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The effect of nuts on markers of glycemic control: a systematic review
and meta-analysis of randomized controlled trials
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ABSTRACT

Background: Observational evidence suggests higher nut consump-
tion is associated with better glycemic control; however, it is unclear
if this association is causal.

Objectives: We aimed to conduct a systematic review and meta-
analysis of randomized controlled trials to examine the effect of tree
nuts and peanuts on markers of glycemic control in adults.
Methods: A systematic review and meta-analysis of randomized
controlled trials was conducted. A total of 1063 potentially eligible
articles were screened in duplicate. From these articles, 40 were
eligible for inclusion and data from these articles were extracted in
duplicate. The weighted mean difference (WMD) between the nut
intervention and control arms was determined for fasting glucose,
fasting insulin, glycated hemoglobin (HbAlc), and homeostasis
model assessment of insulin resistance (HOMA-IR) using the
DerSimonian and Laird random-effects method. For outcomes where
a limited number of studies were published, a qualitative synthesis
was presented.

Results: A total of 40 randomized controlled trials including 2832
unique participants, with a median duration of 3 mo (range: 1-12
mo), were included. Overall consumption of tree nuts or peanuts had
a favorable effect on HOMA-IR (WMD: —0.23; 95% CI. —0.40,
—0.06; I> = 51.7%) and fasting insulin (WMD: —0.40 ¢ IU/mL; 95%
CI: —0.73, —0.07 uIU/mL; P> = 49.4%). There was no significant
effect of nut consumption on fasting blood glucose (WMD: —0.52
mg/dL; 95% CI: —1.43, 0.38 mg/dL; I? = 53.4%) or HbAlc (WMD:
0.02%; 95% CI: —0.01%, 0.04%; I* = 51.0%).

Conclusions: Consumption of peanuts or tree nuts significantly de-
creased HOMA-IR and fasting insulin; there was no effect of nut
consumption on HbAlc or fasting glucose. The results suggest
that nut consumption may improve insulin sensitivity. In the
future, well-designed clinical trials are required to elucidate the
mechanisms that account for these observed effects. ~ Am J Clin
Nutr 2019;109:297-314.

Keywords: tree nuts, peanuts, glucose, insulin, HbAlc, insulin
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Introduction

Over 1 million deaths were attributable to diabetes worldwide
in 2016, an increase of 31% since 2006 (1). Premature mortality

due to diabetes has increased by 25% in the past decade and in
2016 accounted for 28.8 million y of life lost (1). This parallels
the ~4-fold increase in diabetes prevalence since 1980. The most
recent reports estimate that 422 million people worldwide are
living with diabetes (2). In addition, the WHO reported ~1.9
billion adults are overweight, including 600 million that are
obese, and thus, at heightened risk of diabetes. In the United
States, it is estimated that 30.2 million adults have diabetes, 90%
of whom have type 2 diabetes, and 7.2 million are living with
undiagnosed diabetes (3).

Some epidemiologic studies suggest that nut consumption
reduces diabetes risk and mortality from diabetes, although this
evidence remains inconclusive (4-6). A systematic review and
meta-analysis of 5 prospective cohort studies and 1 randomized
controlled trial showed a 13% reduction in type 2 diabetes risk
with consumption of 4 servings (28.4 g/serving) of nuts per week
(RR: 0.87; 95% CI: 0.81, 0.94) (4). A similar meta-analysis of
prospective cohort studies reported a 12% reduction in type 2
diabetes risk per 1 serving/d (28 g) of nuts (RR: 0.88; 95% CI:
0.84, 0.92), although upon further analyses adjusted for BMI, the
association was attenuated to nonsignificance (RR: 1.03; 95%
CI: 0.91, 1.16) (6). More recently, Aune et al. (5) showed in a
systematic review and meta-analysis of 4 studies (n = 202,751)
that per 28 g/d of peanuts and tree nuts, risk of diabetes mortality
was reduced by 39% (RR: 0.61; 95% CI: 0.43, 0.88).

Despite observational evidence to suggest higher nut con-
sumption may be protective against type 2 diabetes, it is unclear
if this association is causal. Viguiliouk et al. (7) conducted a
systematic review and meta-analysis of studies that compared
a diet including tree nuts to an isocaloric diet without tree nuts
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in individuals with type 2 diabetes. In this pooled analysis of
12 randomized controlled trials, tree nut consumption reduced
fasting glucose by 2.7 mg/dL (95% CI. —4.9, —0.4 mg/dL)
and glycated hemoglobin (HbAlc) by 0.07% (95% CI: —0.10%,
—0.03%). The current systematic review will update this analysis
and broaden the scope to include studies of individuals with and
without diabetes to increase the generalizability of the results
and inform population dietary recommendations. The aim was
to conduct a systematic review and meta-analysis of randomized
controlled trials to examine the effect of tree nuts and peanuts on
markers of glycemic control in adults.

Methods

A systematic review and meta-analysis was performed to
examine the effect of tree nut and peanut consumption on markers
of glycemic control. Peanuts were included because, despite
being a legume botanically, their consumption in the diet is more
similar to tree nuts, and as stated in the 2015-2020 Dietary
Guidelines for Americans peanuts and peanut butter along with
almonds and mixed nuts are the most commonly consumed nuts
in the United States (8). This systematic review and meta-analysis
was conducted in accordance with the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) (9).

Eligibility criteria

Randomized controlled trials that compared intake of peanuts
and/or tree nuts (almonds, brazil nuts, cashews, hazelnuts,
macadamia nuts, pecans, pine nuts, pistachios, walnuts, or a
combination of these nuts), including whole nuts, nut butters,
and nut oils, to a control group not consuming nuts were
included. Eligible trials studied adults >18 y of age and had a
minimum follow-up of 3 wk. In addition, included trials reported
>1 of the following outcome measurements: fasting glucose;
fasting insulin; B cell function from the homeostasis model of
assessment (HOMA-B); HOMA-IR; HbAlc; insulin resistance
status; 2-h glucose; 2-h insulin; measures of insulin sensitivity
(e.g., Matsuda index); fructosamine; or C-peptide. Studies were
not excluded because of subject characteristics, and no date
restrictions were applied. Only studies published in English were
eligible for inclusion.

