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Abstract

A fundamental goal of developmental and stem cell biology is to map the developmental history 

(ontogeny) of differentiated cell types. Recent advances in high-throughput single-cell sequencing 

technologies have enabled the construction of comprehensive transcriptional atlases of adult 

tissues and of developing embryos from measurements of up to millions of individual cells. 

Parallel advances in sequencing-based lineage-tracing methods now facilitate the mapping of 

clonal relationships onto these landscapes and enable detailed comparisons between molecular and 

mitotic histories. Here we review recent progress and challenges, as well as the opportunities that 

emerge when these two complementary representations of cellular history are synthesized into 

integrated models of cell differentiation.

Cellular differentiation in composition, organization and function represents one of the 

major innovations of multicellular life. Determining the molecular mechanisms that govern 

how cells differentiate in their state is thus a long-standing focus in stem cell and 

developmental biology1. A comprehensive record of changes in cell states as tissues and 

organs develop can give insights into the molecular mechanisms and order of events by 

which cells choose their terminal identities during embryogenesis or regeneration. It can 

provide clues as to how to manipulate cell fates in vivo, to predict the origins of 

developmental pathologies and cancer, and to re-create cell differentiation processes in vitro.

Recent advances in single-cell transcriptomics provide a powerful approach to mapping 

differentiation dynamics by densely sampling cells at different stages. These sampled cells 

together can be used to construct a continuum of cell states, or a ‘landscape’, a term 
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historically inspired by Waddington’s metaphorical epigenetic landscape2. In this Review, 

we refer to such depictions as state manifolds, to reflect both their underlying high-

dimensional nature and their routine representation as low-dimensional Euclidean surfaces 

or graphs. State manifolds can provide high-resolution descriptions of cell trajectories as 

they transition between states during cell differentiation.

While they are powerful, state manifolds and state trajectories offer population-level views 

of differentiation, without directly revealing the long-term dynamic relationships between 

individual cells or between cells and their progeny. The gold standard for linking cell states 

across periods of time is instead through prospective lineage tracing: the practice of labelling 

an individual cell at an early time point in order to track the state of its clonal progeny at a 

later time point. Traditionally reliant on microscopy, lineage-tracing approaches have 

recently evolved to allow the tracking of cell clones via sequencing of inherited DNA 

sequences, or ‘barcodes’. The migration to sequencing platforms has brought several 

advantages to lineage-tracing efforts: massive throughput, multiplexing and compatibility 

with other sequencing-based measurements (for example, RNA sequencing (RNA-seq)).

Recently, we and others have developed approaches to carry out single-cell omic-scale 

profiling while simultaneously reporting lineage information. These methods offer an 

opportunity to integrate complementary information about both cell lineage and cell state 

into synthesized views of differentiation dynamics. In this Review, we survey the currently 

available strategies for single-cell state manifold reconstruction and lineage barcoding, as 

well as omics methods for combining lineage and state measurements in the same cells. 

Both the range of single-cell trajectory construction methods and their assumptions have 

been reviewed extensively elsewhere3,4, as have foundational molecular strategies for 

lineage barcoding5,6. Here we aim to draw general lessons from reoccurring conflicts that 

have emerged between state and fate analyses, and we discuss biological results obtained 

from first applications of combining the two methods. As this is an emerging field, we also 

discuss current limitations and potential technical pitfalls in their application. Finally, we 

speculate on the emerging concepts that might arise.

Inferring cell histories from state manifolds

In measuring the instantaneous state of a cell, one might imagine collecting information on 

the copy number of every molecular species within a cell, their interactions and spatial 

organization, the position of the cell in its parent tissue, and its physical and regulatory 

interactions with other cells. Such a level of information is, of course, impractical. Working 

definitions of cell state capture only a subset of these attributes and vary dramatically 

between studies. In the following sections, we describe how cell state designations have 

evolved from relatively simple observations to quantitative high-dimensional and high-

throughput omics measurements. We describe the introduction of cell state manifolds as a 

relatively recent analytic strategy with important advantages and limitations when inferring 

cell state relationships.

Wagner and Klein Page 2

Nat Rev Genet. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Defining cell states

A century ago, cells could only be reproducibly defined by simple characteristics: spatial 

position, morphology, histochemical staining, or basic biochemical or biophysical 

properties, such as cell density or dye uptake. Accordingly, much of the classical 

nomenclature associated with cell states (for example, basophilic) reflects these assays. With 

the advent of molecular biology, cells could be identified more quantitatively by the 

expression of selected marker genes, through immunocytometry, RNA analysis or the 

expression of transgenes. The nomenclature of cell state expanded accordingly into marker-

based phenotypes (for example, CD34+). The types of measurable determinants of cell 

identity continue to expand, including epigenetic state (for example, DNA accessibility and 

conformation, protein–DNA binding, DNA methylation or histone modifications), post-

translational protein modifications, protein localization and the metabolic profile of cells.

At present, the most mature technology for genome-scale mapping of cell states is through 

measurements of the whole transcriptome (single-cell RNA-seq (scRNA-seq)), which can 

now be carried out rapidly and at low cost, in nanolitre-scale droplets7,8, in microfluidic 

wells9, or using combinatorial split-pool approaches10. Transcriptomes contain information 

about multiple aspects of cell identity (for example, cell cycle phase, metabolic state, cell-

specific and tissue-specific molecular signatures, and spatially restricted marker genes). 

These diverse features may or may not be interrelated, but they reinforce a modern view of 

cell states as multidimensional vectors11,12. Beyond scRNA-seq, recent breakthroughs in 

single-cell methods capture chromatin accessibility13,14, methylomes15, proteomes16 and 

metabolic signatures17, as well as multimodal measurements from the same single cells (for 

example, mRNA and protein18–20 or mRNA and DNA21,22). These measurements 

incorporate even further dimensions into routine measurements of cell state. Additionally, 

some highly multiplexed profiling of cell states is now possible in situ, thus complementing 

cell-intrinsic state information with detailed information on a cell’s local environment and 

position in tissues23–27. Overall, these innovations set up the coming decade to be an 

exciting time for stem cell and developmental biology, as well as for tissue physiology in 

general. These new methods are clarifying the changes that occur in cells during 

development and, ultimately, the mechanisms governing cell behaviour.

Mapping state manifolds

Large single-cell datasets are now being routinely collected to catalogue the distribution and 

differentiation of cell states in both embryonic and adult tissues, as well as in disease. 

Recent examples encompassing entire organ systems include the haematopoietic 

system28,29, lung30,31, kidney32,33, heart34, gut endoderm35, somitic mesoderm36, nervous 

system37 and neural crest38. Additionally, whole-organism datasets have been generated for 

Caenorhabditis elegans39,40, Nematostella vectensis41, Hydra42, annelids43 and 

planarians44–46. Furthermore, time series data for whole embryos have been mapped for 

zebrafish47,48, Xenopus laevis49, mouse50,51, Drosophila melanogaster52 and ascidians53. 

These datasets have revealed novel cell states, and they associate all states with detailed 

molecular signatures that extend well beyond the previous classifications based on marker 

genes alone. They also have revealed cells in developmental transitions involving thousands 

of genes, which change expression at progressive times and between tissues.
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Analyses of these and other single-cell data involve several stereotypical steps to predict 

differentiation dynamics (FIG. 1). First, single-cell datasets noisily sample cells in different 

states (FIG. 1A). The challenge of data analysis is then to infer the continuum manifold of 

states from these measurements (FIG. 1B). These manifolds must be constructed, visualized 

and then used either to predict dynamics directly from cell states or else to represent the 

measured dynamic information (FIG. 1C). In this section we briefly introduce these steps.

To infer continuum state manifolds, most methods applied to single-cell data to date have 

been graph-based: they begin by representing individual cells as nodes, which are then 

connected by edges that reflect pairwise gene expression similarities (FIG. 1B). Graph-based 

analyses are useful because they convert a set of isolated measurements (single-cell 

transcriptomes) into a connected structure (the graph), which can then be analysed using a 

rich set of pre-existing mathematical methods.

