has been by far the most popular imaging modality 

with about a hundred studies of brain activity in the deafened brain in response to visual and 

acoustic stimuli. In contrast, there have been fewer but an increasing number of MRI and 

DTI studies examining structural properties of the deafened brain.
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The review begins with a brief description of the deafened auditory pathway from the two 

cochleae to the brain. This is followed by summaries of structural MRI, DTI, and clinical 

studies of people with hearing loss. The focus will be on populations of pre- or peri- lingual 

hearing loss with congenital or early onset etiology and postlingual hearing loss in pre-to-

late adolescence whose pathologies are distinct from those who acquired hearing loss in 

adulthood. Next, a discussion on the limited focus on volumetric measures suggests how 

additional measures of morphometry and connectivity widely used in other structural 

neuroimaging studies could contribute to a greater understanding of the effect of hearing loss 

on the brain. Then, an interpretation of the observed macroscopic structural differences is 

given. This is followed by a summary of how structural imaging can be combined with 

functional imaging to provide potential biomarkers for longitudinal tracking of 

amplification. The review concludes with a discussion of future directions and opportunities 

for expanding neuroimaging studies beyond those done so far.

2 ∣ THE DEAFENED AUDITORY PATHWAY

Figure 2 is a simplified schematic illustration of the transmission of acoustic information 

along the auditory pathway from the cochleae to the brain. Sensorineural hearing loss is 

attributed to missing or damaged hair cells in the cochlea in the inner ear (e.g., Ashmore et 

al., 2010; Fettiplace & Kim, 2014). The result is the diminished ability of the cochlear hair 

cells to transduce acoustic energy to electrical energy that is transmitted by nerves to the 

brain. Thus there is a cascade of atrophy resulting in degraded transmission of acoustic 

information (e.g., Kral, Hartmann, Tillein, Heid, & Klinke, 2000; Saada, Niparko, & Ryugo, 

1996; Sanes & Kotak, 2011). Not even amplification provided by hearing aids is sufficient to 

provide neural activity levels for optimal transmission particularly at high frequencies (e.g., 

Takesian, Kotak, Sharma, & Sanes, 2013). However, it is clear that the high level stimulation 

rates provided by cochlear implants improve or restore integrity of neuroanatomical 

structures at different stages of the auditory pathway (e.g., Chen, Limb, & Ryugo, 2010; 

Muniak, Connelly, Tirko, O'Neil, & Ryugo, 2013; O'Neil, Connelly, Limb, & Ryugo, 2011; 

Ryugo & Limb, 2009). Thus, sensory deprivation causes plastic changes within the brain. 

These changes can be seen clearly at the microscopic scale albeit in post mortem human 

studies or animal models. There have been few post mortem studies of the auditory cortex 

and understandably none of babies with hearing loss (Huttenlocher & Dabholkar, 1997; 

Iyengar, 2012; Moore, 2002; Moore & Guan, 2001; Moore & Linthicum, 2007; Pundir et al., 

2012). So, animal models have been used to understand the nature of atrophy at different 

stages of the auditory pathway (Butler & Lomber, 2013). Yet these microscopic studies have 

to be reconciled with structural neuroimaging studies at the macroscopic scale in humans 

which are reviewed in the next three sections.

3 ∣ MRI ANALYSIS OF GRAY MATTER AND WHITE MATTER STRUCTURES 

IN PEOPLE WITH HEARING LOSS

MRI provides the opportunity to examine gray matter and white matter tissue in the brain at 

the macroscopic scale of 1 mm3. Here gray matter characterizes cellular contents of cortical 

and subcortical structures, while white matter characterizes connections between cortical 
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and subcortical structures. The different biophysical properties of the water molecules in 

gray matter and white matter result in different responses to the magnetic field of the 

scanner. These differences provide the necessary contrasts between gray matter and white 

matter in 3D volumetric images of the brain (Figure 1). Thus it is possible to quantify 

morphometric properties of cortical and subcortical gray matter such as volume, surface 

area, and thickness.

Table 1 indicates there have been 32 structural MRI studies comparing populations of people 

with and without hearing loss. Figure 3 provides a visualization of the location of the 

structures implicated in many of these studies. A few observations can be made. First, there 

is a wide variation in the sample size with larger groups associated with large population 

centers (Shibata, 2007). Second, these groups are by design homogeneous, that is, the 

subjects are native users of sign language and generally have not been using hearing aids 

since infancy. Third, there is also a wide variation in the age in these groups and only one 

study focused on babies who were being evaluated for cochlear implants (K. M. Smith et al., 

2011). Fourth, while morphometry analysis focused on mostly volumes of gray matter and 

white matter structures, nine measured cortical thickness (Hribar et al., 2014; Kumar & 

Mishra, 2018; W. Li et al., 2013; J. Li et al., 2012; Pereira-Jorge et al., 2018; Ratnanather et 

al., 2019; Shiell et al., 2016; Shiohama et al., 2019; Smittenaar et al., 2016) and one 

measured surface area (Kara et al., 2006). Fifth, weak differences were observed in several 

structures. Prominent among these are Heschl's gyrus and planum temporale considered as 

primary and secondary auditory cortices, respectively, which both lie on the dorsal (upper) 

surface of the superior temporal gyrus (see also Figure 1). Other affected structures included 

motor cortex; frontal cortex including Broca's area; occipital cortex including early visual 

areas; corpus callosum; insula; fusiform; cerebellum. Sixth, some reported unilateral 

differences; others reported that asymmetry was mainly preserved in the temporal lobe 

specifically Heschl's gyrus, planum temporale, and superior temporal gyrus. The two gray 

matter connectivity studies (E. Kim et al., 2014; W. Li et al., 2015) suggested increased 

connectivity between auditory and visual areas as well as weaker connectivity between 

regions such as temporal and parietal (motor) ones.

Thus, MRI is potentially useful in providing quantitative differences in volumes of cortical 

regions that play an important role in speech, language and hearing networks. But none of 

these studies have provided a deeper understanding of the biological effects of hearing loss.

4 ∣ DTI ANALYSIS OF WHITE MATTER STRUCTURES IN PEOPLE WITH 

HEARING LOSS

DTI provides an opportunity to specifically examine white matter tissue in the brain at the 

resolution of 1 mm3. Here, white matter tissue is characterized by the orientation of neural 

connections between the cortical and subcortical gray matter structures. DTI is a variant of 

MRI based on the diffusion of water molecules in white matter structures and provides 

another noninvasive way of analyzing connections between brain structures. The 3 × 3 

matrix representing the tensor model of water diffusion at each voxel in the DTI scan yields 

an ellipsoid representing the orientation of the neural fibers within the voxel from which 
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eigenvalues are used to compute scalar quantities (Figure 1) such as fractional anisotropy, 

radial diffusivity, and mean diffusivity. These measures reflect the biophysical properties of 

the neurons passing through the voxel. For example, larger fractional anisotropy values 

indicate “dense axonal packing” (Feldman, Yeatman, Lee, Barde, & Gaman-Bean, 2010) 

while larger values of radial diffusivity indicate “axonal degeneration” and mean diffusivity 

is sensitive to “cellularity” (Tromp, 2016). The three corresponding eigenvectors are used to 

compute the color contrast map (Mori, Wakana, & Van Zijl, 2004).

Table 2 indicates there have been 23 DTI studies comparing populations of people with and 

without hearing loss. Aside, Table 2 is similar to a summary table (Tarabichi et al., 2018). 

Figure 3 provides a visualization of the location of the white matter structures implicated in 

these studies. Again, a few observations can be made. First, with the exception of three 

studies all focused on homogeneous groups of hearing loss. One exceptional group consisted 

of adults who started using sign language in adolescence (Lyness et al., 2014), and two 

groups consisted of babies and young children prior to cochlear implantation (S. Wang et al., 

2019; H. Wang et al., 2019). Second, there is again a wide variation in larger sample sizes 

from large population centers. Third, the analyses are mostly confirmatory in that 

differences in scalar measures, that is, fractional anisotropy (and sometimes radial 

diffusivity, mean diffusivity, and axial diffusivity) are seen in the temporal and occipital 

regions such as the acoustic radiation (or auditory tract), the optic radiation, superior 

temporal gyrus, corpus callosum, and with one exception (Cheng et al., 2019) the 

longitudinal fasisculi which connect the auditory and language cortical regions. Fourth, the 

two studies that focused on white matter connectivity were the ones at the scanner strength 

of 1.5 T, and one study not surprisingly revealed correlations in thalamo-cortical connections 

with temporal, parietal, motor, somatosensory, frontal and occipital lobes (Lyness et al., 

2014).

Thus, DTI can be potentially useful in providing quantitative differences in connections 

between cortical and subcortical regions affected by hearing loss. Also combining MRI and 

DTI could be one way to uncover how people with hearing loss perform audio-visual 

integration tasks such as lipreading. To address this one would need to examine whether the 

long range white matter optic radiation tract connecting the occipital lobe and thalamus 

overlaps with the short range white matter tracts connecting the Heschl's gyrus and planum 

temporale (Figure 4).

5 ∣ CLINICAL MRI AND DTI SCANS OF PEOPLE WITH HEARING LOSS

The advent of cochlear implants has dramatically changed the landscape of auditory 

habilitation and rehabilitation for more than 350,000 children and adults with hearing loss 

worldwide (Zeng & Canlon, 2015). This achievement was recognized by the 2013 Lasker-

DeBakey Clinical Research Award (Hampton, 2013; Holmes, 2013; Niparko, 2013; Roland 

& Tobey, 2013; Williams, 2013), the 2015 National Academy of Engineering Russ Prize 

(Clark, 2014; Hochmair, Hochmair, Nopp, Waller, & Jolly, 2014; Merzenich, 2015; Wilson, 

2014), and the 2018 Shambough Prize for the developers of the multichannel cochlear 

implant.

Ratnanather Page 5

Wiley Interdiscip Rev Syst Biol Med. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Prior to surgery, patients have computer tomography or MRI scans of the temporal bones 

encasing the cochleae (Schwartz & Chen, 2014; Sweeney et al., 2014; Teschner, Polite, 

Lenarz, & Lustig, 2013; Young, Ryan, & Young, 2014). With respect to whole brain scans, 

Table 3 lists 15 reports of structural MRI and DTI studies. These studies are prospective and 

thus the sample sizes are larger than those reported in research studies. Not surprisingly 

many studies involved pediatric subjects if only to exclude the possibility of abnormalities in 

the central nervous system. In general, the observed white matter changes are linked with 

immature myelination possibly due to abnormal neuronal processes that occur in the 

developing embryo (Long, Wan, Roberts, & Corfas, 2018). But two studies correlated 

structural differences mainly in the connections from thalamus to the frontal and temporal 

cortical lobes with positive outcomes. Due to the risk of device displacement, MRI and DTI 

are contraindicated for people with cochlear implants. So it is imperative that quantitative 

analysis such as connectivity and topography be considered at baseline in future studies if 

reasonable imaging biomarkers for predicting positive outcomes with cochlear implants are 

to be developed.

6 ∣ MORPHOMETRY AND CONNECTIVITY OF STRUCTURES AFFECTED 

BY HEARING LOSS

A concern about MRI and DTI studies so far is the focus on volume. Volumes for closed 

structures such as subcortical ones can be interpreted. But that may be not the case for the 

cortical regions forming the highly folded ribbon that constitutes the cortex (Figure 1). This 

raises three points. First, the above studies were based on whole brain analyses which 

revealed inconclusive information about the effect of hearing loss on brain structures. In 

contrast, a region of interest approach based on networks of hypothesized structures maybe 

more meaningful and sensitive (e.g., Giuliani, Calhoun, Pearlson, Francis, & Buchanan, 

2005) for generating biomarkers for positive outcomes for clinical procedures such as 

auditory training. This is where information from functional neuroimaging studies of 

language, speech and hearing may be helpful in focusing on structures hypothesized to be 

affected by hearing loss (see Section 8). Second, volume should be viewed as the product of 

two independent measures—surface area and thickness—to reflect the laminar structure of a 

cortical region (Dahnke & Gaser, 2018; Wagstyl & Lerch, 2018). This structure is brought 

about by the folding of the cortex to maximize cortical surface area in a confined space. 