Studies were excluded if they used a nonrandomized treatment
allocation, had an intervention period <3 wk, or lacked a control
group whereby subjects did not consume nuts. Studies where 2
different nuts were compared without a control group that did
not consume nuts were excluded. In addition, studies that tested
other dietary components or dietary patterns in addition to nuts
were excluded because the specific effect of nuts could not be
determined in these trials. Retracted articles were also excluded.

Search strategy and study selection

A systematic search was conducted using PubMed, the
Cochrane Collaboration Library, and CINAHL from the index
date of each database through 20 May, 2018. See the Supple-
mental Material for the search terms used. Three authors (KSP,
AMT, and EAJ) screened the titles and abstracts of articles
identified in the search in duplicate. The full texts of articles
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identified as potentially eligible were also reviewed in duplicate.
Disagreements were resolved by the third author.

Data extraction

Data were extracted from eligible studies in duplicate by 3
authors (KSP, AMT, and EAJ). Extracted data were entered
into a standardized spreadsheet. The following items were ex-
tracted: nut studied and dose; study design (parallel; crossover);
intervention type (supplementation + nuts provided; controlled
feeding); control group conditions; study population (healthy,
overweight, or obese, metabolic syndrome, type 2 diabetes,
prediabetes); number of subjects included in analyses; number
and percentage of male subjects; mean age of subjects; mean
BMI or body weight; length of follow-up; and funding source.
For each outcome measure, the mean (or median), variance, and
number of subjects in the treatment and control groups at follow-
up were extracted. If this was not reported, change from baseline,
variance, and number of subjects in each group was extracted.
For crossover studies, the P value from the paired analyses was
extracted. In studies where >1 dose of nuts was tested, data
for the treatment providing the greatest quantity of nuts were
extracted. Further, data for non-nut active treatment arms were
not extracted. In studies where participants were followed-up
more than once, data from the greatest time since baseline were
included. However, in studies where participants were followed
up after a period of time since the completion of an active phase,
data from the end of the active treatment phase were used.

Risk of bias

Risk of bias in the included studies was assessed using the
Cochrane Risk of Bias Tool (10). In duplicate, 3 authors (KSP,
AMT, and EAJ) assessed the included studies to determine
whether there was low, high, or unclear risk of bias based on
the methods used to generate the random sequence, conceal
allocation, and blind participants and outcome assessors, as well
as incomplete outcome data. Disagreements were resolved by the
third author.

Statistical analyses

The primary effect measure was mean difference between the
intervention group and the control group at follow-up. Where
this was not reported, the difference in change from baseline
between the groups was used. The mean and SD were extracted
from articles; where data were reported in a different format,
standard calculations were done to derive the mean and SD (10,
11). For trials with >1 control group, the groups were combined
by applying a weighted average to enable a single pairwise
comparison. Similarly, for trials that included >1 intervention
arm that had the same type and dose of nut but provided the nuts at
different times of the day (e.g., breakfast, lunch, dinner, snacks),
the intervention groups were combined. Only 1 of the included
studies (12) examined the effect of consumption timing, and there
was no difference in the glycemic control outcomes by time of nut
consumption and thus the nut treatment arms were combined. For
trials that had multiple arms comparing different nuts, the data
were pooled for the primary analyses; however, for the subgroup
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FIGURE 1 Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram of included studies.

analysis by nut type, data from the different nut treatments were
included separately.

Paired analyses were conducted for all crossover studies (13).
No study reported the correlation between outcome measures in
the intervention and control treatment arms so the correlation was
derived from the variance of the within-subject difference, where
possible, or a conservative estimate of 0.5 was used (13).

For each outcome, the values from each trial were pooled
and analyzed using the DerSimonian and Laird random-effects
method because of the heterogeneity present. The I statistic was
used to explore the percentage of variability due to heterogeneity
between studies rather than sampling error. To explore sources

of heterogeneity, subgroup analyses were performed according
to type of nut studied, diabetes status of the subjects, whether an
isocaloric control was provided, and the weight status of subjects
during the intervention period (neutral: weight stable; positive:
weight gain; negative: weight loss). To determine whether
inclusion of any one trial changed the main result, an analysis
was conducted whereby each study was individually removed
for recalculation of the weighted mean difference (WMD). To
determine whether a dose—response relation existed, the dose
of nuts provided was plotted against the mean difference for
each outcome using meta-regression. The risk of publication
bias was assessed by examination of funnel plots of the WMD
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against the SE of the WMD. Results are presented as WMD and
95% CI unless otherwise stated. Data analyses were performed
using STATA version 13.1 (StataCorp). P values of <0.05 were
considered statistically significant.

Systematic search

The initial database search returned 1301 articles and 1 article
was identified by a hand search; after duplicates were removed
1063 articles remained. Screening based on the title and abstract
yielded 86 articles for full-text review. After full-text review,
40 articles remained and were included in the qualitative and
quantitative synthesis (Figure 1). The characteristics of the
included studies are summarized in Table 1.

The trials included 2832 unique participants, had a median
duration of 3 mo (range: 1-12 mo), and the dose of nuts tested
varied from 20 to 113 g/d (median: 52 g/d). The included
randomized controlled trials studied almonds (n = 11), cashews
(n = 2), hazelnuts (n = 1), mixed nuts (n = 3), peanuts (n = 4),
pecans (n = 1), pistachios (n = 7), walnuts (n = 12), and nut
oil (n = 1). Nine studies used a controlled feeding intervention,
and 31 studies, contributing 33 comparisons, had participants
supplement their diets with nuts. Thirty-one studies received total
or partial funding from industry, 4 studies did not disclose a
funding source, and 5 studies were funded by a university or
government department.