To then visualize state manifolds, several algorithms are used that attempt to preserve the 

structure of the original cell graph when it is plotted in just two or three dimensions (such as 

uniform manifold approximation and projection (UMAP)54, SPRING55 and ForceAtlas2 

(ref.56)). Two-dimensional representations are popular and do capture meaningful biological 

trends. However, they can be misleading, as they distort high-dimensional structures upon 

‘flattening’ them, and in some cases algorithms force tree-like visual layouts that may 

further distort the original structure48,57,58. Any 2D and 3D visualizations should serve only 

as aids for representing the results of more powerful forms of data analysis.

Independently of visualization, a multitude of algorithms propose to predict cell state 

dynamics and/or differentiation hierarchies directly from a manifold (FIG. 1C). These tools 

for dynamic inference have been reviewed extensively elsewhere3 and include methods for 

extracting from the manifold its bare-bones structure, or topology59 ; organizing cells into 

trajectories57,58,60–63 along an axis (often called pseudotime); and predicting the future fate 

of cells on the basis of their state28,64–68. To improve these efforts at dynamic inference, 

some recent studies have succeeded in inferring the instantaneous dynamics of states on the 

basis of measurements of nascent mRNA abundance, the ratio of spliced to unspliced mRNA 

(for example, RNA velocity), protein translation or mRNA turnover by metabolite 

labelling69–73. Temporal information can also be integrated into state manifolds when cells 

are sampled at time intervals47,48,67 (FIG. 1C). In total, the result of these methods is to 

order cells along a continuum74,75, which in turn allows for studying changes in the average, 

variance and correlation of gene expression across the graph, and for inferring tree-like 

structures from graphs57,58,60,76 that organize cells or cell clusters77,78 into a putative 

hierarchy.

Limitations of state manifolds for dynamic inference

The representation of cell states as continuous manifolds offers a compelling approach to 

reconstructing dynamic processes. However, state manifolds average over many individual 

cells and so lose information on individual dynamics. The missing information includes cell 

division or death rates, the reversibility of states, and persistent differences between clones, 

all of which can quantitatively or qualitatively alter the dynamics predicted from snapshot 

measurements64. The dynamics predicted from cell state snapshots should thus be 
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considered hypotheses. In this respect, the tree-like hierarchies of cell states sharply contrast 

with those obtained by bona fide lineage analysis (FIG. 2a), in which tree edges link cells 

with an empirical developmental relationship. On a state manifold, branch-points may be 

hypothetical: cell division may or may not occur at a branch-point, and sister cells from each 

division may both progress along one branch of a manifold, rather than exploring all 

branches. By contrast, in lineage trees, each branch-point strictly corresponds to a division 

event. State trajectories need not even be strictly tree-like, whereas lineage hierarchies are 

always strictly branching trees. Therefore, although the population-level structure could 

trace the dynamic sequence of molecular states experienced by single cells (FIG. 2a,b), 

several specific reasons could obscure or mislead researchers’ understanding of the 

underlying dynamics and/or fate relationships (BOX 1; FIG. 2b–h).

Inferring cell histories in lineage tracing

Unlike the state of a cell, the lineage history of a cell can be defined without the operational 

simplification that comes from reducing the dimensionality of thousands of measurements. 

By ‘lineage’, we refer to the collective history of cell divisions, as well as the birth, division 

and death times of a cell’s ancestors and clonal relatives. Lineages can be depicted as 

detailed trees of mitotic events (FIG. 2a) or, alternatively, as clonal units derived from a 

common progenitor cell. Lineage measurements, however, do not inherently contain 

information about the states of the cells they comprise, and as such they are typically 

combined with other measurements (for example, cell position, morphology or gene 

expression). In the following sections, we describe classic temporal and clonal analysis 

paradigms for defining cell lineage, referring the reader elsewhere for more complete 

reviews5,6. These paradigms have evolved from their roots in imaging-based studies to the 

recent use of DNA-barcoding-based systems in the post-genomics era.

Lineage-tracing paradigms

Currently there are two major paradigms for defining cell lineages. One major category of 

approaches, prospective lineage tracing, attempts to establish lineage relationships forwards 

in time from cells of a defined starting state. Fate mapping, the practice of associating the 

position of a cell in the early embryo with the ultimate positions and fates of that cell’s 

descendants, is a form of prospective lineage tracing79. Methods based on CRE or FLIP 

recombinases, which facilitate permanent genetic labelling of progenitor cells based on the 

activity of a transgenic promoter, can also be used to learn prospective state relationships80. 

Prospective lineage tracing requires that some level of state information be known about a 

starting cell population, and generally the goal is to correlate this state information with 

future cell states. By contrast, phylogenetic lineage reconstruction methods seek to map the 

history of lineage relationships with respect to the cell states queried at a single end point in 

time. With these methods, state and lineage features are generally only measured at the end 

of the experiment, and lineage relationships are mapped backward in time in order to infer 

fate decisions that occurred either early or late. An inherent advantage of phylogenetic 

approaches is that analyses can be performed retrospectively (that is, without the need for 

experimental labelling) by analysing endogenous, naturally occurring genetic 

polymorphisms81 — these label-free implementations of phylogenetic lineage analyses are 
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thus also known as retrospective lineage tracing. Such approaches, therefore, can be applied 

to human patient samples and in other cases in which experimental intervention is not 

possible. Many additional methods perform similar phylogenetic reconstruction of end states 

but do so by tracking experimental labels rather than endogenous labels. In practice, when 

experimental labels are specifically introduced into cells of a particular state, the lineage-

tracing experiments combine both prospective and phylogenetic paradigms — for example, 

by reconstructing lineage phylogenies within a specific tissue.

Clonal versus population tracing

Labelling of cells for prospective lineage tracing can be performed at clonal resolution (such 

as by delivering complex barcode libraries) or, alternatively, by documenting the collective 

fate of a population of cells (such as by delivering a common label to the cell population). 

Population lineage-tracing experiments are generally easier to perform, but they leave open 

the possibility of internal heterogeneity of the labelled population and/or inclusion of off-

target cells. The collective activity of a bulk cell population (for example, unfractionated 

bone marrow) can easily be misinterpreted as representing the output of a single, 

multifunctional cell type, even when labelled cells could be restricted in their fate 

potential82. Such errors can be resolved by increasing the precision of the labelling process 

to limit any underlying cellular heterogeneity, or by utilizing single-cell lineage methods to 

track clonal relationships83. Given that even genomics-era state measurements (for example, 

scRNA-seq) can occasionally fail to fully resolve lineage-restricted groups of cells47,84–86 

(FIG. 2c–h), clonal analysis is still the most robust method for establishing the distribution 

of lineage outputs of a cell population. Once identified, stereotyped clone behaviours can be 

used to screen for prospective cell state markers that might correlate with and/or predict 

different lineage outcomes.

Imaging-based methods for lineage tracing

Prospective lineage-tracing experiments date back to the 19th century and initially relied on 

direct observations via live microscopy to track blastomere divisions in transparent 

invertebrate embryos, in particular in annelids1 and ascidians87. Ascidian lineage trees were 

annotated according to the spatial position of each cell, and owing to determinate cleavage 

patterns and early fate restriction, this relatively simple level of state information was found 

to be sufficient to predict future cell fates. A similar direct-observation strategy was applied 

nearly a century later to the nematode C. elegans, again taking advantage of the small size, 

transparency and determinate embryonic cleavage patterns of this species88.

Embryos of more complex species (for example, vertebrates) often contain many more cells, 

and cell divisions are generally indeterminate and more difficult to observe directly. Lineage 

tracing thus expanded to include a wide range of additional approaches, including the 

injection of tracer dyes, cell transplantation and in vivo genetic recombination methods. The 

history and applications of these pre-genomic methods have been reviewed extensively 

elsewhere80. More recent advances in in toto confocal and light-sheet microscopy have 

reinvigorated modern versions of the direct-observation approach, enabling the tracking of 

individual cell division patterns in complex vertebrates such as zebrafish and mouse, 

together with transgenic reporters89,90. One feature common to in toto imaging and nearly 
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all pregenomics methods for live lineage tracing is a reliance on transgenic fluorescent 

reporters to measure cell state. Thus, these approaches are spectrally limited to relatively few 

measurements of cell state. Partially countering this limitation, the spatial position of cells 

and their morphology provide information that may be correlated to molecular state91. 

Furthermore, recent spatial transcriptomics methods overcome the spectral limit by allowing 

genome-scale measurements in fixed samples in situ. Using such methods subsequent to live 

imaging or in combination with lineage tracing allows for combining state information with 

lineage and position information in one experiment92. However, such experiments remain 

extremely challenging, and highly multiplexed spatial transcriptomics methods are still 

generally restricted to the analysis of tissue sections, which may fail to capture all cells in 

each clone.

