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Abstract

Protein “sectors” is a theoretical construct positing that sparse subsets of amino acid residues form 

cooperative networks that are key elements of protein stability, ligand binding, and allosterism. 

Sectors in have been obtained for a number of proteins by Statistical Coupling Analysis (SCA) 

method of Ranganathan and co-workers, which involves the spectral analysis of conservation-

weighted evolutionary covariance matrices obtained from a multiple sequence alignments of 

homologous families of proteins. SCA sectors have been successfully indentified with functional 

properties and allosterism in particular for a number of protein families. Here we investigate the 

utility of the sector idea for the analysis of physics-based molecular dynamics (MD) trajectories on 

proteins. The test case for this project is PSD95- PDZ3, a protein well characterized by x-ray 

crystallography, NMR spectroscopy and site specific mutagenisis, and one of the smallest systems 

for which allosterism has been experimentally observed. All-atom MD simulations were 

performed for a total of 500 nanoseconds. MD-calculated covariance matrices for the fluctuations 

of residue displacements and non-bonded interaction energies were subjected to spectral analysis 

in a manner analogous to that used to analyze positional correlation matrices in SCA. The 

composition of MD sectors was compared with results on SCA sectors and site specific 

mutagenesis. The agreement indicates that MD sectors to be a useful paradigm for analyzing 

protein MD trajectories, and likewise accounts for single domain allosterism in PDZ3. MD sectors 

are expected to be useful in the development of experimentally testable hypotheses on 

cooperativity, ligand binding, allosterism, and allosteric drug design.
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1. Introduction

Prediction algorithms for amino acid residues of a protein that may be of special importance 

to function is an active area of research in computational biology (Gerek & Ozkan, 2011; 

Zerbe, Hall, Vajda, Whitty & Kozakov, 2012; Zhang, Jiang & Shan, 2016; Qiao, Xiong, 

Gao, Zhu & Chen, 2018). There is a considerable literature on prediction of positions in the 

sequence of a protein in which function is sensitive to single site mutations, or “hot spots” 

(Reynolds, McLaughlin & Ranganathan, 2011; Tse & Verkhivker, 2015; Kulp, Cloudsdale, 

Kulp & Guarnieri, 2017). Predicting the amino acid residues in a sequence that form 

cooperative networks that are involved in allosterism is a more challenging problem but also 

with active interest, particularly in allosteric drug design (Marcelino, Smock, & Gierasch, 

2006; Acuner, Ozbabacan, Bursoy, Keskin, & Nussinov, 2010; Reynolds, McLaughlin & 

Ranganathan, 2011; Tse & Verkhivker, 2015; Wagner et al., 2016). While the allosteric 

effect is ubiquitously present in biological systems (Liu & Nussinov, 2016), there is no 

observable property of a residue that unequivocally indicates that it participates in a 

cooperative network that encompasses both the site of functional activity binding and the 

distal binding site of an allosteric effector.

The sector hypothesis postulates a construct termed “sectors” that captures the proposition 

that functional properties of a protein involve a cooperative network consisting of a sparse 

subset of the total complement of amino acid residues. Historically it was developed within 

the context of Statistical Coupling Analysis (SCA) (Halabi, Rivoire, Leibler & Ranganathan 

2009; Reynolds et al. 2011; Rivoire, Reynolds & Ranganathan 2016), a bioinformatics 

protocol reporting on evolutionary covariance. The conservation-weighted evolutionary 

covariance matrix is computed based on a multiple sequence alignment from a collection of 

homologous entries from the sequence data bases. Spectral analysis is applied to identify 

positions that show a statistical tendency to co-evolve. Similar analysis utilizing methods 

from the domain of bioinformatics have also been developed to identify sectors (Wagner et 

al. 2016). Sectors are then taken as candidates for constituting functionally important 

cooperative networks associated with protein stability, ligand recognition, catalysis, and 

allosteric regulation.

Although the sequence based covariance method has procured useful empirical results 

generating testable hypotheses about biological phenomena of interest, the approach lacks 

footing in first principles.