The risk of bias assessment for the included randomized
controlled trials is summarized in Supplemental Table 1. The
included trials had low (n = 18) or unclear (n = 22) risk of
bias based on the methods used to generate the randomization
sequence. Thirty-five studies had unclear risk of bias, and 5
studies had low risk of bias due to allocation concealment. With
the exception of 1 study, all studies had a high risk of performance
bias. There was unclear risk of detection bias in 34 studies. Risk
of attrition bias was low in 33 studies, unclear in 5 studies,
and high in 2 studies. Examination of funnel plots revealed no
evidence of publication bias for fasting glucose, although for
HbAlc, insulin, and HOMA-IR there was some indication of
publication bias (Supplemental Figure 1).

Results

Fasting glucose

A total of 39 randomized controlled trials, including 41
comparisons, measured fasting glucose. Overall, there was no
effect of nut consumption on fasting glucose (WMD: —0.52
mg/dL; 95% CI: —1.43,0.38 mg/dL; P =53.4%)—see Figure 2.
Sensitivity analysis showed that this result remained after
individual removal of each study. Subgroup analysis by type
of nut studied revealed similar results for almonds, cashews,
peanuts, and walnuts, although a significant reduction in fasting
glucose was observed with pistachio consumption compared
with the control treatment (WMD: —5.18 mg/dL; 95% CI:
—8.76, —1.60 mg/dL,; P = 67%)—see Supplemental Table 2.
Subgroup analyses by diabetes status of the sample, provision
of an isocaloric control treatment, and the weight status of the
subjects during the study showed no deviation from the main
result. No association was observed between the mean difference
in fasting glucose and nut dose (data not shown).

HbAlc

There were 22 studies, including 24 comparisons, that
measured HbAlc. There was no effect of nut consumption on
HbAlc (WMD: 0.02%; 95% CI: —0.01%, 0.04%; I* = 51.0%),
see Figure 3. Systematic removal of each study showed that
no one study changed the main effect. Subgroup analyses by
nut type, provision of an isocaloric control, and the weight
status of the participants during the study showed similar
results—see Supplemental Table 3. However, in studies of
healthy individuals, an increase in HbA1c was observed with nut
consumption compared to the control treatment (WMD: 0.03%;
95% CI: 0.01%, 0.06%); in subjects with prediabetes or type
2 diabetes there was no significant effect of nuts on HbAlc.
Further subgroup analyses for the duration of the treatment
period showed that in studies that had a duration of <3 mo
(n = 14), HbAlc increased with nut consumption compared with
the control treatment (WMD: 0.05%; 95% CI: 0.03%, 0.08%);
however, for studies with a duration >3 mo (n = 10) there
was no difference between the treatments (WMD: —0.01%; 95%
CL: —0.04%, 0.03%)—see Supplemental Table 3. In healthy
individuals, HbAlc was only increased after nut consumption in
studies with a duration <3 mo (WMD: 0.06%; 95% CI: 0.04%,
0.08%); in studies that had a treatment period >3 mo there was
no difference between the treatments (WMD: 0.001%; 95% CI:
—0.01%, 0.01%). In studies that included subjects with type 2
diabetes, subgroup analyses by the duration of the study (>3 or
<3 mo) showed that, regardless of the length of the study, there
was no effect of nut consumption on HbAlc (data not shown).
Meta-regression showed no significant association between nut
dose and mean difference in HbAlc (data not shown).

HOMA-IR

Nineteen studies measured HOMA-IR and overall the treat-
ment effect favored nut consumption (WMD: —0.23; 95% CI:
—0.40, —0.06; > = 51.7%)—see Figure 4. Exclusion of each
study from the analysis showed that no individual study changed
the main result. Subgroup analyses by nut type showed no effect
of any individual nut on HOMA-IR—see Supplemental Table 4.
In the 14 studies that used an isocaloric control treatment, there
was a significant reduction in HOMA-IR with nut consumption
compared to the control treatment (—0.36; 95% CI: —0.57,
—0.15; I = 42.8%). Subgroup analysis by diabetes status of the
sample showed that in the 2 studies that included individuals with
prediabetes, there was a significant reduction in HOMA-IR with
nut consumption (—1.14; 95% CI: —2.0, —0.28; P = 527%).
There was no association between nut dose and mean difference
in HOMA-IR (data not shown).

Fasting insulin

A total of 28 studies, including 29 comparisons, measured
fasting insulin. Overall, there was a significant reduction in
fasting insulin with nut consumption (WMD: —0.40 pIU/mL;
95% CI: —0.73, —0.07 uIU/mL; I = 49.4%)—see Figure 5.
Removal of each study individually showed no deviation from the
main result. Subgroup analysis by nut type showed that no one nut
could account for this effect—see Supplemental Table 5. In the
23 trials that used an isocaloric control treatment, the treatment
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Study Nut Population  n
Abazarfard 2014 (14) Almonds Non diabetic 100
Agebratt 2016 (27) Mixed Non diabetic 30
Bamberger 2017 (42) Walnuts Non diabetic 204
Barbour 2015 (30) Peanuts Non diabetic 61
Casas- Agustench 2011 (28) Mixed Non diabetic 50
Chen 2017 (15) Almonds T2DM 33
Cohen 2011 (16) Almonds T2DM 13
Damasceno 2011 (17) Almonds/Walnuts ~ Non diabetic 18
Damavandi 2013 (26) Hazelnuts T2DM 48
Gulati 2014 (35) Pistachios Non diabetic 68
Hernandez- Alonso 2014 (36) Pistachios Prediabetes 54
Jenkins 2008 (18) Almonds Non diabetic 27
Johnston 2013 (31) Peanuts Non diabetic 44
Kasliwal 2015 (37) Pistachios Non diabetic 42
Katz 2012 (43) Walnuts Non diabetic 46
Lee 2014 (29) Mixed Non diabetic 60
Li 2011 (19) Almonds T2DM 20
Li 2010 (38) Pistachios Non diabetic 52
Lovejoy 2002 - High fat (20) Almonds T2DM 30
Lovejoy 2002 - Low fat (20) Almonds T2DM 30
Ma 2010 (44) Walnuts T2DM 24
McKay 2018 (34) Pecans Non diabetic 26
Mohan 2018 (24) Cashews T2DM 269
Moreira Alves 2014 (32) Peanuts Non diabetic 65