Lineage tracing by barcode-sequencing

Recently, high-throughput sequencing has opened up a new generation of lineage-tracing 

approaches. These new methods use DNA sequence barcodes to encode clonal information 

(FIG. 3). Although the number of distinct clones that can be simultaneously queried using 

fluorescent reporters is intrinsically limited, DNA sequence complexity scales exponentially 

with the length and multiplicity of the engineered barcodes, which is theoretically sufficient 

to allow a record of every single division event in an organism. The recorded information is 

read out retrospectively using high-throughput sequencing and can be readily combined with 

other sequencing-based omics measurements.

The use of DNA barcodes to reconstruct lineage relationships initially relied on the 

identification of unique retroviral integration sites and utilized Southern blot or PCR assays 

to reveal barcode identity93,94. In the post-genomics sequencing era there has been a burst of 

innovation in the creation and deployment of far more complex DNA barcodes for lineage 

tracing (Table 1). A foundational concept for these methods is to use changes in targeted, 

whole-genome or mitochondrial-genome sequencing data to construct lineage phylogenies 
95–97. Targeted barcoding-based methods generally fall into three thematic categories: first, 

transgenic integration of exogenous DNA sequences (FIG. 3Aa); second, in vivo 
recombination of transgenic DNA cassettes (FIG. 3Ab); and third, in vivo editing of 

transgenic DNA targets by CRISPR–Cas9 (FIG. 3Ac). In all of these approaches, a DNA-

barcoding event permanently alters the genome of an individual cell, the descendants of 

which inherit the barcode and can be distinguished as a clonal unit (FIG. 3Ba). Importantly, 

DNA barcodes can be recorded and measured at high throughput, enabling that interrogation 

of hundreds or thousands of distinct clonal units in parallel. In addition, these modalities can 

be adapted for cumulative barcoding, which marks successive/nested clonal units and 

facilitates phylogenetic reconstruction of cell lineage trees (FIG. 3Bb).

The first generation of methods and the logic for sequencing-based lineage tracing have been 

reviewed extensively elsewhere5,6. It is instructive to review the most recent developments, 

particularly in CRISPR-editing-based barcoding schemes. This family of methods utilizes a 

cumulative barcoding strategy to reveal lineage hierarchies that terminate at a single end 

point in time, typically by introducing three transgenic components: CRISPR–Cas9 DNA 

endonuclease, an array of DNA target sites, and a panel of single guide RNAs (sgRNAs) or 
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homing guide RNAs (hgRNAs). These components generate high-diversity, ‘evolving’ DNA 

barcodes within cells by taking advantage of cumulative variability in target sites that results 

from CRISPR–Cas9 activity. The first methods to demonstrate this principle were genome 

editing of synthetic target arrays for lineage tracing (GESTALT)98 and homing 

CRISPR99,100. More recent innovations include the engineering of lineage barcodes into 

transcribed regions of constitutively expressed or inducible reporter genes, enabling their 

sequences to be read from mRNA in whole-transcriptome scRNA-seq experiments (FIG. 

4A). This innovation was first demonstrated by the single-cell GESTALT (scGESTALT)101, 

lineage tracing by nuclease-activated editing of ubiquitous sequences (LINNAEUS)102 and 

ScarTrace86 techniques and has become a standard feature in subsequent methods. Other 

common innovations include the use of barcode arrays, which increase the number of 

barcoding possibilities, as well as the use of inducible promoters and integrated fluorescent 

reporters to both control and monitor the barcoding process in real time (FIG. 4B).

Performance, trade-offs and further innovations

DNA-barcoding technologies show considerable potential as future tools for lineage tracing. 

As this is a rapidly evolving field, the published methods are likely to be revised 

substantially in the coming years. For this reason, we do not recommend any single 

published method at present over others. It is helpful instead to appreciate the limitations 

that are likely to be resolved, as well as some methodological improvements that are already 

emerging.

DNA-damage-induced toxicity—Most CRISPR–Cas9 barcoding methods rely on 

random insertions and deletions introduced during the process of double-strand break repair 

by non-homologous end joining (NHEJ). Recently, CRISPR–Cas9 activity has been shown 

to cause cell death in human induced pluripotent stem cells (iPSCs)103 and cell lines104, and 

also it can result in developmental delay in mouse embryos85, raising potential concerns 

about maintaining continuous endonuclease activity. The extent and effect of potential off-

target double-strand breaks also remains generally unaddressed. Going forward, it will 

therefore be important to validate that these systems do not perturb the developmental 

dynamics that they are being used to interrogate.

The alternatives to CRISPR–Cas9-based methods may not face the same concern of 

excessive DNA damage. One alternative is TracerSeq47, a method for clonal barcoding 

demonstrated in zebrafish. TracerSeq makes use of ongoing transposase activity to 

successively integrate a pool of predefined barcodes, delivered as an injected plasmid library 

into embryos. The progressive integration of plasmids into the genome provides a heritable 

label of clones and sub-clones without inducing unrepaired double-strand breaks, yet it does 

require injection or electroporation. Other alternatives that similarly avoid double-strand 

breaks use genetic recombination105,106 (for example, PolyLox), CRISPR-associated 

transposase systems (CAST and Vibrio cholerae Tn6677)107,108 and base-editing 

enzymes109,110. Base-editing enzymes, however, can have substantial off-target effects that 

could perturb biological function111–113.
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Barcode detection—Failure to detect edited barcode sequences (for example, due to 

measurement drop-outs) can skew inferred lineage relationships (FIG. 3Cb). Such errors 

arise, for example, from low or noisy levels of barcode reporter expression or from 

endogenous silencing of integrated transgenes or lentiviral constructs114. We do not at 

present know the precise barcode detection rates of existing methods, but the extent of such 

errors for any barcoding method can be estimated in principle through control experiments 

in which lineage relationships can be independently verified115. At a minimum, studies 

using DNA barcodes should assess the per-cell barcode detection rate, and may need to 

consider taking steps to improve experimental detection (for example, introducing strong 

RNA polymerase II promoters that drive the transcription of mRNA-based barcodes).

Assay calibration—Because lineage tracing and single-cell omics assays can take weeks 

to analyse and are expensive, it is desirable to be able to assess the efficiency of barcoding 

before detection. In integration-based systems, the expression of barcode-linked fluorescent 

proteins can report on the level and specificity of barcoding activity in live specimens. Some 

CRISPR–Cas9 systems (for example, LINNAEUS and ScarTrace) target DNA editing to the 

coding region of a fluorescent transgene, such that loss of fluorescence can be used to 

monitor the barcoding process. Such live-reporting schemes for barcode generation provide 

a simple means for sample validation before sequencing.

Barcode diversity.—Failures to resolve unique clones (that is, barcode homoplasy or type 

I errors) occur when cells inherit identical barcode sequences despite having no true lineage 

relationship (FIG. 3Cc). To avoid such errors, lineage-tracing methods should generate far 

more barcodes than the number of clones to be analysed. In CRISPR–Cas9 systems, the 

barcode diversities generated by Cas9 that are quoted in different studies have varied 

considerably. The true barcode diversity obtained in such systems, however, is likely to be 

overestimated, in part, because certain errors in double-strand break repair re-occur 

frequently102. In addition, the generation of multiple DNA double-strand breaks in close 

proximity leads to the excision of intervening sequences, resulting in the loss of previously 

generated edits101. Finally, the activity of DNA repair machinery may differ between 

organisms, tissues and/or species.

To minimize the negative effects of barcode homoplasy, it is possible to utilize biological 

replicates to empirically identify high-frequency barcodes and exclude them from 

downstream analyses85,102. However, the presence of species-specific and tissue-specific 

differences in barcode diversity argues that diversity should be evaluated in each 

experimental system to which the methods are applied. An additional innovation for 

increasing Cas9-edit barcode diversity includes the use of terminal deoxynucleotidyl 

transferase (TdT) as an additional transgenic component expressed at the time of 

barcoding115. In the presence of double-strand breaks, TdT was demonstrated to catalyse the 

random incorporation of nucleotides at the DNA cut site, resulting in an increased frequency 

of insertion-based edits over deletion-based edits.

