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Abstract
Introduction  We aimed to develop algorithms distinguishing 
type 1 diabetes (T1D) from type 2 diabetes in adults ≥18 years 
old using primary care electronic medical record (EMRPC) and 
administrative healthcare data from Ontario, Canada, and to 
estimate T1D prevalence and incidence.
Research design and methods  The reference population 
was a random sample of patients with diabetes in EMRPC 
whose charts were manually abstracted (n=5402). Algorithms 
were developed using classification trees, random forests, and 
rule-based methods, using electronic medical record (EMR) 
data, administrative data, or both. Algorithm performance 
was assessed in EMRPC. Administrative data algorithms were 
additionally evaluated using a diabetes clinic registry with 
endocrinologist-assigned diabetes type (n=29 371). Three 
algorithms were applied to the Ontario population to evaluate 
the minimum, moderate and maximum estimates of T1D 
prevalence and incidence rates between 2010 and 2017, and 
trends were analyzed using negative binomial regressions.
Results  Of 5402 individuals with diabetes in EMRPC, 195 
had T1D. Sensitivity, specificity, positive predictive value 
and negative predictive value for the best performing 
algorithms were 80.6% (75.9–87.2), 99.8% (99.7–100), 
94.9% (92.3–98.7), and 99.3% (99.1–99.5) for EMR, 51.3% 
(44.0–58.5), 99.5% (99.3–99.7), 79.4% (71.2–86.1), and 
98.2% (97.8–98.5) for administrative data, and 87.2% 
(81.7–91.5), 99.9% (99.7–100), 96.6% (92.7–98.7) and 
99.5% (99.3–99.7) for combined EMR and administrative 
data. Administrative data algorithms had similar sensitivity 
and specificity in the diabetes clinic registry. Of 11 499 
711 adults in Ontario in 2017, there were 24 789 (0.22%, 
minimum estimate) to 102 140 (0.89%, maximum estimate) 
with T1D. Between 2010 and 2017, the age-standardized 
and sex-standardized prevalence rates per 1000 person-
years increased (minimum estimate 1.7 to 2.56, maximum 
estimate 7.48 to 9.86, p<0.0001). In contrast, incidence 
rates decreased (minimum estimate 0.1 to 0.04, maximum 
estimate 0.47 to 0.09, p<0.0001).
Conclusions  Primary care EMR and administrative 
data algorithms performed well in identifying T1D and 
demonstrated increasing T1D prevalence in Ontario. These 
algorithms may permit the development of large, population-
based cohort studies of T1D.

Introduction
Type 1 diabetes (T1D) results from the auto-
immune destruction of the pancreatic beta 
cells, leading to lifelong insulin deficiency 
and hyperglycemia. Although T1D accounts 
for only an estimated 5%–10% of all diabetes 
cases, it continues to be associated with 
excess morbidity, premature mortality, and 

Significance of this study

What is already known about this subject?
►► Validated algorithms identifying diabetes in large 
electronic medical record and administrative health-
care databases permit population-based research in 
diabetes but generally do not distinguish type 1 and 
type 2 diabetes.

►► The inability to identify type 1 diabetes in large data-
bases is a barrier to understanding type 1 diabetes 
epidemiology and outcomes.

What are the new findings?
►► Algorithms identifying type 1 diabetes in a primary 
care electronic medical record database had excel-
lent performance, and algorithms identifying type 1 
diabetes in administrative healthcare data had good 
performance.

►► Application of the administrative data algorithms 
demonstrated that type 1 diabetes prevalence rates 
among adults in Ontario, Canada have been increas-
ing since 2010, while incidence rates have been 
stable.

How might these results change the focus of 
research or clinical practice?

►► Application of these validated algorithms for identi-
fying type 1 diabetes will permit population-based 
studies on the epidemiology, healthcare utilization, 
and outcomes of type 1 diabetes.
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an economic burden to healthcare systems.1–3 The rela-
tive rarity of T1D compared with the burden of type 2 
diabetes (T2D) and difficulties in distinguishing T1D 
from T2D in large databases have been major barriers 
to understanding T1D epidemiology and outcomes at a 
population level.4 For example, while the epidemiology 
of T1D in children has been well described in a number 
of countries,5–7 there is a paucity of data concerning the 
epidemiology of T1D in adults, which is important for 
public health and resource planning.8

Population-based data sources such as electronic 
medical records (EMRs) or administrative healthcare 
databases are efficient and cost-effective methods for 
studying diabetes epidemiology and outcomes.9 An 
important strategy for conducting population-based 
studies is ‘electronic phenotyping’, in which algorithms 
are developed and used to identify patients with a partic-
ular condition.10 A number of algorithms distinguishing 
T1D from T2D have been developed using EMR data-
bases. The majority of these algorithms were developed 
using rule-based methods or decision trees, although 
Lethebe and others applied various other machine 
learning approaches.11 These algorithms commonly rely 
heavily on physician billing codes that are specific for 
T1D or T2D.11–15 However, physician billing codes differ-
entiating T1D and T2D are not available in all regions 
and, even when they are available, result in substantial 
misclassification due to errors in coding.16 Furthermore, 
there has been limited comparison in the performance 
of algorithms derived from different methods (ie, rule-
based vs decision trees vs machine learning).