Each cortical region is composed of fundamental units called cortical columns (Rakic, 1995, 

1988) that traverse from the white matter to just beneath the skull. Also, each cortical region 

is composed of six layers which are stacked on top of each other such that thin layers in one 

part of the region are thicker in another part via the equivolumetric model of the cortex 

(Bok, 1929, 1959). Thus surface area and thickness may be associated with the distribution 

or density of cortical columns and the total thickness of the six layers, respectively. So, 

decreased or increased cortical volume may be misleading. In fact, decomposing volume 

into surface area and thickness was suggested for the primary auditory cortex in people with 

normal hearing by Meyer, Liem, Hirsiger, Jancke, and Hanggi (2014) who concluded that 

thickness and surface area should be quantified as separate measures. Also, given the 

possible effect of genetics on hearing loss (Dror & Avraham, 2009; R. J. H. Smith, Shearer, 

Hildebrand, & Van Camp, 1993) specifically in the development of cortical columns, it may 
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be best to analyze thickness and surface area separately (Panizzon et al., 2009; Winkler et 

al., 2010). A more recent study suggested that cortical thickness may be an useful biomarker 

for identifying shape and location of the primary auditory cortex (Zoellner et al., 2019). In 

addition, more realistic measures of cortical thickness can be developed via sophisticated 

equivolumetric models for the cortex (Ratnanather et al., 2019; Younes, Kutten, & 

Ratnanather, in press). Third, in particular for subcortical structures which have not been 

examined in great detail, it may be helpful to perform shape analysis (Faria et al., 2015; 

Miller et al., 2013, 2014; Mori et al., 2013; Ratnanather, Liu, & Miller, 2020) given the role 

the thalamus plays in the auditory pathway (Figure 2). Here, shape biomarkers are 

determined from computations of deformations of the structure relative to a template. This 

allows for determining atrophied subregions of the structure. Such data could be useful in 

determining specific pathways of degeneration between structures.

Furthermore, thickness may be correlated to brain activity in auditory cortical areas. First, 

acoustic fMRI studies have shown increased neural activity in the primary auditory cortex 

(Patel et al., 2007; Tan et al., 2013). Second, given the importance of CAEP biomarkers in 

assessing neural activity with amplification via hearing aids or cochlear implants (J. D. 

Campbell, Cardon, & Sharma, 2011; Sharma, Dorman, & Spahr, 2002), Liem, Zaehle, 

Burkhard, Jancke, and Meyer (2012) showed that the first negative amplitude (N1) of CAEP 

waveform responses strongly correlated with cortical thickness of the superior temporal 

gyrus which encompasses both the Heschl's gyrus and planum temporale (see Figure 1). 

Third, following PET studies gray matter density (Duncan, Gravel, Wiebking, Reader, & 

Northoff, 2013) and thickness (la Fougere et al., 2011) were found to correlate with gamma-

aminobutyric acid (GABA) binding within cortical regions. As GABA is the primary 

inhibitory neurotransmitter in the brain and plays a crucial role in regulating neuronal 

activity, different rates of neural activity from the thalamus to the auditory cortex may be 

attributed to differences in GABA density distribution (Takesian et al., 2013) and possibly 

thickness.

To illustrate the possible benefits of analyzing cortical thickness, consider the Labeled 

Cortical Distance Mapping (LCDM) technique (Miller et al., 2003; Miller, Massie, 

Ratnanather, Botteron, & Csernansky, 2000; Ratnanather et al., 2013, 2014). LCDM 

generates histograms of distances of gray matter voxels relative to the gray/white surface of 

the cortical region. In turn this gives rise to laminar thickness derived as the 95th percentile 

and the corresponding volume (as the area under the histogram). The shape of an individual 

LCDM for a cortical region is influenced by the folding of the region. A flat region yields a 

“top-hat” LCDM while a folded region with variable thickness yields a “skewed” LCDM; 

similar profiles have been observed for whole brains (Hutton, De Vita, Ashburner, 

Deichmann, & Turner, 2008). Together with the corresponding surface areas, LCDMs can be 

analyzed in different ways via statistical tools (Ceyhan et al., 2011, 2013). Figure 5 shows 

individual LCDMs for the left and right Heschl's gyrus and planum temporale in a pilot 

study of five adults with hearing loss and matched controls (Ratnanather et al., 2019). This 

study was challenging because more subjects could not be recruited having acquired a 

cochlear implant by the time they were contacted. Nonetheless, the statistical power of 

pooled (grouped) analysis (Ceyhan et al., 2011) can provide useful information with 

significant p-values from one-sided Kolmogorov–Smirnov tests (⪡.0001) for the pooled 
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LCDM for the adults with hearing loss to be the left of that for the control subjects. As 

discussed in the next section, this suggests that in these auditory cortical areas there may be 

some similarities at smaller distances but differences at larger distances which have 

interesting interpretations at the microscopic level.

It is worth noting that after using hearing aids since infancy, four of the five subjects with 

hearing loss now have cochlear implants with excellent speech comprehension in quiet 

situations. This suggests the structural benefit of providing auditory stimulus to the brain via 

hearing aids as soon as hearing loss is diagnosed. The difference in the shape of the LCDMs 

may reflect the delayed maturation of synaptic activity (Huttenlocher & Dabholkar, 1997) 

followed by synaptic pruning (Selemon, 2013) in the developing brain. The pooled 

distributions suggest little differences in the left Heschl's gyrus which is associated with 

temporal processing (Marie, Maingault, Crivello, Mazoyer, & Tzourio-Mazoyer, 2016) and 

some differences on the right Heschl's gyrus which is associated with spectral processing 

(Marie et al., 2016). The former may be attributed to auditory training used in listening and 

spoken language after early detection and intervention with hearing aids as infants while the 

latter may be attributed to high frequency hearing loss. By comparison, thicker visual 

cortical areas have been observed in people blinded since infancy (J. Jiang et al., 2009).

As for DTI, two studies combined with functional studies of hearing loss have yielded 

interesting correlations. First, brain waveform activity correlated with increases in fractional 

anisotropy measures of the brainstem specifically the inferior colliculus (Reiman et al., 

2009). Second, aerobic exercising by children with hearing loss resulted in improved 

executive function associated with reshaping white matter integrity in several structures 

(Xiong et al., 2018). DTI also offers the potential to visualize the topography of structures 

such as the acoustic radiation and optic radiation (Figure 4) as well as other long range white 

matter tracts that play different but important roles in processing of speech and language 

(Friederici, 2012). Recently, Dhir et al. (2020) showed that it was possible to generate the 

acoustic radiation in clinical scans as opposed to research scans which require long scan 

times. For the same deaf adults studied in Figure 5, they confirmed the findings of Maffei 

(2017) who suggested that lower fractional anisotropy values may be associated with poor 

myelination in the acoustic radiation which may account for weaker neural transmission.

7 ∣ INTERPRETING STRUCTURAL MRI AND DTI CHANGES CAUSED BY 

HEARING LOSS

It would appear from MRI and DTI studies so far that subtle structural changes occur in the 

Heschl's gyrus and planum temporale. These two structures are the primary and secondary 

auditory cortical regions, respectively. Granted that other structures particularly association 

cortical regions in the speech and language network are also affected, an interpretation of 

these macroscopic changes with respect to the microscopic observations from animal models 

of hearing loss is now given.

One of the most advanced and well developed animal model of cortical activity stemming 

from cochlear implants has been the cat (Kral, 2013; Raggio & Schreiner, 1994, 1999, 2003; 

Ryugo & Menotti-Raymond, 2012; Schreiner & Raggio, 1996). Specifically, 
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electrophysiological measurements across the six layers of the primary and secondary 

auditory cortices have revealed the effect of the absence of neural activity in the sensitive 

period of development (Eggermont & Ponton, 2003; Kral, 2013; Kral & Tillein, 2006; Kral 

& Eggermont, 2007; Kral, Tillein, Heid, Hartmann, & Klinke, 2005; Kral, Tillein, Heid, 

Klinke, & Hartmann, 2006). Specifically, there is a delay in the synaptic activation of the 

upper (supragranular) layers and virtual absence of activity in the lower/deep (infragranular) 

layers. The absence of activity in the lower/deep layers may be attributed to incomplete 

development and alteration of information flow to and within the primary auditory cortex. 

While neurons project from the upper layers of the primary area to the secondary areas, 

some project back to lower/deep layers of the primary area. Thus the absence of activity in 

the lower/deep layers suggests that the primary auditory area is decoupled from the 

secondary area, and the feedback loop is weakened. In this decoupling hypothesis (Kral et 

al., 2005) illustrated in Figure 6, the secondary area is no longer able to provide “top-down” 

cognitive processing which is helpful for comprehension of spoken language (Kral & 

Eggermont, 2007). At the same time, the upper layers are unable to perform “bottom-up” 

processing which is helpful for discerning phonemes that are the basic elements of spoken 

language.

The LCDMs of adults with hearing loss (Figure 5) who had been using listening and spoken 

language via hearing aids since infancy suggest that the decoupling mechanism can be 

averted with consistent use of amplification. Indeed, the similarities (with small variance) at 

smaller LCDM distances corresponding to the lower/deep layers suggest that sufficiently 

aided adults with hearing loss can develop linguistic understanding and the larger differences 

(with larger variances) at LCDM distances corresponding to the upper layers suggest that 

these adults may be able to understand speech only in quiet. Thus the shapes of LCDMs may 

reveal a little more information about the upper and lower layers than just the overall 

laminar thickness that is computed from the distance between the gray/white and gray/inner 

surfaces. But for morphometry of the layers one may need to consider equivolumetric 

models of cortical folding (Ratnanather et al., 2019; Younes et al., in press).

However, the weaker input from the thalamus to the auditory cortex may manifest in 

diverted inputs to other cortical areas such as the parietal (motor) cortex as observed in 3D 

reconstruction of CAEP activity in late implanted children (lower right panel in Figure 6 

[fig. 3 of Gilley et al., 2008]). This suggests that hearing loss results in two-speed thalamic 

transmission (Takesian et al., 2013). One conjectures that the demyelinated thalamo-parietal 

pathway cannot tolerate the high activity levels stemming almost immediately after 

activation of the cochlear implant, thus enforcing the neural transmission along the acoustic 

radiation to the Heschl's gyrus (top and middle right panels in Figure 6 [fig. 2 of Gilley et 

al., 2008]).

However, more substantial quantitative analysis of morphometry and connectivity is needed 

to provide a more complete model of the structure and functional relationship between 

cortical and subcortical structures in the deafened brain.
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8 ∣ COMBINING STRUCTURAL AND FUNCTIONAL IMAGING FOR 

LONGITUDINAL TRACKING OF AMPLIFICATION

It is constructive to see how recent functional neuroimaging technologies could be combined 

with structural imaging to shed light on the benefits of amplification on the deafened brain. 

The importance of functional changes accruing from amplification cannot be understated (J. 

D. Campbell et al., 2011; Cardin et al., 2013; Shiell, Champoux, & Zatorre, 2015). So 

changes in the brain due to amplification should correlate morphometric and connectivity 

measures with data derived from CAEP (Gilley et al., 2008; Liem et al., 2012), PET 

(Barone, Lacassagne, & Kral, 2013; Lazard, Lee, Truy, & Giraud, 2013; Liem, Hurschler, 

Jancke, & Meyer, 2014; Strelnikov et al., 2014), fMRI (Patel et al., 2007; Tan et al., 2013), 

and fNIRS (Lawler, Wiggins, Dewey, & Hartley, 2015; Sevy et al., 2010).

In particular, functional neuroimaging should be combined with structural neuroimaging in 

longitudinal studies of amplification or auditory training (Boothroyd, 2010). This could be 

achieved via MRI (Teschner et al., 2013) as well as DTI and resting state fMRI (Z. Li et al., 

2015; B. Liu et al., 2015; Zhang et al., 2015) followed by one of PET, CAEP, or fNIRS. In 

the case of cochlear implants, MRI, DTI and fMRI can only be done at baseline prior to 

surgery. A possible translational study would be to find regional or subregional biomarkers 

in the superior temporal gyrus that correlate with phonetic processing of speech with 

amplification (Boatman, 2004; Crinion, Lambon-Ralph, Warburton, Howard, & Wise, 2003; 

Mesgarani, David, Fritz, & Shamma, 2014; Nourski & Howard 3rd, 2015).

The notion of a “sensitive” period in sensory neurodevelopment (Knudsen, 2004) alluded to 

in the previous section is supported by CAEPs which are noninvasive 

electroencephalography measurements that track the maturation of the central auditory 

system via changes in latency and amplitude (Steinschneider, Nourski, & Fishman, 2013). 

The first positive peak (P1), which is a summation of synaptic activities and neuronal 

conduction times as the signal travels from the ear to the primary auditory cortex, decreases 

with age in children with normal hearing (Eggermont & Ponton, 2003). Prompted by the 

seminal work by Ponton et al. (1996), Sharma et al. (2002) performed what is now a 

landmark study of children with cochlear implants. They observed that children with 

shortest period of deprivation (i.e., absence of auditory stimuli) of 3.5 years or less had P1 

latencies fall into the normal range about 6 months after implantation while those with 

deprivation periods of 7 years or more had abnormal CAEPs. Similar observations were seen 

in children who used hearing aids consistently even before getting a CI (J. D. Campbell et 

al., 2011). Also, the first negative peak (N1) which manifests itself post-adolescence in 

normal hearing also occurs in people who had been using amplification since infancy 

(Sharma, Campbell, & Cardon, 2015).

Evidence suggests that P1 and N1 latencies reflect neural generators from thalamo-cortical 

projections to the primary auditory cortex in the Heschl's gyrus and the secondary auditory 

cortex in the planum temporale, respectively (Liegeois-Chauvel, Musolino, Badier, Marquis, 

& Chauvel, 1994) together with second order processing via a feedback loop between the 

primary and secondary auditory cortices mentioned earlier (Kral & Eggermont, 2007). 