Mukuddem-Petersen 2007 (25) Cashews/Walnuts  Non diabetic 64

Mullner 2014 (52) Peanuts T2DM 92
Njike 2015 - Calorie adjusted (45) Walnuts Non diabetic 56
Njike 2015 -Ad libitum (45) Walnuts Non diabetic 56
Parham 2014 (39) Pistachios T2DM 44
Rock 2016 (46) Walnuts Non diabetic 245
Sabate 2003 (21) Almonds Non diabetic 25
Sauder 2015 (40) Pistachios T2DM 30
Tan 2013 (12) Almonds Non diabetic 137
Tapsell 2017 (47) Walnuts Non diabetic 101
Tapsell 2009 (48) Walnuts T2DM 35
Wang 2012 (41) Pistachios Non diabetic 59
Wien 2010 (22) Almonds Prediabetes 65
Wien 2003 (23) Almonds Non diabetic 65
Wien 2014 (33) Peanuts T2DM 60
Wu 2010 (50) Walnuts Non diabetic 189
Wu 2014 (51) Walnuts Non diabetic 40

Overall (I-squared = 53.4%, p = 0.000)

NOTE: Weights are from random effects analysis

%
ES (95% Cl) Weight

-2.92 (-4.76, -1.08) 5.18

I~ 1.08 (-2.08, 4.24) 3.65
> 1.10 (-0.10, 2.30) 5.91
3 0.00 (-2.51, 2.51) 4.36
> 0.36 (-0.86, 1.58) 5.88
> 0.70 (-1.83, 3.23) 4.35
p—— 0.00 (-31.55, 31.55)  0.08

-411(-8.31,009) 272
f— -16.61 (42.64,9.42) 0.12

-3.90 (-7.66, -0.14) 3.08
-11.89 (-18.97, -4.81) 1.30

o 2.50 (-0.05, 5.05) 4.32
- -5.40 (-16.56,5.76)  0.60
o -0.80(-5.36,3.76)  2.46
e 1.30 (-2.13, 4.73) 3.38
- -0.60(-4.36,3.16)  3.08

-5.40 (-10.08, -0.72)  2.38
-5.20 (-11.72,1.32)  1.49
— -10.60 (-27.66, 6.46) 0.27

—— 11.30 (-5.76,28.36)  0.27
—— 7.10(-552,19.72)  0.48
- 150 (-6.07,3.07)  2.46
o— 3.28(-7.27,13.83)  0.66
- 0.74 (-3.73,5.21) 2.52
- 8.33(3.78,12.88) 247
-8.13(-26.35,10.08) 0.24

! 142 (-4.40,1.56)  3.84
> 1.10 (-1.88, 4.08) 3.83

-16.00 (-25.53, -6.47) 0.79
0.53 (-2.36, 3.42) 3.94
0.20 (-2.54, 2.94) 4.10
0.00 (-3.53, 3.53) 3.29
- 077 (-4.87,3.33) 279
0.00 (-1.48, 1.48) 561
f————————  23.40(6.01,52.81) 0.09
-6.66 (-13.66,0.34)  1.33
- 0.00 (-6.47, 6.47) 1.50
—— 1.00 (-29.49, 31.49)  0.09
o 5094 (-9.73,21.61)  0.32
- 0.72 (-4.83, 6.27) 1.89
2.00(-597,1.97)  2.90
-0.52(-143,0.38)  100.00

¥ v Y

g

P LflAL+JL+A;° J|x||4{+ALLl ++)>il_.AA o

I

I

T 1711 1T T T T T
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WMD Fasting Glucose (mg/dL)

FIGURE 2 Random-effects meta-analysis of mean difference in fasting glucose with nut consumption compared to control treatment. DerSimonian and
Laird random-effects method used for data analysis. Data expressed as WMD (95% CI). Weights are from random-effects analysis. ES, effect size; T2DM,

type 2 diabetes; WMD, weighted mean difference.

effect favored nut consumption (WMD: —0.65 pIU/mL; 95%
CI: —1.07, —0.24 pIU/mL; I* = 49.4%). In the 2 studies that
included subjects with prediabetes, there was a reduction in
fasting insulin (WMD: —3.86 pIU/mL; 95% CI: —5.72, —2.0

nIU/mL), but no effect was observed in healthy subjects or those
with type 2 diabetes. Meta-regression showed no association
between nut dose and mean difference in fasting insulin (data not
shown).
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%