Algorithms distinguishing T1D and T2D using admin-
istrative healthcare data have been developed for use in 
the pediatric population in countries such as the USA 
and Canada, but are more challenging to apply to adult 
populations in whom the proportion of T1D to T2D is 
much lower.17 18 To our knowledge, no algorithms distin-
guishing T1D from T2D in adults have been developed 
using administrative healthcare data alone, which lack the 
rich clinical details available in EMR databases. A major 
advantage of administrative healthcare data algorithms 
is their potential to be applied to an entire population.

Our objectives were to (1) derive and validate algo-
rithms distinguishing T1D from T2D in diabetes 
populations using a primary care EMR database, 
population-based administrative healthcare data, and 
combined EMR and administrative data from Ontario, 
Canada; and (2) evaluate temporal trends in prev-
alence and incidence of T1D in this population by 
applying the best performing administrative healthcare 
data algorithms.

Research design and methods
This study used EMR and administrative healthcare 
data from the province of Ontario, Canada, which has 
a single-payer healthcare system and a population of 
approximately 14 million. Records for a given individual 

were linked across multiple databases using encoded 
identifiers based on health card numbers and analyzed 
at ICES (formerly known as the Institute for Clinical Eval-
uative Sciences). The study was designed and reported 
according to guidelines for validation studies using 
administrative data.19

Creation of the reference population
The reference population was derived from a primary 
care EMR database, known as the Electronic Medical 
Records Primary Care (EMRPC). EMRPC (formerly 
referred to as EMRALD) contains all clinical infor-
mation from the medical chart of ~450 000 patients, 
contributed by over 400 primary care physicians using 
the Practice Solutions EMR in Ontario, Canada. Avail-
able data include the Cumulative Patient Profile (CPP) 
(medical history, problem list, medications, risk factors 
and allergies), progress notes, laboratory tests, specialist 
consultation letters, diabetes education center notes, 
and hospital discharge summaries. The population of 
EMRPC is generally representative of the entire Ontario 
population, with slight under-representation of young 
adult men and slight over-representation of young adult 
women.20

All patients in EMRPC with diabetes were identified 
using a previously validated algorithm that has a sensitivity 
of 83.1% and specificity of 98.2%.21 22 Inclusion criteria 
were age ≥18 years and use of EMR by the primary care 
physician for at least 1 year. Exclusion criteria included 
individuals registered to the primary care physician who 
had not yet had a clinic visit prior to 30 September 2015 
and missing date of birth.

A random 25% subsample of EMRPC patients with 
diabetes were selected to create the reference popula-
tion. The number of individuals required in validation 
studies of a disease state depends on the prevalence of 
the disease. A larger number of individuals is required 
for diseases with low prevalence to ensure there are a 
sufficient number of cases in the validation sample.23 To 
increase the efficiency of chart abstraction, we used an 
approach similar to the ‘Strawman’ algorithm employed 
by Klompas et al,12 by selecting patients more likely to have 
T1D to undergo chart abstraction, thereby increasing 
the number of cases for the same number of charts 
abstracted. A search of medications in the CPP catego-
rized patients into those with possible T1D (prescribed 
insulin with or without metformin, but no other antihy-
perglycemic agent) who were selected for chart abstrac-
tion, and those unlikely to have T1D (not prescribed 
insulin or prescribed a non-insulin, non-metformin anti-
hyperglycemic agent) whose charts were not abstracted 
but were included in the reference population as they 
were assumed to not have T1D.

Patients classified as having possible T1D based on 
these criteria were manually reviewed by an endocri-
nologist (AW) using a standardized abstraction plat-
form that was piloted on the first 100 charts. Fifty charts 
were randomly selected to be reabstracted by the same 
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abstractor for intrarater reliability assessment, and 
an additional 50 charts were randomly selected to be 
abstracted by a second abstractor (a primary care physi-
cian, LJ) for inter-rater reliability assessment. During the 
abstraction, diabetes type was classified as T1D or T2D 
using the entire EMR record and specific classification 
criteria (online supplementary appendix 1).

Validation of algorithms in an independent external sample
Administrative healthcare data algorithms that were 
derived using EMRPC as the reference population were 
additionally validated in an independent sample, the 
LMC Diabetes Registry. LMC is a network of community-
based endocrinology practices with a central database 
that includes diabetes type as determined by an endo-
crinologist.24 The database used for this study included 
records for patients from seven clinic sites.

Variables for EMR data algorithms
Automated searches of free text in the CPP were 
performed, which is the active health history section of 
the EMR. CPP descriptions of diabetes were classified 
as ‘Definite T1D’, ‘Possible T1D’ or ‘T2D’ (see table  1 
footnote). Automated searches of structured fields were 
performed for medications (categorized as any insulin, 
bolus insulin, metformin, or antihyperglycemic medica-
tion other than insulin or metformin), body mass index 
and age.