Gilley et al. (2008) observed bilateral activation of the auditory cortical areas (superior 
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temporal gyrus and inferior temporal gyrus) in normal hearing children. Children who 

received cochlear implants at an early age showed activation in the auditory cortical areas 

(contralateral to the implant) which were similar to those in normal hearing children while 

activation in late-implanted children was severely compromised. This led to the decoupling 

hypothesis (Kral et al., 2005) which may be the basis of cross-modal plasticity via increased 

activity in occipital and motor lobes. This notion of visual dominance in audio-visual 

integration and/or takeover of the auditory areas by visual stimuli was suggested by Bavelier 

and Neville (2002). It is worth noting that Shiell et al. (2015) observed that consistent use of 

hearing aids (i.e., amplification) resulted in reduced visual fMRI activity in contrast with 

those who did not use hearing aids. These differences have also been observed in a recent 

fMRI study of different groups of people using hearing aids or sign language (Cardin et al., 

2013).

For people with hearing loss, fMRI is challenging because it is uncertain whether the subject 

would be able to comprehend speech especially if the degree of hearing loss is profound 

given the noisy environment of the scanner. fMRI measures brain activity detecting changes 

associated with increased blood flow into a cortical region that is responding to stimuli such 

as speech. A few laboratories have been able to provide acoustic stimuli through tubephones 

and headphones customized to deliver sound levels up to 130 db with low distortion, flat 

frequency response, reliable phase and noise cancellation (Hall & Paltoglou, 2009). While 

there have been no reported studies of people with hearing loss with these customized 

devices, another group has examined the use of fMRI in sedated babies prior to cochlear 

implantation (DiFrancesco, Robertson, Karunanayaka, & Holland, 2013; Patel et al., 2007; 

Schmithorst et al., 2005). They demonstrated that levels of brain activity as a reflection of 

hearing levels in the primary auditory cortex correlated strongly with the improvement in 

hearing after getting a cochlear implant. More recently, the same group applied pattern 

classification methods to results of MRI and fMRI data to make some predictions about 

speech and language outcomes in babies who then received a cochlear implant (Deshpande, 

Tan, Lu, Altaye, & Holland, 2016; Tan et al., 2013). Others have observed brain activity at 

low frequencies in the auditory cortex of people with partial hearing loss (Skarzynski et al., 

2013) and positive changes in activation of the auditory cortex after a period of using 

hearing aids (Hwang, Wu, Chen, & Liu, 2006). So it ought to be possible to adapt 

tubephones or headphones to create a hearing aid-like transfer function rather than a flat one 

(e.g., Palmer, Bullock, & Chambers, 1998) to examine how the brain functions with hearing 

aids.

Given the contraindication of ferromagnetic properties of cochlear implants with MRI 

scanners, PET has emerged as a tool for longitudinal tracking of cochlear implants. PET 

measures metabolic processes in the brain so cortical regions that are actively responding to 

stimuli such as speech have increased metabolism (D. S. Lee et al., 2001). Significant brain 

reorganization in the first few months after cochlear implantation has been observed mainly 

in the left superior temporal gyrus and Broca's area in the frontal cortex of subjects with 

postlingual hearing loss but not those with prelingual hearing loss (Petersen, Gjedde, 

Wallentin, & Vuust, 2013). This suggests that prior experience of language which is the case 

in the former group is a good indicator of positive outcomes. Further, visual cues may have a 

positive effect on auditory perception (Strelnikov et al., 2014) which suggests audio-visual 
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integration plays an important role in brain plasticity (R. Campbell, MacSweeney, & Woll, 

2014). Earlier studies reviewed by Giraud and Lee (2007) suggested that resting metabolism 

can be a good measure of speech performance after cochlear implantation and changes in 

PET activity reflect adaptation in higher order cognitive processes.

A major limitation of PET is the use of radioactive tracers which limits the ability to perform 

longitudinal analysis over a short period especially when plasticity changes are significant. 

This could be overcome by fNIRS which has just emerged in the past decade as a potentially 

useful tool (Sevy et al., 2010). Here as in fMRI, neuronal activity results in changes in levels 

of oxygen in blood but with near-infrared light passing through brain tissue. It is now 

possible to assess activity in the auditory cortex in response to speech (Lawler et al., 2015), 

differentiate from scrambled speech as a measure of outcome with amplification (Pollonini 

et al., 2014), lipreading before and after cochlear implantation (Anderson, Lazard, & 

Hartley, 2017; Anderson, Wiggins, Kitterick, & Hartley, 2017) and speech and language 

processing (Bortfeld, 2019; McKay et al., 2016; Zhou et al., 2018). Limitations such as 

sensitivity and accuracy of quantification of brain activity in deeper cortical regions (e.g., the 

Heschl’s Gyrus) may be resolved by newer optical measurements (Hasnain, Mehta, Zhou, 

Li, & Chen, 2018; Mehta et al., 2017).

9 ∣ FUTURE DIRECTIONS AND OPPORTUNITIES

This review has revealed limitations that make it difficult to make inferences about plastic 

changes in the brain caused by hearing loss regardless of whether amplification was used or 

not. Several suggestions are offered that could increase the impact of structural 

neuroimaging as a biomarker to aid the development of speech, language, and hearing.

Future studies should extend beyond homogeneous groups that in fact represent a very small 

segment of the spectrum of people with hearing loss. In fact, the World Health Organization 

estimated that 15% of the world's population has a hearing loss of which a third, that is, 360 

million, have a disabling hearing loss (World Health Organization, 2013) ranging from 

partial to profound. Further, the World Federation of the Deaf estimates that 70 million use 

sign language (http://wfdeaf.org/faq). This means that these homogeneous groups 

characterize just 6% of people with hearing loss. Only one neuroimaging study considered 

this limitation and attempted to provide new answers (Olulade et al., 2014).

Studies should go beyond the structures other than the ones known to play an important role 

in speech, language, and hearing. Granted that hearing loss has broad consequences for the 

developing and maturing brain, it is important to discern the different forms of plasticity in 

the brain. Use of more quantitative and sophisticated analyses of morphometry and 

connectivity measures could go a long way to deepen understanding of the biological 

substrates of plasticity. Further, these methods could be useful for analysis of structural 

neuroimaging of other types of hearing loss such as aged-induced hearing loss (Eckert et al., 

2013; Eckert, Cute, Vaden, Kuchinsky, & Dubno, 2012; F. R. Lin et al., 2014; Peelle, 

Troiani, Grossman, & Wingfield, 2011; Vaden, Kuchinsky, Ahlstrom, Dubno, & Eckert, 

2015), unilateral hearing loss (Rachakonda, Shimony, Coalson, & Lieu, 2014; C. M. Wu, 

Ng, & Liu, 2009; Yang et al., 2014) and tinnitus (Husain et al., 2011).
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Studies should also consider federating neuroimaging datasets by archiving data from all 

over the world. The sample sizes given in Tables 1 and 2 are relatively small compared to 

those in recorded in other structural neuroimaging studies. On the other hand, the wider 

spectrum of people with hearing loss calls for alternative and more sophisticated statistical 

tests to deal with sizes and heterogeneity of these samples; for example, snowball sampling 

(Cardin et al., 2013) or pooling (Ceyhan et al., 2011). Federation is becoming common in 

neuroimaging projects such as schizophrenia (Alpert, Kogan, Parrish, Marcus, & Wang, 

2015) and the ENIGMA project for many neurodegeneration and neurodevelopmental 

diseases (Thompson et al., 2014). This is where “Big Data” analytical tools such as data 

mining (Ramos-Miguel, Perez-Zaballos, Perez, Falconb, & Ramosb, 2014; Tan et al., 2013) 

could be used to uncover potential biomarkers for positive outcomes for amplification. 

Combining such data will require techniques such as diffeomorphometry (Miller et al., 2014; 

Ratnanather et al., 2020) to map imaging data to common coordinates for analysis and 

comparison. Personalized inference of clinical and behavioral data could then be achieved 

(Faria et al., 2015; Miller et al., 2013; Mori et al., 2013). A significant step in that direction 

was taken by Feng et al. (2018) who used machine learning methods to find that neural 

structures unaffected by auditory deprivation were best predictors for outcomes with 

cochlear implants in young children.

10 ∣ CONCLUSION

Plastic changes in the brain due to pre- or peri-lingual pediatric hearing loss with congenital 

or early onset etiology and post-lingual hearing loss in pre-to-late adolescence are seen to be 

multifocal rather than diffuse. Differences are consistent across most of the regions 

implicated in the hearing, speech and language networks in the brain (Friederici, 2012) 

regardless of modes of communication and amplification, be these via listening and spoken 

language or sign language. To a lesser extent, structures in networks that play an important 

role in cognition are affected (X. M. Xu et al., 2019b). Quantitatively differences are subtle 

for some structures and variable for other structures. That said, it is remarkable that the 

asymmetry properties of the structures in the hearing, speech and language pathways are 

mostly preserved. Yet, little is known about the deeper underlying biological effects of 

hearing loss on the brain. For example, one asks what are the structural consequences of 

limited acoustic stimuli that belies demyelination (Long et al., 2018) and increasing fatigue 

and effort associated with listening (Willis, 2018). If the classic tensegrity model of brain 

connectivity by Van Essen (1997) holds, then one may expect to see weaker tension in the 

white matter fibers connecting cortical regions responsible for auditory function. In turn, the 

weaker tension could result in abnormal cortical folding with weaker mechanical forces 

upon the thicker and shallower sulcal fundi (cortical folds or valleys). This will have 

mechanical and morphological effect on the deep layers that have been observed to be 

inactive in animal models of auditory deprivation. Such an interpretation remains to be 

tested at the macroscopic level. However, new methods that are capable of analyzing 

properties of the acoustic radiation, optic radiation, thalamo-cortical, and cortico-cortical 

connections may contribute to a greater understanding of the anatomical pathologies of 

hearing loss in the brain. Thus there is a need for clinical neuroimaging to uncover 
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biomarkers for longitudinal tracking and monitoring of progress with amplification provided 

by either cochlear implants or hearing aids.
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FIGURE 1. 
Different image modalities stratified into structural (top row) and functional (bottom row) 

imaging. The different contrasts at the macroscopic level of 1 mm3 provide information 

about three types of tissues: gray matter, white matter, and cerebrospinal fluid. An MRI scan 

provides a view of the highly folded cortex (shown in light grayscale) and the underlying 

white matter (shown in bright grayscale). The scalar modalities (FA, MD, and color map) 

derived from DTI scans provide different ways of looking at white matter structures. The 

red, green, and blue colors in the color map indicate orientation in the left–right, anterior–

posterior, and superior–inferior directions, respectively. The PET and fMRI scans provide a 

view of responses to brain activity. CAEP and fNIRS brain activity are overlaid on MR 

scans for reference. Activity associated with the first positive peak in the CAEP waveform 

(i.e., P1) is located in the primary auditory cortex contained within the Heschl's gyrus. 

(Reprinted with permission from Sharma et al. (2016, fig. 2). Copyright 2016, Wolters 

Kluwer Health) Activity associated with speech is located in the superior temporal gyrus 

containing Heschl's gyrus and planum temporale (often called the primary and secondary 

auditory cortex) on both sides (Reprinted with permission from Figure 2b in Sevy et al. 