Study Nut Population  n ES (95% CI) Weight
Agebratt 2016 (27) Mixed Non diabetic 30 * -0.10 (-1.85, 1.65) 0.02
Bamberger 2017 (42) Walnuts  Non diabetic 204 4 0.05 (0.02, 0.08) 14.02
Chen 2017 (15) Almonds T2DM 33 —— -0.06 (-0.30,0.18) 1.23
Cohen 2011 (16) Almonds T2DM 13 —_—— 0.20 (-0.42,0.82) 0.20
Gulati 2014 (35) Pistachios Non diabetic 68 -+ 0.00 (-0.14,0.14)  3.10
Hernandez- Alonso 2014 (36) Pistachios Prediabetes 54 L -0.06 (-0.14, 0.02) 7.34
Johnston 2013 (31) Peanuts Non diabetic 44 o 0.07 (0.03,0.11)  12.93
Lee 2014 (29) Mixed Non diabetic 60 - 0.08 (-0.04,0.20) 4.34
Lovejoy 2002 - High fat (20) Almonds T2DM 30 —_— -0.20 (-0.79,0.39) 0.22
Lovejoy 2002 - Low fat (20) Almonds T2DM 30 —_— 0.30 (-0.29, 0.89) 0.22
Ma 2010 (44) Walnuts T2DM 24 - 0.00(-0.13,0.13) 3.67
Mohan 2018 (24) Cashews T2DM 269 - 0.10(-0.12,0.32) 1.46
Muliner 2014 (52) Peanuts T2DM 92 —_—— -0.11 (-0.53, 0.31) 0.42
Njike 2015 - Calorie adjusted (45) Walnuts  Non diabetic 56 4} -0.01 (-0.05, 0.03) 12.41
Njike 2015 -Ad libitum (45) Walnuts  Non diabetic 56 > 0.06 (-0.00, 0.12) 8.88
Parham 2014 (39) Pistachios T2DM 44 —_—— -0.40 (-0.64, -0.16) 1.25
Sauder 2015 (40) Pistachios T2DM 30 = -0.10 (-0.23, 0.03) 3.48
Tapsell 2017 (47) Walnuts  Non diabetic 101 * 0.00 (-0.01,0.01) 17.04
Tapsell 2004 (49) Walnuts T2DM 58 —_— 0.03 (-0.45,0.51) 0.33
Tapsell 2009 (48) Walnuts T2DM 35 —_— 0.40 (-0.59, 1.39) 0.08
Wien 2010 (22) Almonds Prediabetes 65 —— 0.10(-0.15,0.35) 1.15
Wien 2014 (33) Peanuts T2DM 60 —1— 0.18 (-0.22,0.58) 0.48
Wu 2010 (50) Walnuts  Non diabetic 189 -+ -0.01 (-0.18,0.16) 2.20
Wu 2014 (51) Walnuts  Non diabetic 40 - 0.08 (-0.05,0.21) 3.55
Overall (I-squared = 51.0%, p = 0.002) 0.02 (-0.01,0.04) 100.00
NOTE: Weights are from random effects analysis

2 a0 1 2

WMD HbA1c (%)

FIGURE 3 Random effects meta-analysis of mean difference in HbAlc with nut consumption compared to control treatment. DerSimonian and Laird
random-effects method used for data analysis. Data expressed as WMD (95% CI). Weights are from random-effects analysis. ES, effect size; HbAlc, glycated

hemoglobin; T2DM, type 2 diabetes; WMD), weighted mean difference.

Endpoints included in the qualitative synthesis only

Only a small number of studies measured outcomes related to
insulin production and HOMA-S cell function (n = 7), glucose
response after an oral-glucose-tolerance test (OGTT) (n = 5),
insulin response after an OGTT (n = 2), insulin sensitivity
(n = 3), and short-term glucose control (n = 2). Because a limited
number of trials measured these endpoints and the measurements
used were heterogeneous, a meta-analysis was not performed. A
qualitative synthesis of these studies is presented in Table 2.

Jenkins et al. (18) measured C-peptide, 24-h C-peptide output,
and creatinine-corrected 24-h C-peptide output, and observed
lower C-peptide output after creatinine correction with almond
consumption compared with the control treatment. Chen et al.
(15) also measured C-peptide and found no effect of almond
consumption on C-peptide compared with the control treatment.
Five studies measured HOMA-$ cell function (22, 30, 34, 36, 46)
and 3 of these found no difference between the nut and control
treatments (30, 36, 46). Wien et al. (22) and McKay et al. (34)
observed a reduction in HOMA-B cell function with almond
and pecan consumption, respectively, compared with the control
treatments. Five studies measured 2-h glucose concentrations
after a 75-g OGTT and no difference was observed between the

nut and control treatments in 4 of these studies (25, 28, 40,
41). Lovejoy et al. (20) showed that 2-h glucose was lower after
the low-fat control treatment compared with the low-fat almond
treatment and the high-fat control treatment. Two studies showed
no difference in 2-h insulin concentrations with nut consumption
(20, 40). Similarly, 3 studies reported there was no effect of
nuts on measures of insulin sensitivity (30, 40, 46). Two studies
measured fructosamine, a short-term measure of glucose control,
and 1 study showed a reduction with pistachio consumption in
individuals with type 2 diabetes (40). Mukuddem-Petersen et al.
(25) showed no change in fructosamine with walnut or cashew
consumption.

Discussion

In this systematic review and meta-analysis of 40 randomized
controlled trials, including 2832 participants and a median
dose of 52 g/d (range: 20-113 g/d) of peanuts or tree nuts,
a significant decrease in HOMA-IR and fasting insulin was
observed, whereas we found no effect on HbAlc and fasting
glucose. Meta-regression showed that the dose of nuts provided
was not associated with the mean difference for any outcome
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%

Study Nut Population n ES (95% ClI) Weight
T

Barbour 2015 (30) Peanuts  Non diabetic 61 * 0.00 (-0.16, 0.16) 12.01
Casas- Agustench 2011 (28) Mixed Non diabetic 50 -0-: -0.72 (-1.30,-0.14)  5.30
Chen 2017 (15) Almonds ~ T2DM 33 —0:— -0.26 (-2.68, 2.16) 0.48
Hernandez- Alonso 2014 (36)  Pistachios Prediabetes 54 —— : -1.66 (-2.65, -0.67) 2.43
Jenkins 2008 (18) Almonds  Non diabetic 27 * 0.00 (-0.37, 0.37) 8.18
Katz 2012 (43) Walnuts ~ Non diabetic 46 —;— -0.20 (-1.83, 1.43) 1.01
Lee 2014 (29) Mixed Non diabetic 60 4:0- -0.01 (-0.51, 0.49) 6.21
Li 2011 (19) Almonds  T2DM 20 - -0.60 (-1.01,-0.19)  7.60
Ma 2010 (44) Walnuts ~ T2DM 24 rs 0.40 (-0.08, 0.88) 6.56
McKay 2018 (34) Pecans Non diabetic 26 -Olr -0.51(-0.96,-0.06) 6.94
Mohan 2018 (24) Cashews T2DM 269 *:0— 0.33 (-0.53, 1.19) 3.05
Moreira Alves 2014 (32) Peanuts Non diabetic 65 -+- -0.18 (-0.94, 0.58) 3.65
Mullner 2014 (52) Peanuts  T2DM 92 — -0.96 (-2.86, 0.95) 0.75
Parham 2014 (39) Pistachios T2DM 44 0: -0.25 (-0.51, 0.01) 10.32
Rock 2016 (46) Walnuts ~ Non diabetic 245 -+ 0.00 (-0.68, 0.68) 4.26
Sauder 2015 (40) Pistachios T2DM 30 4 -0.10 (-0.38, 0.18) 9.83
Wien 2010 (22) Almonds  Prediabetes 65 -0-: -0.77 (-1.45,-0.09) 4.29
Wien 2003 (23) Almonds ~ Non diabetic 65 —0—:*— -4.00 (-9.54, 1.54) 0.09
Wu 2014 (51) Walnuts ~ Non diabetic 40 E -0.29 (-0.73, 0.15) 7.05
Overall (l-squared =51.7%, p = 0.005) ¢ -0.23 (-0.40, -0.06)  100.00
NOTE: Weights are from random effects analysis E