Variables for administrative healthcare data algorithms
Hospitalization and emergency department diagnoses 
were obtained from the CIHI (Canadian Institute for 
Health Information)-Discharge Abstract Database and 
the National Ambulatory Care Reporting Services held at 
ICES. Physician service claims were determined from the 
Ontario Health Insurance Plan. Prescription medication 
information was obtained from the Ontario Drug Benefit 
Database, which includes claims for prescription medica-
tions for individuals age 65 or older, or those individuals 
under age 65 with disability or social assistance. Labora-
tory data were obtained from the Ontario Laboratories 
Information System. Insulin pump use was obtained 
from the Ontario Ministry of Health Assistive Devices 
Program, which has provided funding for insulin pumps 
to children with T1D since 2006 and adults with T1D 
since 2008. Date of diabetes diagnosis (incidence) was 
determined from the Ontario Diabetes Database, which 
requires two physician service claims for diabetes within 
2 years or one hospitalization record with diabetes.9 Pedi-
atric diabetes was identified by a previously validated algo-
rithm, which requires four physician service codes with 
a diagnosis of diabetes within 1 year prior to the age of 
19 years.25 Hospitalization and emergency records transi-
tioned from the International Classification of Diseases-9 
(ICD-9) to ICD-10 in 2002. Prior to 2002, hospitalization 
records did not distinguish diabetic ketoacidosis (DKA) 
or diabetes as being specific to T1D or T2D. There-
fore, three variables for DKA were considered: any DKA 

consisted of a hospitalization code for DKA using either 
ICD-9 or ICD-10 criteria from any date, T1D-specific DKA 
consisted of a hospitalization code for DKA using ICD-10 
criteria for 2002 or later, and T2D-specific DKA consisted 
of a hospitalization code for DKA using ICD-10 criteria 
for 2002 or later. A full list of variables and the corre-
sponding codes is available in online supplementary 
appendix 2.

Derivation of algorithms
Algorithms were derived using the EMRPC reference 
population. Three approaches to algorithm derivation 
(all considering the same potential set of variables derived 
from the data sources above) were used: (1) classification 
trees; (2) random forests; and (3) rule-based methods. 
Classification trees categorize individuals as having T1D 
or T2D based on a sequence of binary splits or partitions 
that, at each step, consider all possible binary splits of 
the data (recursive partitioning). First, the single vari-
able which best splits the data into two groups is selected. 
For each resulting subgroup, another variable (which 
could be the same variable) is selected that best splits 
the subgroup into two further subgroups. The process 
is repeated recursively on each of the two groups until 
no further partitioning can be performed.26 Variables 
selected in the classification tree analysis are thus chosen 
without investigator input or selection. Random forests 
grow a sequence of classification trees, each classifica-
tion tree grown in a different bootstrap sample. At each 
node, only a random sample of the predictor variables 
are considered when deciding how to partition the given 
node. Results are combined across the classification trees 
using a majority-vote approach. Random forests are less 
susceptible to overfitting compared with conventional 
classification trees.27 Rule-based methods were initially 
based on the descriptive characteristics of the study 
sample and a priori clinical knowledge, and were subse-
quently refined based on evaluation of the performances 
of all algorithms.

Evaluation of algorithms
Algorithms were examined with respect to sensitivity, 
specificity, positive predictive value (PPV) and nega-
tive predictive value (NPV) and corresponding 95% 
CIs. Three algorithms were selected to give minimum, 
moderate and maximum estimates for prevalence and 
incidence rates based on their performance characteris-
tics: a low sensitivity, moderate PPV algorithm (minimum 
estimate); a moderate sensitivity, moderate PPV algo-
rithm (moderate estimate); and a high sensitivity, low 
PPV algorithm (maximum estimate).

Prevalence and incidence of T1D
The three selected algorithms were then applied to 
the entire Ontario population to determine yearly 
crude and age-standardized and sex-standardized prev-
alence and incidence rates for T1D per 1000 person-
years of follow-up time from 1 April 2010 to 31 March 

https://dx.doi.org/10.1136/bmjdrc-2020-001224
https://dx.doi.org/10.1136/bmjdrc-2020-001224
https://dx.doi.org/10.1136/bmjdrc-2020-001224
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Table 1  Descriptive characteristics of the EMRPC reference population by diabetes type

Characteristics Abstracted T1D (n=195) Abstracted T2D (n=240) Not abstracted (n=4967)

EMR variables

Age at index, median (IQR) 42 (31–54) 67 (56–76) 66 (57–75)

Male 95 (48.7%) 131 (54.6%) 2667 (53.7%)

Cumulative Patient Profile terms*

Definite T1D 152 (77.9%) <6 37 (0.7%)

Possible T1D 21 (10.6%) 11 (4.6%) 17 (0.3%)

T2D 8 (4.0%) 142 (59.2%) 3017 (60.7%)

Renal insufficiency† 13 (6.5%) 26 (10.8%) 103 (2.1%)

Any insulin use 195 (100.0%) 240 (100.0%) 831 (16.7%)

Bolus insulin use 172 (88.2%) 160 (66.7%) 359 (7.2%)

Metformin use 14 (7.2%) 142 (59.2%) 3814 (76.8%)

Non-insulin, non-metformin antihyperglycemic 
agent use

0 (0%) 0 (0.0%) 2378 (47.9%)

BMI (mean±SD) 27±7 32±7 32±7

Administrative data variables

Age at diabetes incidence, median (IQR) 25 (15–34) 50 (42–58) 56 (47–64)

Pediatric diabetes 58 (29.7%) 0 (0%) 14 (0.3%)

Any insulin use‡ 48 (92.3%) 133 (90.5%) 457 (16.3%)

Bolus insulin use‡ 47 (97.9%) 116 (78.9%) 242 (53.0%)

Metformin use‡ <6 79 (53.7%) 1722 (61.6%)

Non-insulin, non-metformin
glycemic agent use†

<6 <6 1045 (37.4%)

Insulin pump 63 (32.3%) <6 17 (0.3%)