It is also possible to expand barcode diversity by increasing the number of barcoding events 

per cell, although this strategy can carry experimental trade-offs. In CRISPR–Cas9 systems, 

barcode diversity can be increased through the parallel editing of several transgenic DNA 
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target sites arranged in tandem or distributed throughout the genome (FIG. 4B). Tandem 

barcode arrays (FIG. 4Ba) face a practical limit, as they form repeat-rich sequences that are 

problematic substrates for both molecular cloning and most modern single-cell sequencing 

pipelines. Most of the recent methods therefore use distributed barcode arrays (FIG. 4Bb), 

which greatly reduce the number of nucleotides that must be sequenced in order to recover 

the barcode identity and also provide the advantage of being far less susceptible to internal 

deletions and information loss47,84,85,100,116. Distributed arrays can resolve otherwise 

identical DNA target sites through the use of an additional layer of integration barcodes that 

are specific to each transgenic insertion site. Distributed arrays are thus inherently scalable 

and can increase the barcode-space complexity while avoiding the need for long sequencing 

reads. However, they too face a limitation, in that a failure to detect some barcodes (type II 

errors) may lead to partial barcode recovery for many cells. Additionally, distributed arrays 

may be lost during outbreeding of transgenic animals and/or through endogenous silencing 

of transgenic or lentiviral constructs.

Barcode diversity may be less of a challenge for integration-based or recombination systems. 

Integration-based systems use high-diversity, uniform barcode libraries that are both simple 

to recover by sequencing and straightforward to interpret. TracerSeq barcodes, for example, 

are sampled evenly from a large sequence space (20-nucleotide sequences, yielding ~1012 

possible variants), greatly simplifying computational analyses and the assignment of cells to 

clones47. Furthermore, increasing the integration rate expands combinatorial diversity by 

allowing more than one barcode to label each cell114,116. A drawback to the use of defined 

barcode libraries is that they require the introduction of exogenous transgenic DNA libraries 

into cells through injection, viral transduction or electroporation/lipofection, which limits 

their experimental possibilities47,114. In recombination systems, the number of barcode 

possibilities increases with the number of recombination sites. In the PolyLox system, 9 

loxP sites yields >1.8 million Cre recombination possibilities105; this diversity could be 

further increased by adding more sites.

Barcoding precision.—A critical requirement for any lineage-barcoding experiment is 

the need to capture a minimum of two cells (ideally, many more) per clone. This 

requirement argues strongly for the need to label small numbers of cells in a defined tissue 

of interest, in order to ensure adequate sampling of their resulting progeny. In addition, the 

interpretation of clonal-tracing experiments depends strongly on precisely controlling the 

time interval in which cells are labelled. To date, published methods have not yet been 

optimized to achieve both tissue and temporal specificity in barcoding. Targeting clonal 

labelling to specific tissues can be facilitated by expressing components of the barcoding 

machinery under the control of tissue-specific promoters. Achieving temporal specificity is a 

more complex challenge. For CRISPR–Cas9-based methods, an open problem is that of 

target site ‘exhaustion’, in which all editing is completed early in the developmental period 

of interest. We expect the practical challenges of targeting clonal labelling to be resolved in 

the coming years.
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Applications of lineage tracing on state manifolds

Lineage-tracing methods can now integrate high-dimensional state information with clonal 

and phylogenetic barcoding. In doing so, they greatly increase the number of clones that can 

be tracked, and they establish clonal composition without requiring prior knowledge of the 

marker genes. Both of these advantages should greatly reduce transgene-centric observation 

biases. However, omics lineage-tracing experiments demand novel experimental designs and 

controls, as compared with traditional methods. These methods also demand far more 

computational support than do traditional methods, owing to the high-dimensional nature of 

omics measurements, the difficulty of studying thousands of lineage trees that may be 

heterogeneous, and the unique nature of noise in these methods compared with previous 

approaches. We next survey three general experimental strategies that recently have been 

utilized to map how lineages unfold on state manifolds. We review outstanding challenges 

encountered in the computational analysis of state–lineage relationships, as well as potential 

pitfalls in experimental design.

Prospective lineage tracing on state manifolds

Prospective lineage tracing is still most commonly deployed by marking cells of a defined 

state at an early time point and establishing their collective cellular products at a later time. 

This approach has its roots in classical fate-mapping and genetic-labelling methods, which 

are implemented at either bulk or single-cell resolution. A modern version of this approach 

combines a sequencing-readable DNA recombination event as the genetic label, cell sorting 

and downstream analysis by scRNA-seq or some other high-resolution genome-scale 

measurement (FIG. 5Aa). Such approaches can provide detailed state resolution for the 

resulting cell populations, but prospective lineage labels are still comparatively low-

resolution when they rely on the promoter activity of a single gene.

In an instructive example, Rajagopal and colleagues30 made use of the classical genetic 

recombination-based lineage-tracing method to label cells, followed by scRNA-seq to 

analyse the fates of the labelled cells. This ‘pulse-seq’ method was applied to study the fate 

of basal cells in airway epithelium labelled at a defined time using a conditional CreER 

recombinase expressed from the Krt5 locus, which activates permanent and heritable 

expression of a fluorescent reporter gene. At later time points, scRNA-seq established that 

Krt5–CreER-marked basal cells regenerated all epithelial cell types of the airway. Crucially, 

this approach did not require knowledge of the markers for any of the derivative cell types 

and thus could be used to establish the basal origin of a novel cell population. In this study, 

scRNA-seq also revealed that Krt5-expressing basal cells are not homogeneous in their 

transcriptomes. Thus, while pulse-seq could collectively mark all basal cells, it could not 

distinguish which individual clonal behaviours are stem cell-like, nor could it correlate such 

clonal behaviours to a particular subset of the Krt5-expressing population.

A more refined approach to prospective lineage tracing would make use of DNA barcodes to 

uniquely label each cell in the initial cell population. Although resolution into the labelled 

cell state would still be limited to the expression of a single marker gene, the end point 

measurements would provide information on heterogeneity in the clonal output of the 

labelled cells. From such data, one could assess whether the entire labelled cell population 
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was equal in its fate potential or whether further fractionation of the labelled cells might be 

needed to resolve distinct cellular subsets. Such experiments could use scRNA-seq to 

analyse the clonal progeny. Evolving barcode approaches could also be adapted as a variant 

of such prospective lineage tracing, by requiring that barcode evolution be conditional on the 

expression of a state-prognostic transgenic promoter. To our knowledge, however, such 

applications have not yet been demonstrated.

Lineage phylogenies on state manifolds

Although there are now multiple methods for phylogenetic lineage barcoding (FIG. 4), all 

share a common goal: to determine the shared division history of the cells collected at a 

single end point in time. A common innovation in recent lineage-barcoding studies has been 

the engineering of lineage barcode cassettes into expressed sequences (FIG. 4A, right), 

enabling the simultaneous measurement of lineage information and whole-transcriptome 

state measurements for each cell. While these approaches succeed in revealing detailed 

states for the end-point-sequenced cells (FIG. 5Ab), they fail to capture the transcriptional 

states of progenitor cells that existed at time points before sequencing. Thus far, early 

applications of phylogenetic state–lineage approaches have largely recapitulated known 

developmental hierarchies in proof-of-concept studies. They have, however, revealed a 

recurring insight: namely, that similar cell states can arise (or ‘converge’) from qualitatively 

different developmental origins. Lineage construction using the tools reviewed above (Figs 

3,4) can therefore be useful to identify converging developmental trajectories (FIG. 2d) and 

to distinguish other trajectories (FIG. 2b–h; BOX 1) that are not immediately highlighted by 

state manifold approaches alone. They also can be used to identify measured features of 

cells (for example, novel marker transcripts) that reflect their cell ontogeny.