(2010). Copyright 2010, Elsevier). Mapping these scans to parcellated atlases provides an 

opportunity to perform quantitative analysis of structural and functional data in common 

coordinates (Miller, Faria, Oishi, & Mori, 2013; Miller, Younes, & Trouvé, 2014; Mori, 

Oishi, Faria, & Miller, 2013)
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FIGURE 2. 
Simplified schematic illustration of transmission of acoustic information from the left and 

right cochleae to the brain. Note information crosses over in the brainstem as well as in the 

cortex. Please refer to Figures 3 and 4 for association cortical regions such as planum 

temporale. The white matter connections include those between primary and associated 

cortical regions and those that project back to other structures via the thalamus and 

brainstem
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FIGURE 3. 
3D visualization of gray matter and white matter structures found to be different in people 

with hearing loss based on Table 1. Please refer to Figure 2 for the possible roles these 

structures play in the auditory pathway. Upper left shows the lateral view of the left side of 

the JHU-MNI-SS brain (Oishi et al., 2009); lower right shows the lateral view of the left 

medial structures adjacent to the mid-sagittal plane of the right hemi-brain. The cortical 

structures (Pars Triangularis, Pars Opercularis, Motor Cortex, Superior Temporal Gyrus, 

Planum Temporale, Visual Cortex and Cerebellum, Heschl's Gyrus, Insula, Fusiform Gyrus) 

and one white matter structure (corpus callosum) were obtained from the JHU-MNI-SS 

labels and triangulated. CAWorks (www.cis.jhu.edu/software/caworks) was used for 

visualization
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FIGURE 4. 
3D visualization of connectivity between cortical and subcortical structures found to be 

different in people with hearing loss based on Tables 2 and 3. Please refer to Figure 2 for the 

possible roles these structures play in the auditory pathway. The lateral view of the left side 

of the gray/white surface of the JHU-MNI-SS template (Oishi et al., 2009) generated by 

FreeSurfer and transferred to native space (Fischl, 2012) is shown. The cortical structures 

(Pars Triangularis, Pars Opercularis, Superior Temporal Gyrus, Planum Temporale, Heschl's 

Gyrus), one subcortical structure (Thalamus), and the white matter Posterior Thalamic 

Radiation tract which contains the optic radiation were obtained from the JHU-MNI-SS 

labels and triangulated. The other white matter fasisculi structures were obtained from the 

IXI template (Yushkevich, Zhang, Simon, & Gee, 2008) and transferred via diffeomorphic 

mapping (Ceritoglu et al., 2009) of the IXI fractional anisotropy image to the corresponding 

JHU-MNI-SS image. Short range fiber tracts from the Heschl's Gyrus to Planum Temporale 

generated by dynamic programming (M. Li, Ratnanather, Miller, & Mori, 2014; Ratnanather 

et al., 2013) are partially hidden. CAWorks (www.cis.jhu.edu/software/caworks) was used 

for visualization
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FIGURE 5. 
Labeled cortical distance map (LCDM) histograms are normalized frequencies of distances 

of gray matter 1 mm3 voxels relative to gray/white cortical surfaces. Shown are individual 

LCDMs for the Heschl's gyrus and planum temporale in five adults with hearing loss 

(dashed) and five matched controls (solid lines). Horizontal and vertical scales are from −1 

to 5 mm and 0.0 to 0.6, respectively. p-Values from one-sided Kolmogorov–Smirnov tests 

for the pooled cummulative distribution function (cdf) for the control subjects to be left of 

the pooled cdf for the subjects with hearing loss were significant for all four structures 

(⪡.0001). For pooled LCDMs, see Ratnanather et al. (2019)
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FIGURE 6. 
Interpretation of Kral's decoupling hypothesis (Adapted from Kral and Eggermont (2007, 

fig. 3). Copyright 2007 Elsevier) based on LCDM analysis in Figure 5. Similarities at 

smaller distances, that is, lower cortical layers may facilitate top-down processing, that is, 

contextual or linguistic comprehension. This may be due to priming of the auditory pathway 

in childhood via amplification with hearing aids albeit at a lower rate than with cochlear 

implants. However, this might be compromised by larger differences at larger distances, that 

is, upper cortical layers which may be attributed to weaker thalamic inputs and make 

bottom-down processing, that is, comprehension of phonemes comprehension difficult and 

complex. In turn, the inputs to the lower layers and thence the other cortical areas are 

weakened. Additional evidence of weaker thalamic connections may manifest in those to 

other cortical areas such as the parietal cortex as might be in the case in the visualization of 

current density reconstruction in late implanted children (lower right panel from fig. 3 in 

Gilley, Sharma, & Dorman (2008). Copyright 2008, Elsevier). This suggests that hearing 

loss results in two-speed thalamic inputs (Takesian et al., 2013). One conjectures that 

amplification provided by hearing aids is weaker than that provided by cochlear implants 

and further that the thalamo-parietal pathway cannot tolerate the high activity levels 

stemming almost immediately after activation of the cochlear implant, thus forcing the 

neural activity to traverse along the acoustic radiation to the Heschl's gyrus (top and middle 

right panels from fig. 2 in Gilley et al. (2008))

Ratnanather Page 32

Wiley Interdiscip Rev Syst Biol Med. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ratnanather Page 33

TA
B

L
E

 1

Su
m

m
ar

y 
of

 m
ag

ne
tic

 r
es

on
an

ce
 im

ag
in

g 
st

ud
ie

s 
of

 g
ra

y 
an

d 
w

hi
te

 m
at

te
r 

st
ru

ct
ur

es
 in

 p
eo

pl
e 

w
ith

 h
ea

ri
ng

 lo
ss

St
ud

ie
s

G
ro

up
s

A
ge

C
om

m
un

ic
at

io
n

Sc
an

ne
r

st
re

ng
th

St
ru

ct
ur

e
T

is
su

e
M

ea
su

re
A

na
ly

si
s

M
ai

n 
re

su
lt

O
th

er
 r

es
ul

ts

Pe
nh

un
e,

 C
is

m
ar

u,
 

D
or

sa
in

t-
Pi

er
re

, 
Pe

tit
to

, a
nd

 Z
at

or
re

 
(2

00
3)

12
 D

S 
vs

. 1
0

29
A

SL
 o

r 
L

SQ
1.

5 
T

H
G

G
M

 a
nd

 
W

M
V

ol
um

e
R

O
I 

m
an

ua
l

N
o 

di
ff

er
en

ce
A

sy
m

m
et

ry
 

pr
es

er
ve

d

PT
G

M
V

ol
um

e
R

O
I 

m
an

ua
l

N
o 

di
ff

er
en

ce
A

sy
m

m
et

ry
 

pr
es

er
ve

d

L
ef

t m
ot

or
 h

an
d 

ar
ea

G
M

W
ho

le
 b

ra
in

V
B

M
 (

SP
M

)
L

ar
ge

r 
de

ns
ity

A
sy

m
m

et
ry

 
pr

es
er

ve
d

E
m

m
or

ey
, A

lle
n,

 
B

ru
ss

, S
ch

en
ke

r, 
an

d 
D

am
as

io
 

(2
00

3)

25
 D

S 
vs

. 2
5

23
.8

 ±
 

4.
1

A
SL

1.
5 

T
Te

m
po

ra
l l

ob
e

G
M

 a
nd

 
W

M
V

ol
um

e
R

O
I 

m
an

ua
l

N
o 

di
ff

er
en

ce
 in

 
G

M
/W

M
 r

at
io

ST
G

G
M

 a
nd

 
W

M
V

ol
um

e
R

O
I 

m
an

ua
l

L
ar

ge
r 

G
M

/W
M

 
ra

tio

H
G

G
M

 a
nd

 
W

M
V

ol
um

e
R

O
I 

m
an

ua
l

L
ar

ge
r 

G
M

/W
M

 
ra

tio
A

sy
m

m
et

ry
 

pr
es

er
ve

d

PT
G

M
 a

nd
 

W
M

V
ol

um
e

R
O

I 
m

an
ua

l
L

ef
t P

T
 la

rg
er

 (
G

M
)

Fi
ne

, F
in

ne
y,

 
B

oy
nt

on
, a

nd
 

D
ob

ki
ns

 (
20

05
)

6 
D

S 
vs

. 6
 

H
S 

vs
. 6

27
 ±

 
5.

7
A

SL
1.

5 
T

E
ar

ly
 v

is
ua

l a
re

as
G

M
V

ol
um

e
R

et
in

ot
op

ic
 

fM
R

I
N

o 
di

ff
er

en
ce

O
nl

y 
au

di
to

ry
 

ar
ea

 a
ff

ec
te

d

K
ar

a 
et

 a
l. 

(2
00

6)
18

 D
S 

vs
. 1

8
41

.2
 ±

 
7.

5
T

SL
1.

5 
T

C
C

W
M

L
en

gt
h

R
O

I 
m

an
ua

l
N

o 
di

ff
er

en
ce

W
id

th
R

O
I 

m
an

ua
l

N
o 

di
ff

er
en

ce

A
re

a
R

O
I 

m
an

ua
l

N
o 

di
ff

er
en

ce

Sh
ib

at
a 

(2
00

7)
53

 D
S 

vs
. 5

1
21

A
SL

1.
5 

T
L

ef
t p

os
te

ri
or

 S
T

G
W

M
W

ho
le

 b
ra

in
V

B
M

 (
SP

M
)

Fo
ca

l d
ef

ic
it

Po
st

er
io

r 
ST

G
W

M
W

ho
le

 b
ra

in
V

B
M

 (
SP

M
)

Fo
ca

l d
ef

ic
it 

in
 

as
ym

m
et

ry

Fr
on

ta
l/t

em
po

ra
l 

pe
ri

sy
lv

ia
n

G
M

W
ho

le
 b

ra
in

V
B

M
 (

SP
M

)
A

sy
m

m
et

ry
 

pr
es

er
ve

d

M
ey

er
 e

t a
l. 

(2
00

7)
6 

D
S 

vs
. 6

N
R

D
G

S
3 

T
L

ef
t p

os
t-

lo
ng

 
un

ci
na

te
 f

as
is

cu
lu

s
W

M
W

ho
le

 b
ra

in
V

B
M

 (
SP

M
)

L
es

s

L
ef

t p
os

t-
in

fe
ri

or
 

un
ci

na
te

 f
as

is
cu

lu
s

W
M

W
ho

le
 b

ra
in

V
B

M
 (

SP
M

)
L

es
s

Po
st

er
io

r 
Sy

lv
ia

n 
fi

ss
ur

e
W

M
W

ho
le

 b
ra

in
V

B
M

 (
SP

M
)

St
ee

pe
r

Wiley Interdiscip Rev Syst Biol Med. Author manuscript; available in PMC 2021 March 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ratnanather Page 34

St
ud

ie
s

G
ro

up
s

A
ge

C
om

m
un

ic
at

io
n

Sc
an

ne
r

st
re

ng
th

St
ru

ct
ur

e
T

is
su

e
M

ea
su

re
A

na
ly

si
s

M
ai

n 
re

su
lt

O
th

er
 r

es
ul

ts

A
lle

n,
 E

m
m

or
ey

, 
B

ru
ss

, a
nd

 
D

am
as

io
 (

20
08

)

25
 D

S 
vs

 1
6 

H
S 

vs
. 2

5
23

.8
 ±

 
4.

1
A

SL
1.

5 
T

L
ef

t p
os

te
ri

or
 in

su
la

 
lo

bu
le

G
M

V
ol

um
e

R
O

I 
m

an
ua

l
L

ar
ge

r 
in

 D
S

R
ig

ht
 in

su
la

W
M

V
ol

um
e

R
O

I 
m

an
ua

l
L

ar
ge

r 
in

 D
S 

an
d 

H
S

X
ia

, Q
i, 

an
d 

L
i 

(2
00

8)
20

 D
S 

vs
. 2

0
9–

12
C

SL
1.

5 
T

L
ef

t H
G

, r
ig

ht
 H

G
G

M
/W

M
R

at
io

R
O

I 
m

an
ua

l
L

ar
ge

r 
in

 D
S

20
 D

S 
vs

. 2
0

19
–2

2
C

SL
1.

5 
T

L
ef

t H
G

 a
nd

 le
ft

 S
T

G
G

M
V

ol
um

e
R

O
I 

m
an

ua
l

L
ar

ge
r 

in
 D

S

D
. J

. K
im

, P
ar

k,
 

K
im

, L
ee

, a
nd

 
Pa

rk
 (

20
09

)

13
 D

S 
vs

. 2
9

29
.3

 ±
 

6.
8

K
SL

3 
T

ST
G

W
M

V
ol

um
e

V
B

M
 (

SP
M

)
Sm

al
le

r 
bi

la
te

ra
lly

Te
m

po
ra

l s
ub

-g
yr

al
W

M
V

ol
um

e
V

B
M

 (
SP

M
)

Sm
al

le
r 

bi
la

te
ra

lly

L
ef

t p
ar

ie
ta

l
W

M
V

ol
um

e
V

B
M

 (
SP

M
)

Sm
al

le
r

L
ef

t s
up

er
io

r 
fr

on
ta

l
W

M
V

ol
um

e
V

B
M

 (
SP

M
)

Sm
al

le
r

L
ef

t m
ed

ia
l f

ro
nt

al
W

M
V

ol
um

e
V

B
M

 (
SP

M
)

Sm
al

le
r

L
ep

or
e 

et
 a

l. 
(2

01
0)

14
 D

S 
vs

. 1
6

29
.5

L
SQ

1.
5 

T
Fr

on
ta

l l
ob

e 
(B

ro
ca

's
)

W
M

V
ol

um
e

T
B

M
 (

vo
xe

l-
w

is
e 

Ja
co

bi
an

)
L

ar
ge

r

A
dj

ac
en

t: 
M

ot
or

W
M

W
ho

le
 b

ra
in

T
B

M
 (

vo
xe

l-
w

is
e 

Ja
co

bi
an

)
L

ar
ge

r

A
dj

ac
en

t: 
L

an
gu

ag
e

W
M

V
ol

um
e

T
B

M
 (

vo
xe

l-
w

is
e 

Ja
co

bi
an

)
L

ar
ge

r

C
C

 (
sp

le
ni

um
: 

te
m

po
ra

l/o
cc

ip
ita

l)
W

M
M

an
ua

l
R

O
I 

m
an

ua
l

D
if

fe
re

nc
e

K
. M

. S
m

ith
 e

t a
l.,

 
20

11
16

 D
 v

s.
 2

6
12

 ±
 

2.
8 

m
o

N
R

3 
T

H
G

G
M

W
ho

le
 b

ra
in

V
B

M
 (

SP
M

)
In

cr
ea

se
d

A
sy

m
m

et
ry

 
no

t p
re

se
rv

ed

W
M

W
ho

le
 b

ra
in

V
B

M
 (

SP
M

)
D

ec
re

as
ed

J.
 L

i e
t a

l. 
(2

01
2)

16
 D

S 
vs

. 1
6

14
.5

6 
±

 
2.