Hospital codes

T1D DKA (ICD-10) 38 (19.5%) <6 11 (0.2%)

T2D DKA (ICD-10) 8 (4.1%) 13 (5.4%) 27 (0.5%)

Any DKA (ICD-9+ICD-10) 58 (29.7%) 15 (6.3%) 43 (0.9%)

T1D 46 (23.6%) 13 (5.4%) 49 (1.0%)

T2D 42 (21.5%) 172 (71.7%) 2266 (45.6%)

eGFR (mean±SD) 101.4±24.9 75.1±28.0 80.3±21.7

*Definite T1D: T1D, T1DM, latent autoimmune diabetes, LADA, juvenile diabetes, juvenile-onset diabetes, juvenile-onset diabetes, diabete de type 1, 
diabète juvenile, diabète type 1, DB1. Possible T1D: type 1, IDDM, insulin-dependent diabetes, insulin-dependent diabetes, Schmidt, polyglandular. 
T2D: type 2 diabetes, T2D, T2DM, NIDDM, mature onset, diabete du type 2, non-insulin-dependent diabetes, non-insulin-dependent diabetes, non-
insulin-dependent diabetes, non-insulin-dependent diabetes, non-insulin-dependent diabetes, diet-controlled diabetes, diet-controlled diabetes, 
diabète type 2, DB2.
†Renal insufficiency defined as eGFR ≤30 (or if end-stage renal disease documented for abstracted charts).
‡The denominator for medication use using administrative data was individuals who had any medication claim within ±365 days of index date, since 
not all individuals have medication data available in the administrative data.
BMI, body mass index; DB1, diabète type 1; DB2, diabète type 2; DKA, diabetic ketoacidosis; eGFR, estimated glomerular filtration rate; EMR, 
electronic medical record; EMRPC, Electronic Medical Records Primary Care; ICD, International Classification of Diseases; IDDM, Insulin-dependent 
diabetes mellitus; LADA, Latent Autoimmune Diabetes in Adults; NIDDM, non-insulin dependent diabetes mellitus; T1D, type 1 diabetes; T2D, type 2 
diabetes; T1DM, type 1 diabetes mellitus; T2DM, type 2 diabete mellitus.

2017. Denominators for these rates were individuals 
who were alive and eligible for healthcare at the start 
of each fiscal year (which begins on 1 April each year 
and concludes on 31 March the following year), and 
numerators were the number of individuals who met 
the criteria for the specified algorithm. Rates were stan-
dardized to the 1991 Canadian census population.

Sample size calculation
A sample size calculation was performed a priori and 
abstraction of 385 charts permitted estimation of the 

95% CI for sensitivity and specificity with a maximum 
width of ±4%.28 The sample size for manual chart abstrac-
tion could not be estimated precisely a priori since medi-
cation criteria were applied to a random subset of the 
entire diabetes population, and the actual sample size 
was larger than our sample size requirement calculated.

Statistical analysis
Intrarater and inter-rater reliability were assessed by 
unweighted Cohen’s kappa. For the classification tree 
analyses, the R package rpart (V.4.1–8) was used to grow 
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Figure 1  Selection of subjects for the reference population. EMR, electronic medical record; EMRPC, Electronic Medical 
Records Primary Care; T1D, type 1 diabetes; T2D, type 2 diabetes.

and prune a classification tree with the outcome being 
T1D.26 29 A stopping rule was that a node did not undergo 
subsequent splits once the number of subjects in the node 
was less than 10. The minimum cross-validated mean 
error was used as a criterion in pruning the final tree. 
The bootstrapping approach of Harrell et al30 was applied 
to provide optimism-corrected estimates of performance. 
Random forests were performed using the R package 
randomForest (V.4.5–36), and missing data were handled 
in multiple ways: complete case analysis, simple imputa-
tion with mean/median, or imputation using rfimpute.31

Trends in prevalence and incidence rates per 1000 
person-years of follow-up were analyzed by negative 
binomial regression with follow-up time as an offset, 
comparing the rate in each year with 2010 as a refer-
ence. An Omnibus likelihood ratio was calculated for 
each negative binomial regression and model fit was 
verified. This process was repeated for each set of esti-
mates (minimum, moderate and maximum). R V.3.1.2 
(31 October 2014) was used for performing classification 
tree and random forest analyses.32 SAS V.9.4 was used for 
all other analyses.

Sensitivity analyses
As a post-hoc sensitivity analysis, the performances of 
selected algorithms in the LMC Diabetes Registry were 
evaluated when stratified by age as ≤40 or >40 years old. 

Administrative healthcare data in Ontario date back to 
1991; thus, in order to identify an individual as having 
incident diabetes younger than 19 years old, age at index 
date would have had to be 42 years or younger.

Results
Reference population characteristics
There were 26 238 individuals with diabetes in EMRPC 
as of 30 September 2015, and 21 518 remained after 
applying the inclusion and exclusion criteria (figure 1). 
The reference population included 5402 individuals with 
diabetes (a random 25% subsample), of whom 435 had 
charts abstracted for meeting the criteria for possible 
T1D and 4967 were included as having T2D without 
chart abstraction based on medication use alone. Of the 
435 patients with possible T1D, 195 (44.8%) had defi-
nite T1D based on chart abstraction. Thus, the overall 
proportion of T1D in this sample of primary care patients 
with diabetes was 3.6%. Unweighted Cohen’s kappa for 
intrarater and inter-rater agreement was 0.96 and 0.82, 
respectively. Descriptive characteristics based on EMR 
and administrative data are reported in table 1.