Three recent studies spanning different embryonic tissues illustrate the recurring observation 

of state convergence, although these examples are far from exhaustive. In a first example, 

integration-based barcodes were detected in scRNA-seq data (by TracerSeq; FIG. 3) in 

zebrafish embryos. From these data, collected at a single time point 24 hours after embryo 

fertilization, it was possible to determine the shared lineage history of tens of 

transcriptionally defined cell states. Notably, one set of structures in the embryo, known as 

the pharyngeal arches, could be seen to arise from different clonal origins, despite appearing 

transcriptionally similar. These structures arise from either neural crest or lateral plate 

mesoderm47. Once the origin of the cells was established, it became possible to identify 

genes whose expression in the pharyngeal arches was specific to the crest-derived cells47. In 

a second example, CRISPR–Cas9 barcoding using the ScarTrace system revealed that the 

zebrafish fin harbours resident immune cells (RICs) with an ontogeny distinct from that of 

other immune cells86. These experiments could reveal precisely which cells were RICs 

amongst all immune cells in the fin, and they defined Epcam as a putative marker for this 

population. In yet a third example, Chan et al.85 used cumulative Cas9 editing to study the 

ontogeny of endodermal tissues in the mouse embryo. These tissues are known to comprise 

a mixture of visceral and epiblast-derived cells117. Chan et al. could resolve between the 

visceral and epiblast lineages, despite their converging onto similar endodermal gene 

expression programs. The researchers could then identify differences between the two 

endodermal lineages in the expression of two genes: Rhox5 and Trap1a. The ubiquity of 
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converging trajectories has been further supported by complementary observations in the 

mouse extra-embryonic endoderm35,51, in C. elegans embryogenesis40 and in the parallel 

progression of excitatory and inhibitory neuronal states in the mouse central nervous 

system50. Collectively, these findings highlight a recurring phenomenon that these methods 

are particularly suited to address: they resolve different clonal origins among identical or 

nearly identical cell states (FIG. 2c–e), and they can reveal features of a cellular 

transcriptome (however subtle) that correlate with lineage behaviour and could be used to 

label or isolate cell subsets for further study.

Clonal resampling on a state manifold

Recently, several groups have utilized an alternative approach for linking detailed cell states 

across time. The approach relies on ‘clonal resampling’: experimentally isolating part of a 

clone for single-cell transcriptomic analysis recurrently, as the clone differentiates. When 

scaled to large numbers of cells, this method facilitates the construction of state manifolds 

on which the trajectories of individual clones may be revealed (FIG. 5Ac). This method 

requires both that cells be sampled over time without excessively disrupting the behaviour of 

the surviving cells and that cells divide symmetrically, such that all cells within a clone 

initially possess similar states. Due to these requirements, this method is best applied to 

either in vitro systems or regenerative systems in which cells or tissues may be serially 

removed or transplanted. Early realizations of this approach have been applied in culture, in 

which individual clones of related cells can be physically split, grown and sampled 

independently. For example, Tian et al.118 recently applied this approach to analysing 

dendritic cell clones derived from single haematopoietic stem cells cultured and assayed in 

vitro. By physically splitting small clones of cells into separate culture wells, they were able 

to perform two distinct types of measurement on the clonal ‘sister’ cells: scRNA-seq at an 

early time point, to establish the transcriptional features of each clone before differentiation, 

and in vitro assays, to establish the ability of the same clone to generate three distinct types 

of differentiated dendritic cell population. This approach, which the researchers termed 

‘SIS-seq’, was able to reveal rich transcriptional features of early progenitor cells that were 

predictive of the later fate outcomes.

More recent applications of this approach have relied on DNA barcoding, rather than 

physical isolation, to simultaneously track large numbers of cell clones. In an instructive 

example, Biddy et al.114 developed a method, ‘CellTagging’, to trace the state of cells 

undergoing direct reprogramming from fibroblast to endoderm progenitors in vitro during 

serial rounds of passaging. The researchers made use of a lentiviral library to genetically 

barcode cells by integration of a constitutively expressed GFP-encoding gene with random 

barcodes engineered into its 3ʹ untranslated region sequence. During serial passaging, they 

applied additional rounds of lentiviral barcoding to mark successive lineage restriction 

events and simultaneously sampled subsets of the growing culture for scRNA-seq analysis. 

From this analysis, they identified that successful lineage conversion observed late in the 

reprogramming process correlated with a distinct expression profile of clonally related cells 

at an earlier time point. Such correlative analyses raise hypotheses for genes whose early 

expression influences future cell behaviours. In the study, Biddy et al. found that 

incorporating one such predictor gene, Mettl7a1, into the reprogramming procedure 
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increased the efficiency of generating endodermal progenitors. Crucially, in this study 

neither the initial, transient nor end state of the dynamics had to be resolved in advance, and 

no marker genes were required to label cells for lineage tracing. A similar logic was applied 

by Weinreb et al.84, who also used a lentiviral DNA-barcoding approach to demarcate fate 

boundaries in haematopoietic progenitor cell differentiation in order to link early biases in 

gene expression to later fate potential.

Clonal resampling thus offers a powerful approach to fully integrate state manifolds with 

lineage tracing and can be used to identify prospective fate markers. This approach has been 

most thoroughly applied in vitro, but it can also be used to interrogate in vivo systems that 

permit physical resampling, such as the haematopoietic system84 and the regenerative 

zebrafish fin86. A persisting challenge in studying in vivo systems in this way is the need to 

obtain sufficient statistical sampling of each clone of interest, which can be difficult when 

isolating and sequencing cells from large endogenous populations.

Computational tools for state–lineage mapping

Computational approaches to analyse combined lineage and state datasets are still in their 

infancy. They are likely to evolve considerably and to require steps that are sensitive to the 

choice of experimental platform. As choices in data analysis could affect the conclusions 

drawn from such methods, we briefly review the key steps here.

The first step for DNA-barcoding pipelines is to assign a unique DNA barcode sequence to 

each cell clone. In doing so, pipelines must eliminate putative sequencing errors, remove cell 

doublets that could lead to two clonal barcodes appearing in one cell, and correct platform-

specific artefacts. For the CRISPR-based and PolyLox methods, some barcodes can be 

formed with high probability, leading to frequent barcode homoplasy. Computational 

pipelines must therefore decide which barcodes are informative and which must be 

discarded from the analysis. Current methods are naive to recombination or error preferences 

of DNA-modifying enzymes; future methods could learn and incorporate editing biases to 

correct for observed barcode frequencies.

Computational pipelines then face decisions about how to reconstruct lineage phylogenies 

from large sets of clonal barcodes. In some cases, tree-building methods established for 

evolutionary phylogenetics have been applied directly to lineage reconstruction efforts; for 

example, GESTALT studies have utilized maximum parsimony98,101,119, whereas homing 

CRISPR and TracerSeq have utilized neighbour-joining methods47,100. However, previously 

established tree-building methods are not necessarily robust to the frequent detection errors 

encountered in single-cell measurements102. LINNAEUS102 and Chan et al.85 have therefore 

developed custom tree-building algorithms to minimize the influence of drop-outs and have 

also incorporated empirical likelihood estimates for each barcode in order to minimize the 

influence of barcode homoplasy on the final inferred tree topology. Inference of lineage 

relationships from DNA-barcoding data is an active area of research, with several additional 

groups now favouring maximum-likelihood approaches and ground-truth benchmarking of 

algorithm performance against empirical120–122 or simulated123 datasets.
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At present, no universal computational tools exist for end-to-end lineage tree inference, 

starting from raw single-cell DNA barcode sequences. Given the wide diversity of DNA 

modification strategies, barcode lengths and barcode probability distributions, the 

development of a single universal tool might be unlikely. However, for CRISPR–Cas9 

editing systems, in particular, community benchmarking efforts such as the DREAM 

challenge124 are now providing opportunities to directly compare the performance of dozens 

to hundreds of independent algorithms. Standardization of metrics and input data types 

could further enable meta-approaches that draw results from the consensus of multiple 

different tools. Because all lineage-barcoding methods — including non-CRISPR –Cas9 

methods — face similar downstream analysis challenges (for example, tree building, the 

analysis of large tree ensembles and increasing dataset sizes), the field as a whole will 

undoubtedly benefit from these and other computational innovations.

In addition to tree construction, there are also other — perhaps simpler — data 

representations that can reveal intuitive lineage–state relationships. Rather than focusing on 

the structure of individual lineage trees, one can instead integrate information from multiple 

trees so as to infer the average lineage relationships between cell states. For many organisms 

and tissues, such approaches may be crucial, because individual lineage trees can be highly 

variable. Various metrics can be used for establishing lineage coupling between states, 

including the covariance of barcode abundances between states or the ratio of the barcodes 

observed to be shared between two transcriptional states to that expected after data 

randomization47,84 (FIG. 5B). Maximum-likelihood frameworks can similarly be leveraged 

so as to combine individual lineage trees into ‘consensus’ lineage trees by integrating gene 

expression and lineage data122. This approach permits the integration of information across 

biological specimens, to separate core systematic trends from chance relationships that occur 

in just a single lineage tree.