Sectors are then taken as candidates for constituting functionally important cooperative 

networks associated with protein stability, ligand recognition, catalysis, and allosteric 

regulation. The results of SCA as applied to ligand binding and allosterism are impressive 

and strongly support the plausibility of the sector hypothesis that was developed within this 

framework of evolutionary covariance.

While the sector hypothesis enjoyed great success, some caveats stemming from the 

empirical nature of the analysis have been raised. Coevolution derives from organismal 

fitness, a property whose relationship to known structural or biochemical properties is 
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formally undefined (Rivorie et al 2016). Furthermore, issues have been raised about the role 

of conservation versus covariance in the performance of the SCA method (Tesileanu, 

Dolwell (Coldwell?? & Leibler, 2015). Furthermore, as with any covariance based method, 

it may be complicated by limited sampling andpossible bias due to the choice of sequences 

for including in the analysis.

In sequence space, pairwise covariance of homology was improved by spectral analysis 

because the spectral analysis identified groups of residues that are varying in evolution with 

all other residues in the network; it is an n-wise variance rather than just pairwise covariance 

between two residues. The spectral analysis serves as an algorithm to extract the sector of 

the n-wise covariance of all n members. In an analogous fashion, a pairwise motional 

covariance plot also is limited to pairwise information but does not provide information 

about groups of residues that have correlated motions. The key idea in this paper is to 

introduce the spectral analysis algorithm to motionally covarying residues to obtain MD 

sectors analogous to the application fo spectral analysis to evolutionarily covarying residues. 

Ranganathan and coworkers have claimed a value added to the n-wise covariance of sectors. 

Here, we investigate if an analogous benefit may be achieved by the parallel application of 

the spectral analysis algorithm to motional covariance.

MD sectors significantly fortify the MD sector hypothesis by grounding it in first principles 

rather than relying solely upon empirical observation. In this alternate approach to obtaining 

sector residues, predicting the composition of cooperative networks from physics-based 

methods provides an alternate but heretofore undeveloped approach that enables 

understanding the nature of allosterism and developing experimentally testable hypotheses 

about the mechanism of allosteric signal transmission. Because the input consists solely of 

information from the MD simulation, the macroscopic property of allostery has therefore 

been linked to the inherent microscopic properties of the system as revealed through the 

simulations themselves

However, covariance based analysis may be complicated by both the limited sampling of an 

MSA and possible historical bias in the choice of sequences. Also, coevolution derives from 

organismal fitness, a property whose relationship to known structural or biochemical 

properties is formally undefined (Rivoire et al. 2016). Furthermore, issues have been raised 

about the role of conservation versus covariance in the performance of the SCA method 

(Tesileanu, Colwell & Leibler 2015). Nevertheless, the results of SCA applied to ligand 

binding and allosterism are impressive and strongly support the plausibility of the sector 

hypothesis.

As an alternate approach to obtaining sector residues, predicting the composition of 

cooperative networks from physics – based methods provides an alternate but heretofore 

undeveloped approach that may be useful for understanding the nature of allosterism and 

developing experimentally testable hypotheses about the mechanism of allosteric signal 

transmission (Huang, Nussinov & Zhang 2017). The potential utility of covariance analysis 

of MD was described in the seminal textbook on MD by McCammon and Harvey 

(McCAmmon & Harvey, 1987). Subsequent research into MD-calculated motional 

covariance analysis comes from several laboratories (Ichiye, Olafson, Swaminathan & 
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Karplus, 1986; Harte et al., 1990; Harte Jr., 1992; Hunenberger, Mark & van Gunsteren, 

1995; Roy & Post, 2012). High performance digital computing now enables molecular 

dynamics (MD) computer simulations on proteins that provide all-atom models of 

dynamical structure and energetics of an explicitly solvated system at ≤ 2 Å root mean 

square deviation of crystal structures (Rueda et al., 2007). Insights into allostery from MD 

have been reported in a number of cases (Ota & Agard, 2005; Sharp & Skinner, 2006; Ho & 

Agard, 2009; Bowerman & Wereszczynski, 2016; Hertig, Latorraca & Dror, 2016), and 

using this method fits with current ideas about the role of dynamics, i.e. dynamical 

allosterism (Swain & Gierasch, 2006; Goodey & Benkovic, 2008; Smock & Gierasch, 2009; 

Wei, Xi, Nussinov & Ma, 2016; Thayer, Lakhani & Beveridge 2017).