The LMC Diabetes Registry was used for validation of 
administrative healthcare data algorithms in an indepen-
dent sample population. There were 29 371 individuals in 
the registry, of whom 2379 had T1D and 26 992 had T2D 
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Table 2  Performances of selected algorithms*

Algorithm description
Sensitivity
(95% CI)

Specificity
(95% CI)

PPV
(95% CI)

NPV
(95% CI)

EMR algorithms

EMRTree† 80.6 (75.9 to 87.2) 99.8 (99.7 to 100) 94.9 (92.3 to 98.7) 99.3 (99.1 to 99.5)

EMRForest‡ 83.1 (77.1 to 88.1) 99.8 (99.6 to 99.9) 93.1 (88.3 to 96.) 99.4 (99.1 to 99.6)

EMRRule 1: definite T1D CPP + no non-insulin, non-metformin glycemic 
agent

77.9 (71.5 to 83.6) 99.5 (99.3 to 99.7) 86.4 (80.4 to 91.1) 99.2 (98.9 to 99.4)

EMRRule 2: definite T1D CPP or pump 81.5 (75.4 to 86.7) 99.2 (98.9 to 99.4) 79.1 (72.8 to 84.5) 99.3 (99 to 99.5)

EMRRule 3: definite T1D CPP + no T2D CPP 76.9 (70.4 to 82.6) 99.4 (99.1 to 99.6) 82 (75.6 to 87.2) 99.1 (98.8 to 99.4)

EMRRule 4: (definite T1D CPP + insulin + no non-insulin, non-metformin 
glycemic agent) or (possible T1D CPP + age at index <45)

81 (74.8 to 86.3) 97.5 (94.6 to 99.1) 96.3 (92.2 to 98.6) 86.3 (81.7 to 90.2)

EMRRule 5: definite T1D CPP 77.9 (71.5 to 83.6) 98.8 (96.4 to 99.7) 98.1 (94.4 to 99.6) 84.6 (79.9 to 88.7)

EMRRule 6: definite T1D CPP or BMI <25 85.6 (79.9 to 90.2) 89.6 (85 to 93.1) 87 (81.4 to 91.4) 88.5 (83.8 to 92.2)

Administrative data algorithms

AdminTree† 61.4 (57.5 to 71.3) 99.2 (99.0 to 99.5) 73.9 (70.1 to 83.5) 98.6 (98.3 to 99.0)

AdminForest‡ 58.0 (50.7 to 65.0) 99.3 (99.0 to 99.5) 74.8 (67.1 to 81.5) 98.4 (98.1 to 98.8)

AdminRule 1: pediatric diabetes or pump or T1D DKA 58.5 (51.2 to 65.5) 99.3 (99.1 to 99.5) 76.5 (68.9 to 83.1) 98.5 (98.1 to 98.8)

AdminRule 2: pediatric diabetes or pump 51.3 (44.0 to 58.5) 99.5 (99.3 to 99.7) 79.4 (71.2 to 86.1) 98.2 (97.8 to 98.5)

AdminRule 3: (diabetes incidence <30 + (pediatric diabetes or any DKA)) or 
pump or T1D DKA

61.5 (54.3 to 68.4) 99.3 (99.0 to 100) 75.9 (68.5 to 100) 98.6 (98.2 to 98.9)

AdminRule 4: diabetes incidence <30 or pump or any DKA 80.0 (73.7 to 85.4) 96.7 (96.2 to 97.2) 47.6 (42.0 to 53.1) 99.2 (99.0 to 99.5)

AdminRule 5: diabetes incidence <30 or (diabetes incidence <40 and no 
T2D) or pump or any DKA

91.3 (86.4 to 94.8) 92.6 (91.8 to 93.3) 31.5 (27.7 to 35.5) 99.6 (99.4 to 99.8)

Combined EMR and administrative data algorithms

EMR+AdminTree† 80.9 (76.5 to 87.6) 99.9 (99.8 to 100) 95.7 (93.1 to 99.0) 99.3 (99.0 to 99.5)

EMR+AdminForest‡ 88.2 (82.8 to 92.4) 99.8 (99.7 to 100) 95.0 (90.8 to 97.7) 99.6 (99.3 to 99.7)

EMR+AdminRule 1: insulin + no non-insulin, non-metformin glycemic agent 
+ (definite T1D CPP or pump or pediatric diabetes)

87.2 (81.7 to 91.5) 99.9 (99.7 to 100) 96.6 (92.7 to 98.7) 99.5 (99.3 to 99.7)

EMR+AdminRule 2: insulin + no non-insulin, non-metformin glycemic agent 
+ (pediatric diabetes or pump)

51.3 (44.0 to 58.5) 100 (99.9 to 100) 98 (93.1 to 99.8) 98.2 (97.8 to 98.5)

EMR+AdminRule 3: bolus insulin + no non-insulin, non-metformin glycemic 
agent + (definite T1D CPP or pump or pediatric diabetes)

79.5 (73.1 to 84.9) 99.9 (99.7 to 100) 96.3 (92.1 to 98.6) 99.2 (99 to 99.5)

EMR+AdminRule 4: definite T1D CPP + insulin + no non-insulin, non-
metformin glycemic agent

77.4 (70.9 to 83.1) 99.9 (99.8 to 100) 96.8 (92.7 to 99) 99.2 (98.9 to 99.4)

*EMRPC reference standard included 5402 individuals (195 with T1D, 5207 with T2D).
†Classification tree estimates were optimism-adjusted.
‡Random forest used rfimpute for missing data (age at diabetes incidence, eGFR and BMI).
BMI, body mass index; CPP, Cumulative Patient Profile; DKA, diabetic ketoacidosis; eGFR, estimated glomerular filtration rate; EMR, electronic medical record; EMRPC, Electronic 
Medical Records Primary Care; NPV, negative predictive value; PPV, positive predictive value; T1D, type 1 diabetes; T2D, type 2 diabetes.