Pitfalls in lineage barcoding on a state manifold

New biological assays can generate unforeseen artefacts that often become appreciated only 

after technologies mature. In the case of sequencing-based lineage tracing, the details of an 

experimental design can profoundly affect the relationships encoded in sequencing data. In 

FIG. 5 we have detailed two parameters that can strongly influence the observed clonal 

overlaps between states. These include the effects of the timing of barcode induction (FIG. 

5B–E) and of changes in endogenous cell division rates (FIG. 5F,G). Altering these 

parameters can lead to strong differences in apparent lineage structure by affecting both the 

presence and size — that is, the detect-ability — of the marked clones. Other barcode 

detection errors, including both type I and type II errors (FIG. 3C), can similarly interfere 

with lineage reconstruction efforts. Although the negative effects of detection errors can be 

minimized by means of certain tree reconstruction algorithms (for example, maximum 

parsimony), the frequency of such errors for a particular method should be quantified, and 

minimized wherever possible. Good experimental practices should further ensure that 

biological conclusions are robust to such errors, including through performing adequate 

biological/technical replicates and the use of multiple data analysis strategies.
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Emerging concepts

State trajectories and lineage codify two distinctive yet complementary aspects of a cell’s 

developmental history, and each type of analysis can provide insights into ontogeny and 

gene regulation. In this Review we have outlined some important limitations of state 

manifolds, and we have described the motivation and tools for integrating bona fide lineage 

measurements with single-cell omics. From the early application of these methods, we 

propose to highlight three emerging concepts: first, state manifolds as models; second, the 

modes of coupling of cell state bifurcation with cell division; and third, the validity of trees 

as descriptions of cell differentiation hierarchies.

State manifolds as models

In this Review we have raised the contradictions that can appear between lineage and state 

representations (FIG. 2) and discussed how clonal information could be used to clarify such 

developmental relationships. These contradictions demonstrate that representations of state 

manifolds are not infallible — rather, they are data-driven models that follow from particular 

sets of assumptions and data-processing criteria. Currently, most state manifolds are 

constructed in an unbiased fashion from the most prominent sources of covariation in the 

original state measurement. Under this practice, the defining features of an scRNA-seq 

manifold will reflect robust, variable transcriptional signatures and thus are not guaranteed 

to emphasize cell fate decisions, which might correlate with small sets of regulatory genes 

expressed at low levels at the time that fate restrictions occur. State manifolds have until now 

been constructed without incorporating information from clonal data. However, state and 

lineage relationships need not remain in conflict: once information on lineage is established, 

it can be used to improve our methods for representing state manifolds. An immediate and 

simple use of lineage information, for example, is in identifying molecular markers of 

lineage-biased progenitor cell states. Indeed, novel fate markers have been inferred both 

from combined lineage and state phylogenetic experiments85 and from clonal-resampling 

studies84,114. Lineage information could also be used to train algorithms in the construction 

of state manifolds in a way that avoids errors such as those in FIG. 2. Such actions demand a 

conceptual shift towards treating state manifolds as models of a particular set of high-

dimensional gene expression features, rather than as absolute or universal references on 

which to overlay cell differentiation trajectories.

Variability of individual lineage trees

Both state manifolds and mitotic lineage trees can define hierarchies. What is the nature of 

the relationship between these two hierarchies? Drawing on lessons from imaging-based 

clonal analysis125, we propose two potential relationships: one of mitotic coupling, and 

another of population coupling. Mitotic coupling will occur in cases in which a branch-point 

identified on the cell state manifold closely corresponds to a cell division event (FIG. 6a, 

left). Determinate lineage trees of ascidians87 and C. elegans88 stand as instructive 

examples. Population coupling, by contrast, will occur in cases in which the clonal and 

division histories do not influence the progression of any individual cell along the manifold 

or its fate choice. Instead, cell behaviours are indeterminate and can be described by a set of 

transition probabilities for moving down a particular trajectory (FIG. 6a, right). Accordingly, 
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population coupling can lead to highly variable lineage trees that resemble those from a 

stochastic branching process and that will not be precisely reproducible within or between 

organisms (FIG. 6b, right). In such cases, efforts towards high-resolution reconstruction of 

fate hierarchies may fail to produce a single representative lineage tree of development, but 

the distribution of state–lineage couplings across multiple observed lineage trees should 

nonetheless prove highly informative (FIG. 6c).

Is development a tree?

What is the structure of a differentiation hierarchy? Answers to this question depend first on 

whether one is considering a state manifold or a mitotic lineage. In the absence of cell 

fusion, lineages can generally be treated as bifurcating trees, with each branch-point 

representing a mitotic event. State manifolds can be tree-like but, depending on the biology 

of the system, they need not be. State manifolds therefore represent an opportunity to 

discover the structure (that is, the topology) of a cell differentiation process. When state 

manifolds are integrated with lineage measurements, one has an opportunity to 

independently reject or confirm specific hypotheses regarding these structures. As we 

described above, several recent studies have shown evidence for state convergence, in which 

two or more distinct fate trajectories converge onto the same final position on a state 

manifold. This end point state thus comprises cells of mixed origins, which may or may not 

retain distinct functions or potentials. We reviewed examples of state convergence among 

immune cells86, neural crest lineages47 and endodermal populations35,85. The reverse 

scenario (state divergence) has also been observed, in which mitotic sister cells (highly 

related in lineage) rapidly adopt discontinuous states40. State divergence can occur as a 

result of asymmetric cell division, particularly in cases in which partitioned cytoplasmic 

components are delivered to only one of the two mitotic daughter cells. Such cases may 

produce state transitions that lack intermediate states and that thus would not appear as a 

bifurcation event on a state manifold, at any sampling depth. Both of these scenarios — 

convergence and divergence — will cause a state manifold to depart from a strict tree 

structure and can result from well-described biological scenarios. Mapping novel examples 

of such scenarios from single-cell datasets will therefore require integrated state and lineage 

measurements.

Conclusions

With the emergence of genome-scale single-cell analyses, representations of differentiation 

dynamics have shifted in the span of a few years from cartoons of discrete state transitions to 

data-driven views of dynamic state manifolds. Such representations provide not just 

predictions for the differentiation dynamics of thousands of genes but also hypotheses for 

the structure of differentiation hierarchies, including novel transitional and terminal cell 

states, interactions with cell cycle and the appearance of convergent differentiation that takes 

the form of ‘loops’ between cell states. In this Review we described the errors and 

ambiguities that can arise in inferring dynamics directly from single-cell state 

measurements, and we argued that the integration of lineage-barcoding data can improve 

state manifold representations by facilitating a faithful reconstruction of dynamics. Such 

integrative measurements can identify prospective fate markers, localize fate boundaries on 
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state manifolds, allow the inference of tree-like and non-tree-like differentiation hierarchies, 

and should allow for resolving consensus fate relationships even when the individual lineage 

trees are highly variable. We thus anticipate that integrated measurements of cell state and 

lineage will greatly clarify the key events in cellular differentiation and become an important 

tool in the arsenal of stem cell, tissue and developmental biologists.
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Box 1 |

How do cells traverse single-cell landscapes?

Single-cell data can be organized into a continuum ‘landscape’ (or ‘manifold’) of cell 

states, representing cells in progressive states of differentiation. However, these 

landscapes do not directly clarify how cells or clonal lineages explore these states, or how 

they choose their trajectory at branch-points. Cells in similar states could show the same 

dynamic progression and remain uncommitted until they reach a branch-point (FIG. 2b). 

Dynamic behaviours on a landscape can also be unpredictable (FIG. 2c–h) and can 

deviate from the global averages inferred from many single-cell measurements. these 

complications may arise from hidden variables, gaps in manifolds and stochastic 

dynamics, as detailed here.