1
C

SL
3 

T
L

ef
t p

re
ce

nt
ra

l g
yr

us
G

M
T

hi
ck

ne
ss

C
IV

E
T

Sm
al

le
r

R
ig

ht
 p

os
tc

en
tr

al
 

gy
ru

s
G

M
T

hi
ck

ne
ss

C
IV

E
T

Sm
al

le
r

L
ef

t s
up

er
io

r 
oc

ci
pi

ta
l g

yr
us

G
M

T
hi

ck
ne

ss
C

IV
E

T
Sm

al
le

r

L
ef

t f
us

if
or

m
 g

yr
us

G
M

T
hi

ck
ne

ss
C

IV
E

T
Sm

al
le

r

W
ho

le
 b

ra
in

G
M

T
hi

ck
ne

ss
C

IV
E

T
Sm

al
le

r

L
ef

t m
id

dl
e 

fr
on

ta
l 

gy
ru

s
W

M
V

ol
um

e
V

B
M

 (
SP

M
)

Fo
ca

l d
ec

re
as

e

R
ig

ht
 in

fe
ri

or
 

oc
ci

pi
ta

l g
yr

us
W

M
V

ol
um

e
V

B
M

 (
SP

M
)

Fo
ca

l d
ec

re
as

e

Wiley Interdiscip Rev Syst Biol Med. Author manuscript; available in PMC 2021 March 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ratnanather Page 35

St
ud

ie
s

G
ro

up
s

A
ge

C
om

m
un

ic
at

io
n

Sc
an

ne
r

st
re

ng
th

St
ru

ct
ur

e
T

is
su

e
M

ea
su

re
A

na
ly

si
s

M
ai

n 
re

su
lt

O
th

er
 r

es
ul

ts

A
lle

n,
 E

m
m

or
ey

, 
B

ru
ss

, a
nd

 
D

am
as

io
 (

20
13

)

25
 D

S 
vs

. 1
6 

H
S 

vs
. 2

5
23

.8
 ±

 
4.

1
A

SL
1.

5 
T

C
al

ca
ri

ne
 s

ul
cu

s 
(V

I)
G

M
V

ol
um

e
R

O
I 

m
an

ua
l

L
ar

ge
r 

in
 D

S
A

sy
m

m
et

ry
 in

 
D

S 
an

d 
H

S

Pa
rs

 T
ri

an
gu

la
ri

s 
(B

ro
ca

's
)

G
M

V
ol

um
e

R
O

I 
m

an
ua

l
L

ar
ge

r 
in

 D
S

H
an

dk
no

b 
(p

re
ce

nt
ra

l 
gy

ru
s)

G
M

V
ol

um
e

R
O

I 
m

an
ua

l
N

o 
di

ff
er

en
ce

A
sy

m
m

et
ry

 in
 

D
S 

an
d 

H
S

B
oy

en
, L

an
ge

rs
, d

e 
K

le
in

e,
 a

nd
 v

an
 

D
ijk

 (
20

13
)

16
 H

I 
vs

. 2
4

63
 ±

 1
0

T
in

ni
tu

s 
st

ud
3 

T
ST

G
, M

T
G

G
M

V
ol

um
e

V
B

M
 (

SP
M

)
In

cr
ea

se

SF
G

, o
cc

ip
ita

l, 
hy

po
th

al
am

us
G

M
V

ol
um

e
V

B
M

 (
SP

M
)

D
ec

re
as

e

Fr
on

ta
l

G
M

V
ol

um
e

R
O

I
D

ec
re

as
e

L
im

bi
c

G
M

V
ol

um
e

R
O

I
In

cr
ea

se

W
. L

i e
t a

l.,
 2

01
3

16
 D

S 
vs

. 1
6

14
.5

6 
±

 
2.

10
C

SL
3 

T
C

er
eb

el
lu

m
G

M
V

ol
um

e
V

B
M

 (
SP

M
)

R
ig

ht
w

ar
d 

as
ym

m
et

rj

Po
st

er
io

r 
ci

ng
ul

at
e 

gy
ru

s
G

M
T

hi
ck

ne
ss

C
IV

E
T

L
ef

tw
ar

d 
as

ym
m

et
ry

G
yr

us
 r

ec
tu

s
G

M
T

hi
ck

ne
ss

C
IV

E
T

L
ef

tw
ar

d 
as

ym
m

et
ry

N
eg

at
iv

el
y 

co
rr

el
at

ed
 w

ith
 

H
A

A
ud

ito
ry

 c
or

te
x 

(H
G

)
G

M
T

hi
ck

ne
ss

C
IV

E
T

A
sy

m
m

et
ry

 
pr

es
er

ve
d

Pe
ni

ca
ud

 e
t a

l. 
(2

01
3)

.
9 

D
S 

(b
ir

th
) 

vs
. 8

 D
S 

(e
ar

ly
) 

vs
. 6

 
D

S 
(l

at
e)

 v
s.

 
43

39
.2

 ±
 

12
.3

A
SL

1.
5 

T
E

ar
ly

 v
is

ua
l a

re
as

G
M

V
ol

um
e

V
B

M
 (

SP
M

)
L

at
er

 A
SL

: l
ow

er
D

ea
f 

no
t 

di
ff

er
en

t f
ro

m
 

he
ar

in
g

F.
 R

. L
in

 e
t a

l. 
(2

01
4)

51
 D

S 
vs

. 7
5

73
.8

 ±
 

7.
3

N
R

1.
5 

T
R

ig
ht

 S
T

G
, r

ig
ht

 
M

T
G

, r
ig

ht
 I

T
G

, 
ri

gh
t P

H
G

G
M

V
ol

um
e

R
A

V
E

N
S

A
cc

el
er

at
ed

 lo
ss

 
ov

er
 ti

m
e

H
ri

ba
r, 

Su
pu

t, 
C

ar
va

lh
o,

 
B

at
te

lin
o,

 a
nd

 
V

ov
k 

(2
01

4)

14
 D

S 
vs

. 1
4

35
.4

 ±
 

6
SS

L
3 

T
L

ef
t H

G
W

M
V

ol
um

e
R

O
I 

m
an

ua
l

L
es

s

M
id

dl
e 

m
ed

ia
l l

ef
t 

su
pe

ri
or

 f
ro

nt
al

 g
yr

us
G

M
V

ol
um

e
Fr

ee
Su

rf
er

Fo
ca

l d
ec

re
as

e

L
ef

t s
up

ra
m

ar
gi

na
l 

gy
ru

s
G

M
T

hi
ck

ne
ss

Fr
ee

Su
rf

er
Fo

ca
l d

ec
re

as
e

C
er

eb
el

lu
m

G
M

W
ho

le
 b

ra
in

V
B

M
 (

FS
L

)
In

cr
ea

se
d 

vo
lu

m
e

Wiley Interdiscip Rev Syst Biol Med. Author manuscript; available in PMC 2021 March 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ratnanather Page 36

St
ud

ie
s

G
ro

up
s

A
ge

C
om

m
un

ic
at

io
n

Sc
an

ne
r

st
re

ng
th

St
ru

ct
ur

e
T

is
su

e
M

ea
su

re
A

na
ly

si
s

M
ai

n 
re

su
lt

O
th

er
 r

es
ul

ts

O
lu

la
de

, K
oo

, 
L

aS
as

so
, a

nd
 E

de
n 

(2
01

4)

15
 D

S 
vs

. 1
5 

H
S 

vs
. 1

5 
D

O

23
.4

 ±
 

3.
3

A
SL

 (
D

S/
H

S)
, 

or
al

/c
ue

d 
(D

O
)

3 
T

E
ar

ly
 v

is
ua

l a
re

as
G

M
V

ol
um

e
V

B
M

 (
SP

M
)

L
es

s 
in

 b
ot

h 
D

S 
an

d 
D

O

vs
 1

5
L

ef
t e

ar
ly

 a
ud

ito
ry

 
ar

ea
s

G
M

V
ol

um
e

V
B

M
 (

SP
M

)
L

es
s 

in
 b

ot
h 

D
S 

an
d 

D
O

L
ef

t S
T

G
W

M
V

ol
um

e
V

B
M

 (
SP

M
)

D
if

fe
re

nc
es

 in
 D

S

L
ef

t i
nf

er
io

r 
fr

on
ta

l 
gy

ru
s

W
M

V
ol

um
e

V
B

M
 (

SP
M

)
D

if
fe

re
nc

es
 in

 D
S

G
en

er
al

G
M

 a
nd

 
W

M
V

ol
um

e
V

B
M

 (
SP

M
)

D
O

 le
ss

 d
if

fe
re

nt
 

th
an

 D
S 

fr
om

 
co

nt
ro

ls

E
. K

im
 e

t a
l. 

(2
01

4)
8 

D
S 

vs
. 1

1 
D

O
 v

s.
 1

1
50

.4
 ±

 
6.

1
N

R
3 

T
Pr

im
ar

y 
au

di
to

ry
 

co
rt

ex
G

M
D

en
si

ty
V

B
M

 (
SP

M
)

N
o 

di
ff

er
en

ce
 in

 D
S

D
ec

re
as

e 
in

 
D

O

Pr
im

ar
y 

au
di

to
ry

 
co

rt
ex

G
M

C
on

ne
ct

iv
ity

V
ox

el
-w

is
e 

co
rr

el
at

io
n

C
or

re
la

te
d 

in
 D

S
In

cr
ea

se
d 

bi
la

te
ra

l 
te

m
po

ra
l 

co
nn

ec
tiv

ity
 in

 
D

O

W
ho

le
 b

ra
in

G
M

C
on

ne
ct

iv
ity

B
ra

in
 

co
nn

ec
tiv

ity
 

to
ol

bo
x

C
on

ne
ct

iv
ity

 
m

ea
su

re
s 

in
cr

ea
se

d 
in

 D
S

Fr
on

to
-l

im
bi

c 
an

d 
le

ft
 

te
m

po
ra

l 
co

rr
el

at
ed

 a
nd

 
te

m
po

ro
-

pa
ri

et
al

 
w

ea
kl

y 
co

up
le

d 
in

 D
S

Ta
e 

(2
01

5)
8 

D
S 

vs
. 9

15
.6

K
SL

1.
5 

T
L

ef
t a

nt
er

io
r 

H
G

G
M

V
ol

um
e

V
B

M
D

ec
re

as
ed

L
ef

t a
nd

 r
ig

ht
 in

fe
ri

or
 

co
lli

cu
lu

s
G

M
V

ol
um

e
V

B
M

D
ec

re
as

ed

L
in

gu
al

 g
yr

i, 
nu

cl
eu

s 
ac

cu
m

be
ns

, t
ha

la
m

ic
 

re
tic

ul
ar

 n
uc

le
us

G
M

V
ol

um
e

V
B

M
D

ec
re

as
ed

A
m

ar
al

 e
t a

l. 
(2

01
6)

15
 D

S 
vs

. 1
6

20
.4

C
SL

3 
T

T
ha

la
m

us
G

M
V

ol
um

e
M

an
ua

l
R

ig
ht

 >
 le

ft

L
ef

t g
en

ic
ul

at
e 

nu
cl

eu
s

G
M

V
ol

um
e

M
an

ua
l

R
ig

ht
 >

 le
ft

In
fe

ri
or

 c
ol

lic
ul

us
G

M
V

ol
um

e
M

an
ua

l
R

ig
ht

 >
 le

ft

Sh
ie

ll,
 C

ha
m

po
ux

, 
an

d 
Z

at
or

re
 (

20
16

)
11

 D
S 

vs
. 1

1
28

.2
L

SQ
/A

SL
3 

T
R

ig
ht

 P
T

G
M

T
hi

ck
ne

ss
Fr

ee
Su

rf
er

In
cr

ea
se

d

Sm
itt

en
aa

r, 
M

ac
Sw

ee
ne

y,
 

Se
re

no
, a

nd
 

15
 D

S 
vs

. 1
5

39
B

SL
1.