(proportion of T1D out of all diabetes cases: 8.1%; the char-
acteristics are reported in online supplementary table 3).

EMR data algorithms
The best performing EMR algorithm was derived using a 
classification tree (EMRTree in table 2 and figure 2A), which 
included the following variables: definite or possible T1D 
terms in the CPP, insulin, absence of non-insulin, non-
metformin antihyperglycemic agent, and age at index 
date. This algorithm had a sensitivity of 80.6% (95% CI 
75.9 to 87.2), specificity of 99.8% (99.7 to 100), PPV of 
94.9% (92.3 to 98.7) and NPV of 99.3% (99.1 to 99.5). The 
random forest (EMRForest) had similar performance to the 
classification tree, although with a slightly lower PPV. Vari-
able importance factors for the random forest are reported 
in online supplementary table 4. Rule-based algorithms did 
not perform as well as the classification tree and random 
forest. The best performing algorithm using rule-based 

methods was EMRRule 3, which included definite T1D terms 
in the CPP and absence of insulin and antihyperglycemic 
agents other than metformin (sensitivity 77.9% (71.5 to 
83.6), specificity 99.5% (99.3 to 99.7), PPV 86.4% (80.4 to 
91.1), and NPV 99.2% (98.9 to 99.4)).

Performances of administrative healthcare data algorithms
The best performing algorithm (ie, highest PPV) was 
AdminRule 2, which was a combination including pedi-
atric diabetes or insulin pump (sensitivity 51.3% (44 
to 58.5), specificity 99.5% (99.3 to 99.7), PPV 79.4% 
(71.2 to 86.1), and NPV 98.2% (97.8 to 98.5)). Admin-

Rule 3, which was a simple combination including age at 
diabetes incidence younger than 30 years old, pediatric 
diabetes, DKA and insulin pump use, had a higher 
sensitivity of 61.5% (54.3 to 68.4) but lower PPV of 
75.9% (68.5 to 100). The classification tree (Admin-

Tree; figure 2B) and random forest (AdminForest; online 

https://dx.doi.org/10.1136/bmjdrc-2020-001224
https://dx.doi.org/10.1136/bmjdrc-2020-001224
https://dx.doi.org/10.1136/bmjdrc-2020-001224


7BMJ Open Diab Res Care 2020;8:e001224. doi:10.1136/bmjdrc-2020-001224

Epidemiology/Health Services Research

Figure 2  Classification tree algorithms for EMR data (A), administrative data (B), and combined EMR and administrative 
data (C). CPP, Cumulative Patient Profile; DKA, diabetic ketoacidosis; EMR, electronic medical record; ODD, Ontario Diabetes 
Database; T1D, type 1 diabetes; T2D, type 2 diabetes.

supplementary table 4) had similar performances, but 
both had lower PPV than the optimally performing 
algorithms using rule-based algorithms.

Sensitivity and specificity for all algorithms described 
above were similar in the LMC Diabetes Registry 
compared with EMRPC. However, PPVs were consis-
tently higher and NPVs slightly lower in the LMC 
sample, as expected based on the higher proportion of 
patients with T1D in this sample (online supplemen-
tary table 5). For example, AdminRule 2had a sensitivity 
of 58.9% (56.9 to 60.9), specificity of 99.6% (99.5 to 
99.7), PPV of 93.2% (91.8 to 94.4) and NPV of 98.5% 

(96.3 to 96.7), and AdminRule 3had a sensitivity of 65.4% 
(63.4 to 67.3), specificity of 99.3% (99.2 to 99.4), PPV 
of 89.5% (87.9 to 90.9) and NPV of 97% (96.8 to 97.2).

Combined EMR and administrative data algorithms
A rule-based algorithm including insulin, absence of 
antihyperglycemic medication other than metformin, 
definite T1D terms in the CPP, insulin pump or pediatric 
diabetes (EMR+AdminRule 1) was the best performing 
algorithm, with a sensitivity of 87.2% (81.7 to 91.5), speci-
ficity of 99.9% (99.7 to 100), PPV of 96.6% (92.7 to 98.7), 
and NPV of 99.5% (99.3 to 99.7).

https://dx.doi.org/10.1136/bmjdrc-2020-001224
https://dx.doi.org/10.1136/bmjdrc-2020-001224
https://dx.doi.org/10.1136/bmjdrc-2020-001224
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Figure 3  Age-standardized and sex-standardized (A) 
prevalence and (B) incidence trends of T1D in Ontario, 
Canada per 1000 person-years*. Legend: closed circles: 
high sensitivity, low PPV algorithm (AdminRule 4); closed 
triangles: moderate sensitivity, moderate PPV algorithm 
(AdminRule 3); closed squares: low sensitivity, moderate PPV 
algorithm (AdminRule 2). *The denominator for determination 
of prevalence rates was person-years of follow-up for all 
eligible subjects in each fiscal year. The denominator for 
determination of incidence rates was person-years of follow-
up for eligible subjects excluding those previously identified 
with T1D prior to the start of each fiscal year. PPV, positive 
predictive value; T1D, type 1 diabetes.