I UL I I

10 8 6 -4

I T T I
2 0 2 4 6 8 10

WMD HOMA-IR

FIGURE 4 Random effects meta-analysis of mean difference in HOMA-IR with nut consumption compared to control treatment. DerSimonian and Laird
random-effects method used for data analysis. Data expressed as WMD (95% CI). Weights are from random-effects analysis. ES, effect size; T2DM, type 2

diabetes; WMD, weighted mean difference.

measure. Subgroup analyses by nut type revealed no deviation
from the main result for HbAlc, HOMA-IR, or fasting insulin.
For fasting glucose, the type of nut provided modified the main
effect such that pistachios reduced fasting glucose, whereas
almonds, cashews, peanuts, walnuts, and mixed nuts had no
effect. The main result for all outcomes was not modified by
the weight status of participants during the study; however, in
studies that provided an isocaloric control treatment, the effect
favored the nut group for HOMA-IR and fasting insulin, whereas
for fasting glucose and HbA1c the effect did not differ based on
the caloric status of the control treatment. In studies that included
individuals with prediabetes, the treatment effect favored the nut
group for HOMA-IR and fasting insulin, whereas no differential
effect by diabetes status was observed for fasting glucose.

A recent review suggested the substitution of unsaturated
fatty acids for SFAs and carbohydrates may be responsible for
the association between nut consumption and improvements
in insulin sensitivity (53). The authors suggested increased «-
linolenic acid, found in some tree nuts including walnuts (~9
g/100 g) and pistachios (~0.3 g/100 g), modifies microRNAs
that may play a role in modulating insulin sensitivity. o-Linolenic
acid can improve insulin action through induction of insulin-like
growth factor 1. In a recent study, supplementation with 57 g
pistachios/d for 4 mo modified circulating microRNAs that were

correlated with favorable changes in HOMA-IR, insulin, and
fasting glucose in participants with prediabetes (54). Ribeiro et
al. (55) conducted a systematic review of pistachio consumption
and glucose metabolism in individuals with prediabetes and type
2 diabetes, and the authors suggested that the unique distribution
of MUFAs, PUFAs, polyphenols, and carotenoids present in
pistachios may modulate specific microRNA, and increase
insulin sensitivity through the phosphoinositide 3-kinase—protein
kinase B/AKT signaling pathway. Phosphoinositide 3-kinase
is activated after insulin binds to its receptor and, in turn,
phosphorylates AKT that stimulates the translocation of glucose
transporter 4 and glucose uptake.

The fatty acid profile and bioactive components in nuts may
also influence fasting blood glucose through improvement in in-
sulin sensitivity. However, the direction of the relation is unclear.
Nuts may primarily act by improving insulin sensitivity, thus
promoting increased glucose uptake and lowering fasting glucose
concentrations. Conversely, nut consumption also affects fasting
glucose through non-insulin-mediated mechanisms. Evidence
suggests that nuts lower postprandial glucose excursions owing to
delayed gastric emptying, which may also explain improvements
in fasting glucose particularly when nuts are consumed as part of
a meal (56, 57). One previous systematic review (7) and several
narrative reviews (58—60) have suggested that nut consumption
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%
Study Nut Population n ES (95% CI) Weight
Agebratt 2016 (27) Mixed Non diabetic 30 1|> -0.03 (-0.33,0.28) 16.20
Barbour 2015 (30) Peanuts Non diabetic 61 4|> -0.10 (-0.34,0.14) 17.11
Casas- Agustench 2011 (28) Mixed Non diabetic 50 -0-: -2.60 (-4.67,-0.53) 2.23
Chen 2017 (15) Almonds T2DM 33 e -0.50 (-4.04,3.04) 0.83
Cohen 2011 (16) Almonds T2DM 13 -0.10 (-14.14, 13.94) 0.06
Gulati 2014 (35) Pistachios Non diabetic 68 -4- -0.60 (-2.41,1.21) 2.83
Hernandez- Alonso 2014 (36) Pistachios Prediabetes 54 —— : -4.55(-7.26,-1.84) 1.37
Jenkins 2008 (18) Almonds Non diabetic 27 1|> -0.12 (-0.27,0.04) 18.03
Johnston 2013 (31) Peanuts Non diabetic 44 —:—0— 5.00 (-4.08, 14.08) 0.13
Katz 2012 (43) Walnuts  Non diabetic 46 —:-0— 1.40 (-4.23, 7.03) 0.34
Lee 2014 (29) Mixed Non diabetic 60 -1|- -0.33(-2.17,1.51) 2.73
Li 2011 (19) Almonds T2DM 20 I -1.10 (-2.01,-0.19) 7.68
Li 2010 (38) Pistachios Non diabetic 52 -7.50 (-15.39, 0.39) 0.17
Lovejoy 2002 - High fat (20) Almonds T2DM 30 -0.09 (-2.88,2.71) 1.29
Lovejoy 2002 - Low fat (20) Almonds T2DM 30 -0.60 (-3.40,2.19) 1.29
Ma 2010 (44) Walnuts T2DM 24 7.00(1.10,12.90) 0.31
McKay 2018 (34) Pecans  Non diabetic 26 -2.00 (-3.63,-0.37) 3.37
Mohan 2018 (24) Cashews T2DM 269 0.00 (-1.71, 1.71) 3.10
Moreira Alves 2014 (32) Peanuts Non diabetic 65 , -0.88 (-3.99,2.22) 1.07
Mullner 2014 (52) Peanuts T2DM 92 * : -5.00 (-20.61, 10.61) 0.04
Rock 2016 (46) Walnuts Non diabetic 245 -:0— 1.22 (-1.44, 3.88) 1.42
Sauder 2015 (40) Pistachios T2DM 30 4 -0.32 (-1.14,0.51)  8.67
Tan 2013 (12) Almonds Non diabetic 137 :-0— 2.73 (0.01, 5.44) 1.36
Tapsell 2009 (48) Walnuts T2DM 35 ':—0— 3.60 (-1.04, 8.24) 0.49
Wang 2012 (41) Pistachios Non diabetic 59 —0—:— -3.98 (-12.40,4.44) 0.15
Wien 2010 (22) Almonds Prediabetes 65 -0-: -3.25 (-5.80,-0.70) 1.54
Wien 2003 (23) Almonds Non diabetic 65 * I -11.00 (-24.86, 2.86) 0.06
Wu 2010 (50) Walnuts  Non diabetic 189 -tl'- -0.07 (-2.04,1.90) 2.44
Wu 2014 (51) Walnuts  Non diabetic 40 -OL -1.08 (-2.62, 0.46) 3.69
Overall (I-squared = 49.4%, p = 0.002) -0.40 (-0.73,-0.07) 100.00
NOTE: Weights are from random effects analysis :
L T 1T 11
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FIGURE 5 Random effects meta-analysis of mean difference in fasting insulin with nut consumption compared to control treatment. DerSimonian and
Laird random-effects method used for data analysis. Data expressed as WMD (95% CI). Weights are from random-effects analysis. ES, effect size; T2DM,