5 
T

V
I

G
M

T
hi

ck
ne

ss
Fr

ee
Su

rf
er

D
ec

re
as

ed

Wiley Interdiscip Rev Syst Biol Med. Author manuscript; available in PMC 2021 March 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ratnanather Page 37

St
ud

ie
s

G
ro

up
s

A
ge

C
om

m
un

ic
at

io
n

Sc
an

ne
r

st
re

ng
th

St
ru

ct
ur

e
T

is
su

e
M

ea
su

re
A

na
ly

si
s

M
ai

n 
re

su
lt

O
th

er
 r

es
ul

ts

Sc
hw

ar
zk

op
f 

(2
01

6)

K
um

ar
 a

nd
 M

is
hr

a 
(2

01
8)

50
 v

s.
 5

0
19

.5
A

cq
ui

re
d 

IS
L

 a
t 

ag
e 

10
.8

 y
ea

rs
3 

T
B

ila
te

ra
l S

T
G

, 
bi

la
te

ra
l I

T
G

, 
bi

la
te

ra
l f

us
if

or
m

, 
bi

la
te

ra
l M

FG

W
M

/G
M

, G
M

, 
G

M

V
ol

um
e

V
B

M
, S

B
M

 a
nd

 
PB

C
T

D
ec

re
as

ed
, 

in
cr

ea
se

d,
 in

cr
ea

se
d,

 
in

cr
ea

se
d

In
cr

ea
se

d 
th

ic
kn

es
s

Fe
ng

 e
t a

l. 
(2

01
8)

37
 v

s.
 4

0
17

.9
 

m
o

H
A

 b
ef

or
e 

C
I

3 
T

B
ila

te
ra

l A
C

 (
m

id
dl

e 
pa

rt
 o

f 
ST

G
)

G
M

/W
M

D
en

si
ty

V
B

M
 a

nd
 

M
V

PS
M

os
t s

ig
ni

fi
ca

nt
, 

le
ss

 s
ig

ni
fi

ca
nt

—
IF

G
, C

G
, o

cc
ip

ita
l, 

hi
pp

oc
am

pu
s,

 
pr

ec
un

eu
s

R
eg

io
ns

 
un

af
fe

ct
ed

 b
y 

au
di

to
ry

 
de

pr
iv

at
io

n 
pr

ov
id

ed
 g

oo
d 

ou
tc

om
es

 f
or

 
C

I

X
. M

. X
u 

et
 a

l. 
(2

01
9a

)
35

 v
s.

 5
4

56
Po

st
lin

gu
al

3 
T

In
su

la
G

M
D

en
si

ty
 a

nd
 

co
nn

ec
tiv

ity
V

B
M

In
si

gn
if

ic
an

t 
di

ff
er

en
ce

s
R

ed
uc

ed
 

co
nn

ec
tiv

ity
 

w
ith

 o
th

er
 

re
gi

on
s

X
. M

. X
u 

et
 a

l. 
(2

01
9b

)
37

 v
s.

 3
8

55
.6

Po
st

lin
gu

al
3 

T
T

ha
la

m
ic

 s
ub

fi
el

d 
co

nn
ec

tiv
ity

G
M

R
el

at
iv

e 
vo

lu
m

e
V

B
M

D
ec

re
as

e 
in

 r
ig

ht
 

m
ot

or
 th

al
am

us
 a

nd
 

so
m

at
os

en
so

ry
 

th
al

am
us

Pe
re

ir
a-

Jo
rg

e 
et

 a
l. 

(2
01

8)
14

 v
s.

 1
1

51
.3

Po
st

lin
gu

al
 

(b
ef

or
e 

H
A

)
1.

5 
T

PF
C

. p
re

cu
ne

us
. 

fu
si

fo
rm

 g
yr

us
, a

nd
 

M
T

G
; i

ns
ul

a,
 

su
pr

am
ar

gi
na

l g
yr

us
, 

m
ed

ia
l t

em
po

ra
l 

gy
ru

s,
 o

cc
ip

ita
l, 

po
st

er
io

r 
ci

ng
ul

at
e 

co
rt

ex
, a

nd
 c

la
us

tr
um

T
hi

ck
ne

ss
Fr

ee
Su

rf
er

In
cr

ea
se

, d
ec

re
as

e
A

ft
er

 1
 y

ea
r 

of
 

H
A

, i
nc

re
as

e 
in

 m
ul

tim
od

al
 

in
te

gr
at

io
n 

re
gi

on
s

Sh
io

ha
m

a,
 

M
cD

av
id

, L
ev

m
an

, 
an

d 
Ta

ka
ha

sh
i 

(2
01

9)

30
 v

s.
 9

0
5.

3–
6.

7
N

R
3 

T
L

ef
t m

id
dl

e 
oc

ci
pi

ta
l 

an
d 

le
ft

 in
fe

ri
or

 
oc

ci
pi

ta
l

G
M

T
hi

ck
ne

ss
C

IV
E

T
Sm

al
le

r

35
 v

s.
 2

3
39

 ±
 

1.
8

N
R

3 
T

G
M

V
ol

um
e

V
B

M
 (

SP
M

)
Sm

al
le

r

Q
i, 

Su
, Z

ou
, Y

an
g,

 
an

d 
Z

he
ng

 (
20

19
)

R
ig

ht
 f

us
if

or
m

 a
nd

 
ri

gh
t m

id
dl

e 
oc

ci
pi

ta
l 

gy
ru

s

R
at

na
na

th
er

 e
t a

l. 
(2

01
9)

5 
D

O
 v

s.
 5

31
L

SL
 a

nd
 H

A
1.

5 
T

H
G

 a
nd

 P
T

G
M

T
hi

ck
ne

ss
L

C
D

M
T

hi
ck

er
Se

e 
al

so
 D

hi
r, 

K
ut

te
n,

 L
i, 

Fa
ri

a,
 a

nd
 

R
at

na
na

th
er

 
(2

02
0)

N
ot

e:
 S

tr
uc

tu
re

s 
ob

se
rv

ed
 to

 b
e 

af
fe

ct
ed

 b
y 

he
ar

in
g 

lo
ss

 a
re

 s
ho

w
n 

in
 F

ig
ur

es
 3

 a
nd

 4
. G

en
de

r 
in

fo
rm

at
io

n 
ca

n 
be

 o
bt

ai
ne

d 
fr

om
 o

ri
gi

na
l p

ap
er

s 
an

d 
is

 n
ot

 r
ec

or
de

d 
he

re
 d

ue
 to

 la
ck

 o
f 

co
rr

el
at

io
n.

 A
ge

 is
 

gi
ve

n 
as

 m
ea

n 
±

 S
D

 o
r 

m
ea

n.

Wiley Interdiscip Rev Syst Biol Med. Author manuscript; available in PMC 2021 March 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ratnanather Page 38
A

bb
re

vi
at

io
ns

: A
C

C
, a

nt
er

io
r 

ci
ng

ul
at

e 
co

rt
ex

; A
SL

, A
m

er
ic

an
 s

ig
n 

la
ng

ua
ge

; B
SL

, B
ri

tis
h 

si
gn

 la
ng

ua
ge

; C
C

, c
or

pu
s 

ca
llo

su
m

; C
G

, c
in

gu
la

te
 g

yr
us

; C
I,

 c
oc

hl
ea

r 
im

pl
an

t; 
C

IV
E

T,
 c

om
bi

ne
d 

in
te

ro
pe

ra
bi

lit
y 

va
lid

at
io

n 
ev

al
ua

tio
n 

to
ol

; C
SL

, C
hi

ne
se

 s
ig

n 
la

ng
ua

ge
; D

, d
ea

f;
 D

O
, d

ea
f 

or
al

; D
S,

 d
ea

f 
si

gn
in

g;
 D

G
S,

 G
er

m
an

 s
ig

n 
la

ng
ua

ge
; f

M
R

I,
 f

un
ct

io
na

l M
R

I;
 F

SL
, F

M
R

IB
 s

of
tw

ar
e 

lib
ra

ry
; G

M
, 

gr
ay

 m
at

te
r;

 H
A

, h
ea

ri
ng

 a
id

s;
 H

G
, H

es
ch

l's
 g

yr
us

; H
I,

 h
ea

ri
ng

 im
pa

ir
ed

; H
S,

 h
ea

ri
ng

 s
ig

ni
ng

; I
SL

, I
nd

ia
n 

si
gn

 la
ng

ua
ge

; I
T

G
, i

nf
er

io
r 

te
m

po
ra

l g
yr

us
; K

SL
, K

or
ea

n 
si

gn
 la

ng
ua

ge
; L

C
D

M
, l

ab
el

ed
 c

or
tic

al
 

di
st

an
ce

 m
ap

pi
ng

; L
SL

, l
is

te
ni

ng
 a

nd
 s

po
ke

n 
la

ng
ua

ge
; L

SQ
, l

an
gu

e 
si

gn
e 

qu
eb

ec
oi

s;
 M

FG
, m

id
dl

e 
fr

on
ta

l g
yr

us
; m

o,
 m

on
th

; M
T

G
, m

id
dl

e 
te

m
po

ra
l g

yr
us

; M
V

PS
, m

ul
tiv

ox
el

 p
at

te
rn

 s
im

ila
ri

ty
; N

R
, n

ot
 

re
co

rd
ed

; P
B

C
T,

 p
ro

je
ct

io
n-

ba
se

d 
co

rt
ic

al
 th

ic
kn

es
s;

 P
FC

, p
re

fr
on

ta
l c

or
te

x;
 P

H
G

, p
ar

ah
ip

po
ca

m
pa

l g
yr

us
; P

T,
 p

la
nu

m
 te

m
po

ra
le

; R
A

V
E

N
S,

 r
eg

io
na

l a
na

ly
si

s 
of

 v
ol

um
e 

ex
am

in
ed

 in
 n

or
m

al
 s

pa
ce

; R
O

I,
 

re
gi

on
 o

f 
in

te
re

st
; S

SL
, S

lo
ve

ni
an

 s
ig

n 
la

ng
ua

ge
; S

T
G

, s
up

er
io

r 
te

m
po

ra
l g

yr
us

; S
FG

, s
up

er
io

r 
fr

on
ta

l g
yr

us
; S

PM
, s

ta
tis

tic
al

 p
ar

am
et

ri
c 

m
ap

pi
ng

; T
SL

, T
ur

ki
sh

 s
ig

n 
la

ng
ua

ge
; T

B
M

, t
en

so
r-

ba
se

d 
m

or
ph

om
et

ry
; V

B
M

, v
ox

el
-b

as
ed

 m
or

ph
om

et
ry

; W
M

, w
hi

te
 m

at
te

r.

Wiley Interdiscip Rev Syst Biol Med. Author manuscript; available in PMC 2021 March 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ratnanather Page 39

TA
B

L
E

 2

Su
m

m
ar

y 
of

 d
if

fu
si

on
 te

ns
or

 im
ag

in
g 

st
ud

ie
s 

of
 w

hi
te

 m
at

te
r 

st
ru

ct
ur

es
 in

 p
eo

pl
e 

w
ith

 h
ea

ri
ng

 lo
ss

St
ud

ie
s

G
ro

up
A

ge
C

om
m

un
ic

at
io

n
Sc

an
ne

r
st

re
ng

th
St

ru
ct

ur
e

T
is

su
e

M
ea

su
re

A
na

ly
si

s
M

ai
n 

re
su

lt
O

th
er

 r
es

ul
ts

C
ha

ng
 e

t a
l. 

(2
00

4)
10

 D
 v

s.
 1

0
33

.7
N

R
 b

ut
 m

ild
-t

o-
se

ve
re

 H
L

3 
T

SO
N

, I
C

, T
B

, L
L

. 
A

R
FA

Si
ng

le
 b

ra
in

 
an

al
ys

is
V

ox
el

-W
is

e
A

bn
or

m
al

Se
e 

al
so

 S
. H

. L
ee

, 
20

04

N
at

h 
et

 a
l. 

(2
00

7)
14

 D
 v

s.
 8

30
N

R
1.

5 
T

L
L

FA
W

ho
le

 b
ra

in
R

O
I

L
es

s

IC
FA

W
ho

le
 b

ra
in

R
O

I
L

es
s

PC
T

FA
W

ho
le

 b
ra

in
R

O
I

L
es

s

Y
. L

in
 e

t a
l. 

(2
00

8)
37

 D
 v

s.
 1

0
32

.4
 ±

 
11

.9
N

R
3 

T
L

L
FA

 a
nd

 R
D

W
ho

le
 b

ra
in

D
T

IS
tu

di
o

L
es

s 
FA

 a
nd

 
m

or
e 

R
D

IC
FA

 a
nd

 R
D

W
ho

le
 b

ra
in

D
T

IS
tu

di
o

L
es

s 
FA

 a
nd

 
m

or
e 

R
D

X
ia

 a
nd

 Q
i 

(2
00

8)
20

 D
S 

vs
. 2

0
9–

12
C

SL
1.

5 
T

R
ig

ht
 H

G
A

D
C

W
ho

le
 b

ra
in

R
O

I 
m

an
ua

l
D

if
fe

re
nt

20
 D

S 
vs

. 2
0

19
–2

2
C

SL
1.