Prevalence and incidence of T1D in Ontario
Three algorithms were applied to the Ontario popula-
tion to estimate the minimum, moderate, and maximum 
prevalence and incidence rates of T1D from 2010 to 
2017 (online supplementary tables 6–8). The algorithms 
selected were (1) AdminRule 2: a low sensitivity, moderate 
PPV algorithm; (2) AdminRule 3: a moderate sensitivity, 
moderate PPV algorithm; and (3) AdminRule 4: a high sensi-
tivity, low PPV algorithm. The number of individuals with 
prevalent T1D in 2017 ranged from 24 789 (minimum 
estimate using AdminRule 2) to 102 140 (maximum esti-
mate using algorithm 14). Age-standardized and sex-
standardized prevalence rates increased between 2010 
and 2017, with the minimum estimate being an increase 
from 1.7 (95% CI 1.68 to 1.73) to 2.56 (2.53 to 3.6) per 
1000 person-years using AdminRule 2, and the maximum 
estimate being an increase from 7.48 (7.43 to 7.54) to 
9.86 (9.79 to 9.92) per 1000 person-years using Admin-

Rule 4. Overall, this represented a significant increase in 
T1D prevalence of 32%–50% (p<0.0001 for Omnibus 
likelihood ratio). Using AdminRule 2 and AdminRule 3, age-
standardized and sex-standardized incidence decreased 
between 2010 and 2014 and subsequently remained 

stable (figure 3), with the incidence rate per 1000 person-
years in 2017 being between 0.04 (0.03–0.04) using 
the minimum estimate and 0.09 (0.08–0.1) using the 
moderate estimate (Omnibus likelihood ratio p<0.0001). 
However, using AdminRule 4 (maximum estimate), inci-
dence rates for T1D decreased from 0.47 (0.46–0.49) 
per 1000 person-years in 2010 to a nadir of 0.44 in 2013, 
then increased to 0.61 in 2017 (Omnibus likelihood ratio 
p<0.0001). Using AdminRule 2 and AdminRule 3, the esti-
mated number of individuals newly diagnosed with T1D 
in 2017 in Ontario was between 397 and 1013.

Sensitivity analyses
The following EMR variables had missing data: body mass 
index (12.9% missing) and estimated glomerular filtra-
tion rate (11.6% missing). The following administrative 
data variables had missing data: age at diabetes incidence 
(3.7%) and estimated glomerular filtration rate (22%). 
For all random forests, multiple approaches for missing 
data were evaluated (complete case analysis, simple 
imputation using means/medians, and imputation 
using rfimpute), and all results were consistent with the 
primary analysis. Sensitivities of algorithms were higher 
in individuals ≤40 years old than in those >40 years old, 
whereas specificities were similar (online supplementary 
table 9; for example, sensitivity 73.0% (70.4 to 75.5) vs 
44.1% (41.2 to 47) for AdminRule 2, and 77.7% (75.3 to 80) 
vs 52.3% (49.4 to 55.2) for AdminRule 3).

Conclusions
We derived and validated algorithms identifying T1D, 
among those with diabetes, using primary care EMR data, 
administrative healthcare data, and EMR combined with 
administrative healthcare data in Ontario, Canada. Algo-
rithms using EMR data alone or EMR combined with 
administrative data were able to identify T1D with excel-
lent performance. However, algorithms using adminis-
trative data alone had important limitations, namely low 
sensitivity and only moderate PPV.

In our study, rule-based algorithms outperformed or 
performed similarly to classification trees and random 
forests. It is important to note that the best performing 
rule-based algorithms mimicked classification trees, after 
the classification tree had been developed. Thus, it is 
possible to use data-driven approaches such as classifi-
cation trees to determine optimal variables for inclusion 
in an algorithm and subsequently develop a rule-based 
approach that may be simpler for implementation. Rule-
based approaches also permitted us to select an algorithm 
prioritizing specificity and PPV, even at the expense of 
sensitivity. In contrast, classification trees and random 
forests generated a single algorithm that best balanced 
all parameters (sensitivity, specificity, PPV and NPV).

The EMR data algorithm had superior performance 
compared with previously published algorithms. One 
algorithm based on the ratio of billing codes for T1D 
versus T2D, prescriptions and blood test results had a 

https://dx.doi.org/10.1136/bmjdrc-2020-001224
https://dx.doi.org/10.1136/bmjdrc-2020-001224
https://dx.doi.org/10.1136/bmjdrc-2020-001224
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sensitivity of 65% and a PPV of 88% but did not report 
specificity or NPV.12 13 Lethebe and others used machine 
learning models to develop an algorithm that included 
text terms for T1D diagnosis and age at meeting criteria 
for diabetes diagnosis, and had a sensitivity of 43%, spec-
ificity of 99%, PPV of 85% and NPV of 95%.11 Another 
algorithm that considered diagnostic codes, medica-
tions, and age at diabetes incidence had perfect agree-
ment with a gold standard for diagnosis of T1D versus 
T2D, but likely included a small number of subjects with 
T1D.14 Finally, a classification tree that included medi-
cations, DKA, billing codes, and age had a sensitivity of 
92.8%, specificity of 99.3%, PPV of 89.5%, and NPV of 
99.5%.15