Hidden variables

Although single-cell technologies aspire to measure cell state comprehensively, they may 

still miss important cellular properties that are informative as to fate. such hidden 

variables may be regulatory molecules that are altogether missing from the state 

measurement (for example, epigenetic, spatial or post-translational state features that are 

not captured by single-cell rNa sequencing). they could also be obscured by measurement 

noise or by ad hoc operational decisions in data processing, such as choices of 

normalization or dimensionality reduction strategies and of which genes to include in 

manifold construction. Because cells often participate in multiple dynamic processes, 

different data-processing choices can emphasize certain biological processes (for 

example, cell cycle, cell migration or stress) over others and can allow constructing 

manifolds with qualitatively different structures from the same data. transcriptional 

signatures of the cell cycle, for example, can overshadow other state differences between 

unrelated cell types.

Failure to resolve hidden variables can lead to the appearance of ‘delayed state 

divergence’ on a state manifold (FIG. 2c), obscuring the true point at which fate 

specification occurs. independent clonal trajectories can also appear to ‘converge’ 

temporarily on identical or nearly identical states during the differentiation process (FIG. 

2d). in these cases, the distinct ontogeny of the cells cannot be deduced from state 

information alone. Clones or tissue domains in different stages of differentiation may also 

form a continuum of states that implies a false trajectory (FIG. 2e). additionally, state 

manifolds may imply ‘false multipotency’ and/or ‘false branch-points’ by superimposing 

cells with different fate potentials (FIG. 2f). some of these problems can be identified by 

visualizing the state manifold, but this is only possible if the visualization methods used 

do not force cells to occupy a tree-like hierarchy. Lineage tracing is essential to 

identifying and resolving lineage restrictions downstream from a point of state 

convergence (FIG. 2d,e); not even short-term dynamic information (for example, rNa 

velocity; see the main text) is informative in these situations.

Gaps
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Learning differentiation trajectories works best for systems with a strong flux of cells and 

coverage of multiple time points. when very few cells differentiate at any moment in time 

(for example, adult neural stem cells) or transitional time points are missing, analyses 

become more difficult and are prone to creating artefacts. thus, gaps in the manifold, 

which may arise from uneven or under-sampling of cell states, can result in apparent 

discontinuities between clonally related cells (FIG. 2g).

Stochastic dynamics

Even when manifolds faithfully depict the average clonal dynamics, they cannot provide 

information about distinct dynamic behaviours of cells that appear similar in state, such 

as stochastic fluctuations about the average or participation in local cycles (FIG. 2h). 

Collectively resolving the scenarios above would require the ability to track cell state 

dynamics over both short and long timescales.
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Cell differentiation

The process by which uncommitted progenitor cells are specified and transform into 

functional (and typically postmitotic) cells that carry out the specialized tasks of a 

particular tissue or organ.

Landscape

An informal term for a state manifold, typically used in developmental biology to 

represent the ensemble of cell states during their differentiation.

State manifolds

Approximate representations of high-dimensional cell states (for example, the whole-

animal embryonic cell state atlas Tabula Muris) as lower-dimensional shapes.

State trajectories

The paths taken by individual cells or clones of cells through a state manifold.

Prospective lineage tracing

A lineage-tracing experiment that introduces a label for marking cells in a specified state.

Barcodes

Units of DNA with a large number of sequence possibilities, such as those used to 

uniquely label cells and their progeny.

Cell lineage

A representation of a series of mitotic events that trace back to a single founder cell.

Cell state

A designation of cell identity (defined with respect to a particular measurement) that can 

be used to classify or quantify physical or molecular differences between cells (for 

example, ‘basophilic’, ‘KRT4+’, ‘columnar’, ‘RNA-Seq cluster 4’).

RNA velocity

The rate of change in mRNA transcript abundance — more specifically, a set of 

computational techniques for calculating these rates across all genes from measurements 

of spliced and unspliced transcript abundances.

Clonal analysis

A lineage-tracing experiment that involves marking an individual cell, followed by state 

analysis of that founder cell’s clonal descendants.

Retrospective lineage tracing

A lineage-tracing experiment based on phylogenetic reconstruction of endogenous 

genetic polymorphisms (that is, no experimental intervention).

Hidden variables
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Molecular or environmental properties of a cell that correlate with — or could be used to 

predict — a cell fate decision, which are obscured from a state manifold.

Direct observations

Lineage-tracing experiments that rely on in vivo live imaging of cells as they divide.

Determinate

In the context of developmental processes, when the relationship between lineage and 

molecular state is tightly controlled at each cell division event and is invariant between 

individuals.

Indeterminate

In the context of developmental processes, when the relationship between lineage and 

molecular state can vary greatly between individuals and between cell clones.

Lineage phylogenies

Trees of lineage relationships constructed from end point measurements.

Drop-outs

Type II errors that are common in single-cell omics experiments in which transcripts, 

lineage barcodes or other features present in cells fail to be detected.

Barcode homoplasy

A type I error in which identical DNA sequence barcodes are randomly recovered from 

cells with no close lineage relationship.

Cell ontogeny

The developmental history of a cell.

State convergence

A differentiation scenario in which cells with distinct origins converge onto the same end 

point on a state manifold.

Mitotic coupling

A class of developmental fate regulation mechanisms that specify states to the daughter 

cells of a mitotic division, either symmetrically or asymmetrically.

Population coupling

A class of developmental fate regulation mechanisms in which the cell state specification 

is uncoupled from cell division but the proportion of cells specified to each state is 

controlled.

State divergence

A scenario in which the asymmetric partitioning of cellular components between two 

daughters of a single cell division differentiates them rapidly or instantaneously into 

distinct states.
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Fig. 1|. inferring cell histories from state manifoids.
A| Modern omics-based single-cell datasets, conceptuailzed as a measurement xcell count 

matrix or, alternatively, as cells plotted in a high-dimensional Euciidean space. B | Single-

cell graphs, which link cells according to similarity (for example, Euclidean distance) in 

gene expression space, can be visualized to reveal underlying state manifolds that reflect 

gene expression dynamics. C| Graph-based tools for constructing and visualizing statement 

folds (part Ca), computational algorithms for predicting dynamics directly from a state 

manifold (part Cb) and tools for incorporating independently measured state dynamics into 

a manifold (part Cc) DPT, diffusion pseudotime: NASC seq, newt ranscriptome aikylation-

dependent single-cell RNA sequencing: PAGA, partition-based graph abstraction: PBA. 

population balance analysis; PHATE, potential of heat diffusion for affinity-based trajectory 

embedding: scSLAM-seq, single-cell thiol-(SH)}-linked alkylation of RNA for metabolic 

labelling sequencing; SPRING. a force-layout embedding of single-cell data; STITCH, a 

method for combining time series of single-cell data; UMAP, uniform manifold state 

manifolds approximation and projection; URD. a simulated diffusion based computational 

approach named after the Norse mythological figure: Waddington-OT, Waddington optimal 

transport.
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Fig. 2 |. Limitations of cell state manifolds.
a | Clarification of depictions of cell state manifolds versus cell lineage trees. Trajectory 

relationships are indirectly inferred from gene expression similarities, whereas lineage 

relationships reflect measured mitotic histories. Below the boxes, a combined representation 

highlights a clonal hierarchy of related cells, directly revealing its trajectory along astate 

manifold. b-h| Hypothetical scenarios of restricted lineage trajectories unfolding ona state 

manifold. The behaviours of distinct clonal units are presented in simplified form by 

coloured arrows. Lineage and state congruent (part b): initially all clones share the same fate 

potential (black); restriction of the clones into distinct trajectories (blue/red) occurs only 

where the manifold bifurcates. Delayed state divergence (part c): cells become committed to 

distinct trajectories (blue/red) but continue to occupy similar states for some time. This 

causes the early state to appear seemingly multipotent despite the cells within each clone 

being fate-restricted. State convergence (part d): cells with distinct molecular histories 
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converge into similar states, such that the molecular origin of later cells can no longer be 

inferred. Lineage heterochrony (part e): cells with different origins occupy a sequence of 

states that implies a false developmental trajectory (blue to red). False branch-point (part f): 
an extreme case of the situation in part c, in which an apparent branch-point does not 

represent a decision made by any cell. Instead, it appears artificially when fate-restricted 

clones overlap in their early state. Gaps in state manifold (part g): disconnected cell states 

appear when the states of transitional and early progenitors are not represented in the 

dataset. This occurs when transitional states are very rare or when sampling a developing 

tissue at a late stage. Hidden dynamics (part h): the extent of stochastic or structured 

fluctuations in clonal dynamics is not visible from snapshots of cell states.
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Fig. 3 |. Methods and logic for lineage barcoding experiments.
A | Three major paradigms for introducing unique DNA barcodes into cells: by integration 

of a high-diversity library of DNA barcodes using a transposase (part Aa), by 

randomrecombination of an array of recombinase target sites (part Ab) and by the 

accumulation ofrandom errors insertions and dele tions during CRISPR-Cas9 editing of 

genomic target sites (Part Ac).B | DNA barcoding can be applied in asingle, ins.antaneous 

pulse, enabling the paraflel tracking of many distinct cell clones (part Ba). When applied 

cont inuoudy. DNA barcades can repeatedly label a dividing cell clone at sequential levels 

ofits lineage hierarchy (part Bb) C | Challenges in lineage reconstruction from cumulative 

barcoding. The upper diagrams depict hypothetical barcode integration events ina cell 

ineage. Arrows denote the accumulation of novel barcodes, with each colour indicating 

aunique DNA barcode sequence. Hypothetical lineage correlation heat mapsand trees depict 

the anticipated results of lineage reconstruction. Lineage phylogenies can be accurately 