5 
T

B
ila

te
ra

l H
G

A
D

C
W

ho
le

 b
ra

in
R

O
I 

m
an

ua
l

D
if

fe
re

nt

S.
 W

an
g 

et
 a

l. 
(2

00
9)

6 
C

D
 v

s.
 6

20
.8

C
SL

 (
3 

af
te

r 
H

A
 

us
ag

e 
at

 4
 y

ea
rs

)
3 

T
R

ig
ht

 S
T

G
FA

W
ho

le
 b

ra
in

V
ox

el
-b

as
ed

 
an

al
ys

is
L

es
s

A
sy

m
m

et
ry

 p
re

se
rv

ed

D
. J

. K
im

 e
t a

l. 
(2

00
9)

13
 D

 v
s.

 2
9

29
.3

 ±
 

6.
8

N
o 

H
A

3 
T

Su
pe

ri
or

 te
m

po
ra

l
FA

W
ho

le
 b

ra
in

T
B

SS
L

es
s

R
ig

ht
 in

te
rn

al
 

ca
ps

ul
e

FA
W

ho
le

 b
ra

in
T

B
SS

L
es

s

SL
F

FA
W

ho
le

 b
ra

in
T

B
SS

L
es

s

L
ef

t i
nf

er
io

r 
FO

F
FA

W
ho

le
 b

ra
in

T
B

SS
L

es
s

R
ig

ht
 f

or
ce

ps
 m

aj
or

FA
W

ho
le

 b
ra

in
T

B
SS

M
or

e

L
ef

t f
or

ce
ps

 m
aj

or
FA

W
ho

le
 b

ra
in

T
B

SS
M

or
e

L
ef

t S
T

G
V

ol
um

e
W

ho
le

 b
ra

in
T

B
SS

L
es

s 
W

M

R
ig

ht
 S

T
G

V
ol

um
e

W
ho

le
 b

ra
in

T
B

SS
L

es
s 

W
M

L
ef

t p
ar

ie
ta

l
V

ol
um

e
W

ho
le

 b
ra

in
T

B
SS

L
es

s

Su
pe

ri
or

 f
ro

nt
al

V
ol

um
e

W
ho

le
 b

ra
in

T
B

SS
L

es
s

M
ed

ia
l f

ro
nt

al
V

ol
um

e
W

ho
le

 b
ra

in
T

B
SS

L
es

s

Z
.-

H
. L

iu
 e

t a
l. 

(2
01

0)
15

 D
 v

s.
 2

8
16

C
SL

 f
or

 m
or

e 
th

an
 

6 
ye

ar
s 

an
d 

H
A

 
us

ag
e 

si
nc

e 
2 

ye
ar

s 
ol

d

1.
5 

T
L

ef
t S

T
G

FA
W

ho
le

 b
ra

in
T

B
SS

L
es

s

R
ig

ht
 S

T
G

FA
W

ho
le

 b
ra

in
T

B
SS

L
es

s

Wiley Interdiscip Rev Syst Biol Med. Author manuscript; available in PMC 2021 March 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ratnanather Page 40

St
ud

ie
s

G
ro

up
A

ge
C

om
m

un
ic

at
io

n
Sc

an
ne

r
st

re
ng

th
St

ru
ct

ur
e

T
is

su
e

M
ea

su
re

A
na

ly
si

s
M

ai
n 

re
su

lt
O

th
er

 r
es

ul
ts

L
ef

t I
FG

FA
W

ho
le

 b
ra

in
T

B
SS

L
es

s

R
ig

ht
 I

FG
FA

W
ho

le
 b

ra
in

T
B

SS
L

es
s

L
ef

t p
os

t-
m

ed
ia

l 
M

T
G

FA
W

ho
le

 b
ra

in
T

B
SS

L
es

s
R

ed
uc

tio
n 

le
ss

 in
 L

 
th

an
 R

R
ig

ht
 p

os
t-

m
ed

ia
l 

M
T

G
FA

W
ho

le
 b

ra
in

T
B

SS
L

es
s

R
ig

ht
 I

nt
 C

ap
FA

W
ho

le
 b

ra
in

T
B

SS
L

es
s

L
ef

t I
nt

 C
ap

FA
W

ho
le

 b
ra

in
T

B
SS

L
es

s

R
ig

ht
 E

xt
 C

ap
FA

W
ho

le
 b

ra
in

T
B

SS
L

es
s

L
ef

t E
xt

 C
ap

FA
W

ho
le

 b
ra

in
T

B
SS

L
es

s

L
ef

t O
R

FA
W

ho
le

 b
ra

in
T

B
SS

L
es

s
R

ed
uc

tio
n 

le
ss

 in
 L

 
th

an
 R

R
ig

ht
 O

R
FA

W
ho

le
 b

ra
in

T
B

SS
L

es
s

Y
. L

i e
t a

l. 
(2

01
2)

60
 C

D
 v

s.
 3

6 
A

D
 v

s.
 3

8
21

.1
 ±

 
2.

26
 

(C
D

),
 

21
.5

 ±
 

1.
54

 
(A

D
)

C
SL

 o
nl

y
3 

T
R

ig
ht

 S
T

G
FA

W
ho

le
 b

ra
in

T
B

SS
L

es
s

C
or

re
la

te
d 

w
ith

 o
ns

et
 

ag
e

L
ef

t S
T

G
FA

W
ho

le
 b

ra
in

T
B

SS
L

es
s

SC
C

FA
W

ho
le

 b
ra

in
T

B
SS

L
es

s

C
ha

ng
, L

ee
, 

Pa
ik

, L
ee

, a
nd

 
L

ee
 (

20
12

)

18
 D

5.
9

N
R

3 
T

B
ro

ca
's

FA
W

ho
le

 b
ra

in
V

ox
el

-w
is

e
H

ig
he

r
C

or
re

la
te

d 
w

ith
 

au
di

to
ry

 s
co

re
s 

af
te

r 
C

I

G
en

u 
of

 C
C

FA
W

ho
le

 b
ra

in
V

ox
el

-w
is

e
H

ig
he

r
C

or
re

la
te

d 
w

ith
 

au
di

to
ry

 s
co

re
s 

af
te

r 
C

I

A
R

FA
W

ho
le

 b
ra

in
V

ox
el

-w
is

e
H

ig
he

r
C

or
re

la
te

d 
w

ith
 

au
di

to
ry

 s
co

re
s 

af
te

r 
C

I

M
G

N
FA

W
ho

le
 b

ra
in

V
ox

el
-w

is
e

C
or

re
la

te
d 

w
ith

 a
ud

ito
ry

 
sc

or
es

 a
ft

er
 

C
I

M
ia

o 
et

 a
l. 

(2
01

3)
16

 D
 v

s.
 1

6
14

.5
6 

±
 2

.1
C

SL
 a

ft
er

 la
te

 H
A

 
us

ag
e

3 
T

L
ef

t S
T

G
FA

 a
nd

 R
D

W
ho

le
 b

ra
in

T
B

SS
FA

 lo
w

er
 a

nd
 

R
D

 h
ig

he
r

R
ig

ht
 S

T
G

FA
 a

nd
 R

D
W

ho
le

 b
ra

in
T

B
SS

FA
 lo

w
er

 a
nd

 
R

D
 h

ig
he

r
R

D
 c

or
re

la
te

d 
w

ith
 

C
SL

 u
sa

ge

H
G

FA
 a

nd
 R

D
W

ho
le

 b
ra

in
T

B
SS

FA
 lo

w
er

 a
nd

 
R

D
 h

ig
he

r

Wiley Interdiscip Rev Syst Biol Med. Author manuscript; available in PMC 2021 March 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ratnanather Page 41

St
ud

ie
s

G
ro

up
A

ge
C

om
m

un
ic

at
io

n
Sc

an
ne

r
st

re
ng

th
St

ru
ct

ur
e

T
is

su
e

M
ea

su
re

A
na

ly
si

s
M

ai
n 

re
su

lt
O

th
er

 r
es

ul
ts

PP
FA

 a
nd

 R
D

W
ho

le
 b

ra
in

T
B

SS
FA

 lo
w

er
 a

nd
 

R
D

 h
ig

he
r

SC
C

FA
 a

nd
 R

D
W

ho
le

 b
ra

in
T

B
SS

FA
 lo

w
er

 a
nd

 
R

D
 h

ig
he

r

Ly
ne

ss
, A

lv
ar

ez
, 

Se
re

no
, a

nd
 

M
ac

Sw
ee

ne
y 

(2
01

4)

13
 D

S 
vs

. 1
3

39
.0

8 
±

 
11

.0
8

B
SL

 a
ft

er
 1

0 
ye

ar
s 

(1
1 

us
ed

 s
po

ke
n 

la
ng

ua
ge

)

1.
5 

T
Fr

on
ta

l a
nd

 
oc

ci
pi

ta
l

M
D

 a
nd

 R
D

T
ha

la
m

ic
 

Pa
rc

el
la

tio
n

Fr
ee

Su
rf

er
 

an
d 

FS
L

In
cr

ea
se

d 
M

D
 a

nd
 R

D

Fr
on

ta
l

FA
T

ha
la

m
o-

co
rt

ic
al

Fr
ee

Su
rf

er
 

an
d 

FS
L

R
ed

uc
ed

 F
A

M
ot

or
FA

, M
D

 a
nd

 
R

D
T

ha
la

m
o-

co
rt

ic
al

Fr
ee

Su
rf

er
 

an
d 

FS
L

In
cr

ea
se

d 
M

D
 a

nd
 R

D
R

ed
uc

ed
 F

A

So
m

at
os

en
so

ry
FA

 a
nd

 R
D

T
ha

la
m

o-
co

rt
ic

al
Fr

ee
Su

rf
er

 
an

d 
FS

L
In

cr
ea

se
d 

R
D

R
ed

uc
ed

 F
A

Pa
ri

et
al

FA
T

ha
la

m
o-

co
rt

ic
al

Fr
ee

Su
rf

er
 

an
d 

FS
L

R
ed

uc
ed

 F
A

O
cc

ip
ita

l
FA

T
ha

la
m

o-
co

rt
ic

al
Fr

ee
Su

rf
er

 
an

d 
FS

L
R

ed
uc

ed
 F

A

C
. X

. W
u 

et
 a

l. 
(2

01
4)

92
 (

th
re

e 
gr

ou
ps

)
4.

9
31

 h
ad

 C
I

1.
5 

T
ST

G
FA

W
ho

le
 b

ra
in

D
T

IS
tu

di
o

L
es

s

A
R

FA
W

ho
le

 b
ra

in
D

T
IS

tu
di

o
L

es
s

C
or

re
la

te
d 

w
ith

 C
A

P 
sc

or
e 

in
 th

e 
31

 w
ith

 C
I

K
ar

ns
, S

te
ve

ns
, 

D
ow

, S
ch

or
r, 

an
d 

N
ev

ill
e 

(2
01

7)

23
 D

S 
vs

. 2
6

28
 ±

 
1.

4
A

SL
3 

T
B

ila
te

ra
l H

G
, 

an
te

ri
or

 S
T

G
, 

po
st

er
io

r 
ST

G

FA
 a

nd
 

vo
lu

m
e

W
ho

le
 b

ra
in

FS
L

L
es

s
M

or
e 

R
D

 in
 b

ila
te

ra
l 

H
G

; r
ig

ht
 p

os
te

ri
or

 
ST

G
 h

ad
 la

rg
er

 
di

ff
er

en
ce

s 
be

tw
ee

n 
gr

ou
ps

Po
st

er
io

r 
C

C
FA

W
ho

le
 b

ra
in

FS
L

L
es

s
M

or
e 

R
D

J.
 K

im
, C

ho
i, 

E
o,

 a
nd

 P
ar

k 
(2

01
7)

18
 (

10
 

po
st

lin
gu

al
) 

vs
. 2

9

K
SL

 a
nd

 H
A

3 
T

R
ig

ht
 I

nt
 C

ap
, r

ig
ht

 
th

al
am

us
, S

C
C

, 
ri

gh
t S

T
G

 a
nd

 le
ft

 
ST

G
, r

ig
ht

 
te

m
po

ra
l l

ob
e 

W
M

D
if

fu
si

on
 

an
is

ot
ro

py
W

ho
le

 b
ra

in
T

B
SS

L
es

s
Pr

el
in

gu
al

 le
ss

 in
 R

 
ST

G
, b

ila
te

ra
l W

M
, 

ge
nu

 a
nd

 a
nt

er
io

r 
C

C

M
af

fe
i (

20
17

)
10

 D
S 

vs
. 1

0
34

 ±
 6

L
IS

4 
T

A
co

us
tic

 r
ad

ia
tio

n
FA

, R
D

 a
nd

 
M

D
W

ho
le

 b
ra

in
FS

L
L

es
s,

 m
or

e
A

tla
s-

ba
se

d 
an

al
ys

is
, 

su
bs

et
 o

f 
B

en
et

ti 
et

 a
l. 