type 2 diabetes; WMD, weighted mean difference.

has a favorable effect on fasting glucose, yet we did not see
improvements in fasting glucose with overall nut consumption.
The previous meta-analysis by Viguiliouk et al. (7) only included
individuals with type 2 diabetes. We did not exclude studies based
on the population recruited to increase the generalizability of
our meta-analysis; however, this may have lessened the overall

effect, although subgroup analysis showed this result remained in
healthy individuals and those with prediabetes or type 2 diabetes.
It is likely that the discordant results observed between this
updated meta-analysis and Viguiliouk et al.’s meta-analysis are
due to the inclusion of studies published since completion of their
article search in April 2014.
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Study Outcome measured Nut Population Result Effect
Insulin production and
B cell function
Chen et al. (15) C-peptide Almonds T2DM prescribed oral No difference by treatment -
hypoglycemic agents
Jenkins et al. (18) C-peptide Almonds Men and postmenopausal No difference by treatment <
women with
hypercholesterolemia
Jenkins et al. (18) 24-h C-peptide output Almonds Men and postmenopausal No difference by treatment <
women with
hypercholesterolemia
Jenkins et al. (18) Creatinine-corrected Almonds Men and postmenopausal Lower after almond treatments vs. 1
24-h C-peptide output women with control
hypercholesterolemia
Barbour et al. (30) HOMA-B cell function Peanuts (high oleic) Healthy overweight males and No between-treatment effect -
postmenopausal women
Hernandez- Alonso HOMA-B cell function Pistachios Prediabetes No between-treatment effect -
et al. (36)
McKay et al. (34) HOMA-B cell function Pecans Metabolically at-risk men and Between-group difference in mean 1
postmenopausal women change of —21.34 favoring pecan
group
Rock et al. (46) HOMA-B cell function Walnuts Overweight and obese men and ~ No between-group effect <
women without T2DM
Wien et al. (22) HOMA-B cell function Almonds Prediabetes Almond group: —13.2; control group: 1
+22.3; P < 0.05
Glucose concentrations after
75-g OGTT
Casas-Agustench 2-h glucose 30 g/d (15 g walnuts, 7.5 >3 ATP III criteria for MetS No between-group effect <
et al. (28) galmonds, 7.5 g
hazelnuts)
Lovejoy et al. 2-h glucose Almonds T2DM No main effect for fat source (almond <
(20)—high-fat diet vs. oil) or fat level (high or low).
Significant interaction (fat source x
fat level), 2-h glucose lower after the
low-fat control treatment vs. low-fat
almond and high-fat control diets
Lovejoy et al. 2-h glucose Almonds T2DM As above 1
(20)—low-fat diet
Mukuddem-Petersen 2-h glucose Cashews Walnuts MetS No between-group effect <
et al. (25)
Wang et al. (41) 2-h glucose Pistachios MetS £+ T2DM No between-group effect “«
Sauder et al. (40) Glucose AUC Pistachios Men and postmenopausal No between-treatment effect <
women with well-controlled
T2DM
Insulin concentrations after
75-g OGTT
Lovejoy et al. 2-h insulin Almonds T2DM No main effect for fat source (almond <
(20)—high-fat diet vs. oil), fat level (high or low), or
interaction (fat source x fat level)
Lovejoy et al. 2-h insulin Almonds T2DM As above
(20)—low-fat diet
Sauder et al. (40) Insulin AUC Pistachios Men and postmenopausal No between-treatment effect pas
women with well-controlled
T2DM
Insulin sensitivity
Barbour et al. (30) HOMA-IS Peanuts (high oleic) Healthy overweight males and No between-treatment effect -
postmenopausal women
Sauder et al. (40) Matsuda Index Pistachios Men and postmenopausal No between-treatment effect -
women with well-controlled
T2DM
Rock et al. (46) Insulin resistance status Walnuts Overweight and obese men and ~ No between-group effect <
women without T2DM
Short-term glucose control
Mukuddem-Petersen Fructosamine Cashews Walnuts MetS No between-group effect <
et al. (25)
Sauder et al. (40) Fructosamine Pistachios Men and postmenopausal Pistachio: 228.5 pumol/L vs. control: 1