Wagner and Klein Page 31

Nat Rev Genet. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



reconstructed from dngle-cell correlations of the detected barcode labels (part Ca), whereby 

earty versus late clones aredistinguished on the basis of the number of cells that contain 

theassodated barcode. Errarsin barcoding or barcode det ection can skew the accuracy of 

phylogenetic inferences (parts Cb and Cc). sgRNA, single-quide RNA.
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Fig. 4 |. Reading and writing transgenic DNA barcodes.
A | DNA barcodes can be encoded exclusively in genomic DNA (left) or expressed as 

mRNA, to allow detection concurrent with single-cell RNA sequencing. Reliable detection 

of barcode sequences requires amplification. For DNA barcodes this is achieved by P CR or 

in vitro transcription, whereas mRNA-based barcodes are endogenously amplified via RNA 

polymerase II (Pol II) transcription and can be detected as part of each single-cell 

transcriptome. B | Transgenic strategies for storing and transcribing DNA barcodes. The 

schematics show the diversity of DNA arrays used to store lineage information for each 

method. The arrays can be grouped according to whether they store lineage information at a 

single genomic locus using a tandem array (part Ba) or whether they store lineage 

information at multiple genomic loci using distributed arrays (part Bb). Right-angled black 

arrows indicate promoters used to drive barcode expression for detection by RNA 

sequencing in a subset of methods. The methods differ in whether they utilize recombination 

(PolyLox), barcode library integration using a lentivirus or transposase (TracerSeq, LARRY. 

CellTagging) or CRISP R-Cas9 targeting of single guide RNA (sgRNA) arrays (all 
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remaining methods). GESTALT, genome editing of synthetic target arrays for lineage 

tracing; hgRNA, homing guide RNA; LARRY. lineage and RNA recovery; LINNAEUS, 

lineage tracing by nuclease-activated editing of ubiquitous sequences; MARCl, mouse for 

actively recording cells 1; scGESTALT, single-cell GESTALT.
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Fig. 5 |. Applications and pitfalls of lineage tracing on state manifolds.
A | Recent studies have highlighted three experimental designs for combining lineage and 

state measurements. For simplicity, the panels depict largely congruent state-lineage 

hierarchies. Prospective (part Aa): a bulk genetic label is applied to cells of a particular 

state; labelled cells are subsequently captured and sequenced to reveal the gene expression 

states and lineage barcodes for each cell. Phylogenetic (part Ab): gene expression states and 

lineage barcodes are measured at a defined end point with respect to a biological process. 

Prior lineage relationships can be reconstructed retrospectively from the lineage barcodes, 

whereas state information is limited to the final time point. Resampled (part Ac): gene 

expression states and lineage barcodes are repeatedly sub-sampled over time, enabling the 

mapping of lineage trends directly on the state manifold. B-G | Phylogenetic reconstruction 

of fate hierarchies from end-point state and lineage measurements. The results of 

hypothetical lineage-state reconstruction analyses are displayed for each scenario; they vary 
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dramatically, depending on the timing of both cell division and lineage barcoding. Heat 

maps depict the number of shared barcodes observed between each pair of states, normalized 

by the expected number of barcodes under a null hypothesis in which barcodes are 

distributed at random (‘Lineage 0/E ratio’). For a thorough definition of this statistic, see 

Weinreb et al. (2020)84. Lineage relationships can only be inferred at the time points when 

marked clones are generated and expanded. Given constant cell division rates and identical 

state manifolds, different time windows of barcode induction will lead to different inferences 

about lineage relationships. B | Continuous lineage barcoding in an actively dividing cell 

population enables all major lineage restriction events to be well-represented in a lineage-

state reconstruction analysis. C-E | Lineage relationships can only be inferred at time points 

when marked clones are generated and expanded. Given constant cell division rates and 

identical state manifolds, different time windows of barcode induction will lead to distinct 

inferences about lineage-state relationships. F | In postmitotic differentiation hierarchies, 

despite continuous DNA barcoding, an absence of cell division precludes the formation of 

marked clones containing> 1 cell. Barcodes are no longer enriched across the state manifold 

and cannot be used to reconstruct fate restriction hierarchies. G | Lineage inferences require 

well-sampled barcode data from marked clones. Variable rates of cell division on a state 

manifold skew clone sizes and, hence, the statistical power to detect lineage-barcode 

correlations. scRNA-seq, single-cell RNA sequencing.
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Fig. 6 |. Developmental paradigms that shape state-lineage relationships.
a | State manifold diagrams depicting the timing and fates of mitotic daughter cells. In cases 

of mitotic coupling (left), cells divide asymmetrically and give rise to distinct daughter 

states. In cases of population coupling (right), the average flux of cells down branches of the 

state manifold is maintained, but the fates of individual daughter cells are largely 

unpredictable. b | Examples of observable lineage trees that result from mitotic or population 

coupling. Mitotic coupling (left) leads to invariant, determinant lineage trees. Population 

coupling (right) permits a large number of observable lineage tree possibilities (six shown). 

c | Consensus relationships derived from a large number of individual tree observations. 

Despite the varied possibilities for the individual lineage trees in part b, the lineage 

relationships between states will be similar for both mitotic- and population-coupling 
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scenarios. The heat map plots lineage observed/expected (0/E) ratios (see the FIG. 5 legend 

and Weinreb et al. (2020)84 for the definition). scRNA-seq, single-cell RNA sequencing.
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Table 1 |

Sequencing based technologies for lineage tracing

Technology DNA-
editing 
system

Barcode type Barcode 
length 
(bp)

Uniform 
barcode 
frequency?

Frequent 
barcode 
homoplasy?

Barcode 
as 
mRNA

Barcode 
generation

Species In 
vivo?

Refs

TracerSeq Tol2 Integration 20 Yes No Yes Continuous Zebrafish Yes 47

LARRY Retrovirus Integration 28 Yes No Yes Single-step Mouse Yes 64

CellTag Retrovirus Integration 8 Yes No Yes Multi-step Human No 114,116

PollyLox Cre-loxP Recombination 2,152 No Yes No Continuous Mouse Yes 101,108

GESTALT Cas9 INDEL 266 No Yes No Continuous Zebrafish Yes 95

scGESTALT Cas9 INDEL 363 No Yes Yes Continuous Zebrafish Yes 101,110

ScarTrace Cas9 INDEL 249 No Yes Yes Continuous Zebrafish Yes 86

LINNAEUS Cas9 INDEL 75 No Yes Yes Continuous Zebrafish Yes 102

MARC1 Cas9 INDEL + 
integration

240 No Yes No Continuous, 
evolvable

Mouse Yes 92,100

Chen et al. Cas9 INDEL + 
integration

350 No Yes Yes Continuous Mouse Yes 85

CHYRON Cas9+TdT INDEL(with 
insertion 
favoured over 
deletion)

100 No Minimal No Continuous Human No 115

A summary of lineage-tracing methods that make use of sequencing DNA barcodes. CHYRON, cell history recording by ordered insertion; 
GESTALT genome editing of synthetic target arrays for lineage tracing; INDEL, insertion or deletion; LARRY, lineage and RNA recovery; 
LINNAEUS, lineage tracing by nuclease-activated editing of ubiquitous sequences; MARC1, mouse far actively recording cells 1; scGESTALT, 
single-cell GESTALT; TdT, terminal deoxynucleotidyl transferase.
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