(2
01

8)

B
en

et
ti 

et
 a

l. 
(2

01
8)

14
 D

S 
vs

. 1
5 

H
S 

vs
. 1

5
34

 ±
 6

L
IS

4 
T

O
cc

ip
ito

-t
em

po
ra

l, 
fu

si
fo

rm
-t

em
po

ra
l

FA
 a

nd
 R

D
C

on
ne

ct
iv

ity
FS

L
L

es
s 

FA
 a

nd
 

m
or

e 
R

D

Z
ou

 e
t a

l. 
(2

01
8)

80
 v

s.
 7

8
41

.7
C

SL
 f

or
 1

0+
 y

ea
rs

3 
T

B
ila

te
ra

l S
T

G
G

M
 a

nd
 W

M
D

if
fu

si
on

 
ku

rt
os

is
V

B
M

 (
SP

M
)

D
ec

re
as

ed
“H

yp
om

ye
lin

at
io

n”
 o

f 
W

M

Wiley Interdiscip Rev Syst Biol Med. Author manuscript; available in PMC 2021 March 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ratnanather Page 42

St
ud

ie
s

G
ro

up
A

ge
C

om
m

un
ic

at
io

n
Sc

an
ne

r
st

re
ng

th
St

ru
ct

ur
e

T
is

su
e

M
ea

su
re

A
na

ly
si

s
M

ai
n 

re
su

lt
O

th
er

 r
es

ul
ts

Q
i e

t a
l. 

(2
01

9)
35

 v
s.

 2
3

39
 ±

 
1.

8
N

R
3 

T
M

ul
tip

le
 W

M
 

st
ru

ct
ur

es
G

M
FA

T
B

SS
D

ec
re

as
ed

R
D

 in
cr

ea
se

d

M
. J

ia
ng

 e
t a

l. 
(2

01
9)

23
 v

s.
 1

8
7.

21
 ±

 
2.

67
N

o 
H

A
 u

sa
ge

3 
T

L
ef

t A
T

R
, r

ig
ht

 
C

ST
, C

C
A

D
W

ho
le

 b
ra

in
T

B
SS

In
cr

ea
se

d
R

D
 in

cr
ea

se
d 

in
 

se
ve

ra
l W

M
 tr

ac
ts

H
. W

an
g 

et
 a

l. 
(2

01
9)

52
 v

s.
 1

9
0.

9–
6

Pr
io

r 
to

 C
I

3 
T

B
ila

te
ra

l I
C

FA
R

O
I

FS
L

, 
Pi

ck
A

tla
s,

 
SP

M

L
ow

er
C

or
re

la
te

d 
w

ith
 p

os
to

p 
C

A
P 

sc
or

es

S.
 W

an
g 

et
 a

l. 
(2

01
9)

46
 v

s.
 3

3
17

.5
9 

m
o

Pr
io

r 
to

 C
I

3 
T

B
ila

te
ra

l S
L

F,
 

IF
O

F,
 I

L
F;

 r
ig

ht
 

C
ST

, P
T

R
; l

ef
t U

F

FA
W

ho
le

 b
ra

in
T

B
SS

L
ow

er
In

cr
ea

se
d 

re
st

in
g 

st
at

e 
fu

nc
tio

na
l c

on
ne

ct
iv

ity
 

be
tw

ee
n 

bi
la

te
ra

l 
au

di
to

ry
 c

or
tic

es
 a

nd
 

ri
gh

t i
ns

ul
a 

an
d 

ST
G

C
he

ng
, R

ot
h,

 
H

al
gr

en
, a

nd
 

M
ay

be
rr

y 
(2

01
9)

12
 v

s.
 1

2
33

.3
3

A
SL

1.
5 

T
IF

O
F,

 A
F,

 I
L

F,
 U

F
FA

R
O

I
D

T
IS

td
io

N
o 

di
ff

er
en

ce

D
hi

r 
et

 a
l. 

(2
02

0)
5 

D
O

 v
s.

 1
0

31
 ±

 
11

L
SL

 a
nd

 H
A

1.
5 

T
A

R
FA

W
ho

le
 b

ra
in

M
R

IC
lo

ud
 

an
d 

D
T

IS
tu

di
o

L
es

s

N
ot

e:
 S

tr
uc

tu
re

s 
ob

se
rv

ed
 to

 b
e 

af
fe

ct
ed

 b
y 

he
ar

in
g 

lo
ss

 a
re

 s
ho

w
n 

in
 F

ig
ur

es
 3

 a
nd

 4
. G

en
de

r 
in

fo
rm

at
io

n 
ca

n 
be

 o
bt

ai
ne

d 
fr

om
 o

ri
gi

na
l p

ap
er

s 
an

d 
is

 n
ot

 r
ec

or
de

d 
he

re
 d

ue
 to

 la
ck

 o
f 

co
rr

el
at

io
n.

 A
ge

 is
 

gi
ve

n 
as

 m
ea

n 
±

 S
D

 o
r 

m
ea

n.

A
bb

re
vi

at
io

ns
: A

D
, a

cq
ui

re
d 

de
af

; A
D

C
, a

pp
ar

en
t d

if
fu

si
vi

ty
 c

oe
ff

ic
ie

nt
; A

R
/O

R
, a

co
us

tic
/o

pt
ic

 r
ad

ia
tio

n;
 A

F,
 a

rc
ua

te
 f

as
ci

cu
lu

s;
 A

SL
, A

m
er

ic
an

 s
ig

n 
la

ng
ua

ge
; A

T
R

, a
nt

er
io

r 
th

al
am

ic
 r

ad
ia

tio
n;

 B
SL

, 
B

ri
tis

h 
si

gn
 la

ng
ua

ge
; C

A
P,

 c
at

eg
or

ie
s 

of
 a

ud
ito

ry
 p

er
fo

rm
an

ce
; C

C
, c

or
pu

s 
ca

llo
su

m
; C

D
, c

on
ge

ni
ta

lly
 d

ea
f;

 C
I,

 c
oc

hl
ea

r 
im

pl
an

t; 
C

SL
, C

hi
ne

se
 s

ig
n 

la
ng

ua
ge

; C
ST

, c
or

tic
os

pi
na

l t
ra

ct
; D

, d
ea

f;
 D

S,
 d

ea
f 

si
gn

in
g;

 F
A

, f
ra

ct
io

na
l a

ni
so

tr
op

y;
 F

O
F,

 f
ro

nt
o-

oc
ci

pt
al

 f
as

ci
cu

lu
s;

 F
O

T,
 f

ro
nt

o-
oc

ci
pi

ta
l t

ra
ct

; F
SL

, F
M

R
IB

 s
of

tw
ar

e 
lib

ra
ry

; G
M

, g
ra

y 
m

at
te

r;
 H

A
, h

ea
ri

ng
 a

id
; H

G
, H

es
ch

l's
 g

yr
us

; H
L

, h
ea

ri
ng

 lo
ss

; H
S,

 
he

ar
in

g 
si

gn
in

g;
 I

C
, i

nf
er

io
r 

co
lli

cu
lu

s;
 I

FG
, i

nf
er

io
r 

fr
on

ta
l g

yr
us

; I
FO

F,
 in

fe
ri

or
 f

ro
nt

o-
oc

ci
pt

al
 f

as
ci

cu
lu

s;
 I

L
F,

 in
fe

ri
or

 lo
ng

itu
di

na
l f

as
ci

cu
lu

s;
 I

nt
/E

xt
 C

ap
, i

nt
er

na
l/e

xt
er

na
l c

ap
su

le
; L

L
, l

at
er

al
 

le
m

in
sc

us
; L

SL
, l

is
te

ni
ng

 a
nd

 s
po

ke
n 

la
ng

ua
ge

; L
IS

, l
in

gu
a 

ita
lia

na
 d

ei
 s

eg
ni

; M
D

, m
ea

n 
di

ff
us

iv
ity

; M
G

N
, m

ed
ia

l g
en

ic
ul

at
e 

nu
cl

eu
s;

 M
T

G
, m

id
dl

e 
te

m
po

ra
l g

yr
us

; N
R

, n
ot

 r
ec

or
de

d;
 P

C
T,

 p
on

tin
e 

cr
os

si
ng

 tr
ac

t; 
PP

, p
la

nu
m

 p
ol

ar
e;

 P
T

R
, p

os
te

ri
or

 th
al

am
ic

 r
ad

ia
tio

n;
 R

D
, r

ad
ia

l d
if

fu
si

vi
ty

; R
O

I,
 r

eg
io

n 
of

 in
te

re
st

; S
C

C
, s

pl
en

iu
m

 o
f 

C
C

; S
O

F,
 s

up
er

io
r 

oc
ci

pi
al

 f
as

ci
cu

lu
s;

 S
L

F,
 s

up
er

io
r 

lo
ng

itu
di

na
l 

fa
sc

ic
ul

us
; S

O
N

, s
up

er
io

r 
ol

iv
ia

ry
 n

uc
le

us
; S

PM
, s

ta
tis

tic
al

 p
ar

am
et

ri
c 

m
ap

pi
ng

; S
T

G
, s

up
er

io
r 

te
m

po
ra

l g
yr

us
; T

B
, t

ra
pe

zo
id

 b
od

y;
 T

B
SS

, t
ra

ct
-b

as
ed

 s
pa

tia
l s

ta
tis

tic
s;

 U
F,

 u
nc

in
at

e 
fa

sc
ic

ul
us

; W
M

, w
hi

te
 

m
at

te
r.

Wiley Interdiscip Rev Syst Biol Med. Author manuscript; available in PMC 2021 March 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ratnanather Page 43

TABLE 3

Preclinical MRI and DTI whole brain imaging studies

Studies Size Group Age Modality Results

Lapointe, Viamonte, 
Morriss, and Manolidis 
(2006)

40 SNHL Pediatric T1 and T2 Some changes in T2 but eight had abnormalities from 
myelination delays to migrational anomalies

Trimble, Blaser, James, and 
Papsin (2007)

92 Preop CI Pediatric FLAIR 32% abnormalities in TB; some subcortical signal intensities 
discrepancies

Roche et al. (2010) 118 ANSD Pediatric MR 40% had brain abnormalities; 28% had CN deficiencies

CT 16% had cochlear dysplasia

Hong, Jurkowski, and 
Carvalho (2010)

57 Preop CI Pediatric MR 18% with white matter abnormalities (two had postop delays 
in performance), no serious CNS diseases

Chilosi et al. (2010) 80 SNHL Pediatric MR 48% with additional disabilities (cognitive, behavioral–
emotional and motor). 37 signal abnormalities—brain 
malformations (46%) and white matter abnormalities (54%)

Chang et al. (2012) 18 Preop CI Pediatric DT FA in Broca's, genu CC, auditory tract and MGN correlated 
with auditory scores after CI

Mackeith, Joy, Robinson, 
and Hajioff (2012)

158 Preop CI Pediatric 
and adults

MR Detected abnormalities (n = 27.9%, missed by CT in 6.3%) of 
which only 12.7% considered significant

CT 6.3% only noncritical abnormalities in CT

Moon et al. (2012) 177 Preop CI Pediatric MR Children with no lesions (n = 150) performed better than 
those with lesions

Proctor, Gawne-Cain, 
Eyles, Mitchell, and Batty 
(2013)

51 Preop CI Pediatric 
and adults

MR Five adults and 16 children—whole brain abnormalities; 36 
had at least one CI. Of 15 who did not have CI, eight positive 
findings in whole brain MRI

Jonas et al. (2012) 162 Preop CI Pediatric MR 30% had abnormalities mostly white matter changes related 
to pre-existing medical conditions

Z. Y. Jiang, Odiase, 
Isaacson, Roland, and Kutz 
(2014)

188 Preop CI Adult MR 9% had cochlear pathway and white matter abnormalities; in 
others, 65% had normal MRI scans

X.-Q. Xu, Wu, Hu, Su, and 
Shen (2015)

157 Preop CI Pediatric MR and CT White matter changes most common but effect on CI minimal

Huang et al. (2015) 24 Preop CI Pediatric DT Lesser FA in TB, SON, IC, MGB, AR and WMHG in 16 with 
CAP <6

Park, Chung, Kwon, and 
Lee (2018)

1 Preop CI Pediatric DT Less FA in WMHG, IFOF, UF, SLF and forceps major only 
in age <4 years

Feng et al. (2018) 37 Preop CI Pediatric MR Auditory association and cognitive brain regions which are 
unaffected by auditory deprivation provide positive outcomes

Abbreviations: ANSD, auditory neuropathy spectrum disorder; AR, acoustic radiation; CAP, category of auditory performance; CC, corpus 
callosum; CI, cochlear implant; CN, cochlear nerve; CNS, central nervous system; CT, computed tomography; DT, diffusion tensor; FA, fractional 
anisotropy; FLAIR, fluid-attenuated inversion recovery; IC, inferior colliculus; IFOF, inferior fronto-occiptal fasciculus; MGB, medial geniculate 
body; MGN, medial geniculate nucleus; MR, magnetic resonance; Preop, pre-operative; SLF, superior longitudinal fasciculus; SNHL, sensorineural 
hearing loss; SON, superior oliviary nucleus; T1/T2, MR-weighted image; TB, temporal bone; UF, uncinate fasciculus; WMHG, white matter 
Heschl's gyrus.
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