women with well-controlled
T2DM

233.5 pmol/L; P = 0.034

!, no change; |, reduction or lower; 1, increase or higher; ATP III, Adult Treatment Panel III; HOMA-IS, homeostasis model of assessment insulin sensitivity; HOMA-8, 8
cell function from the homeostasis model of assessment; MetS, metabolic syndrome; OGTT, oral-glucose-tolerance test; T2DM, type 2 diabetes.
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Moderate heterogeneity was observed between studies for all
outcomes; the /% value of the main effects ranged from 49.4%
to 53.4%. Subgroup analyses were conducted to explore this
between-study variability. Comparisons by nut type revealed
that pistachios had the greatest effect on lowering fasting
glucose, but all nut varieties appeared to affect other outcomes
similarly. Although this review included peanut and tree nut
studies with diabetes-related outcomes, almonds, pistachios, and
walnuts were the most-studied nuts whereas other nuts were
not well-represented. The diabetes status of the subjects did
not modify the effect of nuts on fasting glucose, but 2 studies
that included participants with prediabetes observed improved
HOMA-IR and fasting insulin with nut consumption. Overall,
there was not a consistent subpopulation that benefited more
from nut consumption. An earlier review by Viguiliouk et al. (7)
included only studies that used an isocaloric control, whereas
the present review did not exclude studies based on the control
used. Therefore, we examined whether the presence or absence
of an isocaloric control affected the glycemic response to nut
consumption. The caloric status of the control group did not result
in a different response to nut consumption for fasting glucose and
HbAlc; however, for HOMA-IR and fasting insulin a significant
improvement was only observed in the studies that provided an
isocaloric control. This may be due to the diverse controls used.
For example, Agebratt et al. (27) used an isocaloric control of
fresh fruit whereas Hernandez-Alonso et al. (36) used a control
that was mainly olive oil.

There has been concern about weight gain with regular nut
consumption due to the energy density of nuts, although some
studies have shown nut consumption to be beneficial for weight
loss (14, 61). Weight gain may attenuate any beneficial effects of
nuts on glycemic outcomes. To understand if weight status during
the intervention played a role in the efficacy of nut consumption
on glycemic control, we completed subgroup analyses by the
weight status of the participants during the intervention in the
included trials and observed no difference in the effect size
for any of the main outcomes. Trials that reported weight gain
(positive change) and weight loss (negative change) did not differ
with respect to the effect of nuts on fasting glucose, HbAlc,
fasting insulin, and HOMA-IR. This suggests that inclusion of
nuts in the absence of weight loss has the same effect on glycemic
control as nut consumption with weight loss, but further studies
are needed to confirm this finding.

A limited number of trials included other endpoints related to
glycemic control; therefore, these outcomes were not included
in the meta-analysis. However, almond consumption reportedly
improved C-peptide output and 2-h glucose concentrations in 2
separate studies and pistachio treatment reduced fructosamine in
1 other study. C-peptide is a component of the protein, proinsulin,
and is formed after cleavage of insulin from proinsulin, therefore,
it serves as a marker of insulin production. Increased insulin
sensitivity and fasting insulin reported in this meta-analysis
suggest that glucose clearance may also be improved with nut
consumption. C-peptide and 2-h glucose amelioration reflects
increased insulin sensitivity and quicker clearance of glucose,
respectively. The majority of other endpoints were not affected
by nut consumption.

There are several strengths and limitations to this systematic
review and meta-analysis. This review includes the most current
data from randomized controlled trials examining the effect of

peanut and tree nut consumption on glycemic outcomes and
because only randomized controlled trials were included, this
meta-analysis provides the highest-quality evidence. Another
strength of this review is that the systematic review and data
extraction were completed in duplicate. In addition, trials were
not excluded based on the population studied and therefore the
results are generalizable. Examination of funnel plots revealed
minimal evidence of publication bias. This meta-analysis is
limited by the moderate to large heterogeneity observed among
studies. The included studies had a median duration of 3 mo and
therefore the long-term effect of nut consumption on glycemic
outcomes remains unclear. In addition, owing to the small number
of trials included, subgroup analyses were likely underpowered
and the findings should be investigated further. An aggregate
meta-analysis was conducted; thus, the subgroup analyses are
prone to ecological bias. In addition, in many of the studies,
compliance to the intervention was not reported or was self-
reported and thus, a subgroup analysis by treatment compliance
could not be reliably conducted. The risk of bias was rated
as high or unclear in many domains of assessment for several
of the included studies. Finally, none of the included studies
investigated the effect of nut butters on markers of glycemic
control, and only 1 study examined nut oil. Inclusion of the
study that tested the effect of nut oil on fasting glucose, HbAlc,
HOMA-IR, and fasting insulin did not change the main effect for
any of these comparisons.

In conclusion, this systematic review and meta-analysis of
40 randomized controlled trials showed peanuts or tree nuts
significantly decreased HOMA-IR and fasting insulin; there was
no effect of nut consumption on HbAlc or fasting glucose.
The results of this meta-analysis suggest that nut consumption
may play a role in improving insulin sensitivity and thus delay
the development and progression of type 2 diabetes. In the
future, well-designed clinical trials investigating the effect of
nut consumption in individuals with and without diabetes are
required to elucidate the mechanisms behind the observed effect
of nuts on markers of glycemic control.
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research (project conception, development of the overall research plan);
AMT, EAJ, and KSP: conducted the research (conducted the systematic
search, screened the articles, and extracted the data) and drafted the paper;
KSP: performed the statistical analyses and had primary responsibility
for final content; and PMK-E: critically reviewed the manuscript. PMK-E
currently has research funding from the California Walnut Commission. None
of the other authors reported a conflict of interest related to the study.
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