We used three candidate administrative healthcare 
data algorithms to evaluate the minimum, moderate, 
and maximum estimates of the number of prevalent and 
incident T1D cases. All three algorithms demonstrated 
increasing prevalence of T1D from 2010 to 2017. We 
observed decreasing incidence of T1D between 2010 
and 2017 using the minimum and moderate estimate 
algorithms. However, uptake of insulin pumps would be 
expected to have been highest shortly after the funding 
program was initiated in 2008, and therefore early ‘inci-
dent’ cases may actually reflect individuals with prevalent 
T1D who were newly starting insulin pump therapy. Inter-
estingly, the moderate sensitivity, low PPV (maximum esti-
mate) algorithm demonstrated a divergent trend in T1D 
incidence, with rates decreasing until 2014 but subse-
quently increasing. Since this algorithm includes DKA 
that was not specified to be associated with T1D or T2D, 
we hypothesize that the increasing incidence may reflect 
rising rates of DKA in patients with T2D taking sodium-
glucose transport protein 2 inhibitors, who were misclas-
sified as having T1D by this algorithm.33 Accounting for 
these factors, incidence rates of T1D in Ontario appear 
to be stable.

Worldwide, the incidence of T1D in children and youth 
is reported as ≤0.5% of the population.5–7 Incidence 
in children has generally been found to be increasing, 
although in some geographical regions there have been 
reports of a plateau in incidence rates.5 7 34–39 Our esti-
mates for T1D incidence rates in adults were lower than 
those reported for children, which is not surprising since 
the majority of T1D cases are diagnosed in childhood or 
adolescence.40 Less information on T1D incidence trends 
in adults is available, but our results are consistent with 
decreasing incidence rates in individuals over the age of 
15 and 25 in Belgium, Lithuania and Sweden.6 8 41 42 In 
these countries, a concurrent increase in T1D incidence 
in younger ages has been noted, suggesting a shift in 
diagnosis to younger ages rather than a true increase in 
overall incidence of T1D. Although T1D prevalence rates 
in adults are not explicitly reported in the literature to 
our knowledge, our findings of increasing prevalence are 
consistent with reports of decreasing mortality in individ-
uals with T1D and perhaps a shift in age at diagnosis to 
younger ages.43

There are some important considerations in the appli-
cation of the administrative healthcare data algorithms 
derived in this study. First, the proportion of patients with 
T1D in the reference population may have been lower 
than the true population prevalence since some individ-
uals with T1D only see specialists and not primary care 
physicians. Indeed, the proportion of diabetes cases in 
EMRPC assigned as being T1D (3.6%) was lower than 
observed in other populations, which is generally quoted 
as 5%–10% of all diabetes cases.4 13 14 If the true popula-
tion proportion of T1D is higher, then the PPV of applied 
algorithms would also be expected to be higher. Second, 
administrative healthcare data in Ontario date back to 
1991, which means we could not determine if diabetes 
incidence criteria were met during childhood for indi-
viduals who were 42 years or older at the study end-date. 
This explains why individuals older than age 44 with inci-
dent diabetes younger than 28 years old but who did not 
meet the criteria for pediatric diabetes were classified as 
having T1D in the classification tree using administrative 
healthcare data (figure 2B), since it could not have been 
determined if these individuals met the criteria for pedi-
atric diabetes. Thus, the algorithm performs better in 
younger individuals, and we expect that as the retrospec-
tive availability of data lengthens, algorithm performance 
will improve for older ages. Third, the algorithm relies 
on a database of insulin pump users that is exclusive for 
T1D, which may not be available in all settings. Finally, we 
did not assess alternative methods for building predictive 
models, such as logistic regression or machine learning 
approaches.

Our study has a number of strengths. The sample size 
for the reference population was large because auto-
mated search criteria based on medications were used to 
first identify individuals with possible T1D. In addition, 
we validated the algorithms in two different sample popu-
lations. We also evaluated multiple methods for deriving 
algorithms (classification trees, random forests, and 
rule-based methods). Limitations of our study include 
possible misclassification of T1D as T2D in the charts that 
were not manually abstracted, although the number of 
false-negatives is likely to be low since antihyperglycemic 
medications other than metformin were rarely used in 
T1D care prior to 2015. In addition, internal validation 
of the algorithms (eg, splitting the sample into derivation 
and validation sets) was not performed due to sample 
size concerns; however, classification tree estimates were 
adjusted for optimism, which corrects for the tendency of 
predictive models to perform better in training data sets 
than external data. Finally, algorithms with the highest 
PPV had only modest sensitivity, which led us to evaluate 
ranges of plausible estimates for prevalence and inci-
dence rates.

In summary, we have derived and validated algorithms 
identifying T1D that have excellent performance using 
primary care EMR data and combined EMR and admin-
istrative data. Algorithms using administrative data alone 
have modest performance, but the benefit of being able 
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to be applied to an entire population. Application of 
these algorithms demonstrated increasing prevalence of 
T1D in Ontario since 2010 and stable incidence. These 
algorithms will permit further study of the epidemiology, 
healthcare utilization, and outcomes of T1D in large 
populations.
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