Covariance analysis of energetic fluctuations has been reported less frequently, with the 

notable exception of PDZ2, for which Kong and Karplus (Kong & Karplus 2007; Kong & 

Karplus 2009) reported energy correlation analysis which identified residues that 

corresponded favorably with evidence from NMR relaxation times (van den Berk et al., 

2004; Gianni et al., 2006). Here, two independent pathways of communication between the 

ligand binding region and the allosteric effector residues are found.

An alternative method for the elucidation of protein structure networks based on NBI (non-

bonded interaction) energy correlations in an ensemble of MD structures has been developed 

by Bhattacharyya and coworkers (Bhattacharyya, Upadhyay & Vishveshwara, 2012), and 

also applied to predictions of allosterism in large proteins.

While the ability of MD to provide insight into allostery has been well established by these 

advances, obtaining networks of covarying residues directly from the non-bonded 

interactions of residues as described by the MD trajectories themselves has not yet been 

fully explored. In this work, we investigate obtaining sector residues from MD simulations 

to obtain a vantage coalescing the advantages of analysis rooted closely to first principles 

with the power of the spectral analysis found in the SCA approach. All-atom molecular 

dynamics computer simulations formed the basis of a new covariance method to obtain 

sectors. To proceed, MD-calculated covariance matrices for motional and energy 

fluctuations are obtained and analyzed using spectral analysis in a manner analogous to that 

used for the analysis of positional covariance matrices in SCA, with our “MD sectors” 

likewise identified from the eigenvalues and eigenvectors of a spectral analysis.

The corresponding “MD sectors hypothesis” raises the question of the extent to which the 

covariance of calculated fluctuations in motions and in non-bonded energies obtained from 

all-atom MD simulations can contribute to the understanding of cooperativity and 

allosterism at the molecular level. To address this, we investigated the utility of MD sectors 

for data reduction in the analysis of MD simulations with particular attention to allosteric 

signaling. Our test case in this study is the protein PSD95-PDZ3, a PDZ domain which is 

well characterized by crystallography (Doyle et. al, 1996), NMR spectroscopy (Zhang et al., 

2010), and site-specific mutagenesis (McLaughlin, Poelwijk, Raman, Gosal & Ranganathan, 

2012). PDZ has served as the benchmark for a number of previous studies that endeavor to 

predict functionally important amino acid residues (Gerek & Ozkan, 2011), and is now taken 

to be a benchmark system in the field single and coupled site prediction methods. Using this 
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model system, we report on our insights into allostery with the benefit of a first-principles 

based approach.

2. Materials and methods

2.1 MD Simulations

All-atom MD simulations on PDZ3 including explicit solvent were performed with the 

AMBER suite of programs (Case et. al, 2012) using the force fields ff99 SB for the protein 

(Hornak et al., 2006), ions08 (Joung & Cheatham, 2008) for monovalent K+ and Cl− at 

minimal salt concentration, and the TIP3P potential for solvent water (Jorgensen 1981; 

Jorgensen, Chandrasekhar, Madura, Impey & Klein, 1983). The starting configuration for 

MD was taken as the crystal structure of PDZ3 bound to the peptide ligand CRIPT (PDB: 

1BE9) (Figure 1) (Doyle et al., 1996). The simulation cell contained protein, 15 K+, 13 Cl− 

and 7652 water molecules and was treated under Particle Mesh Ewald periodic boundary 

conditions as coded into AMBER to model a dilute aqueous solution. Five independent 100 

ns simulations were performed using different initial velocity distributions. All simulations 

were analyzed for stability after equilibration using ensemble based convergence analysis 

(Zuckerman, 2011). The five trajectories analyzed separately showed a dispersion in 

calculated average structure ≤1.0 Å of each other, and they reside within ≤ 2.0 Å of the 

crystal structure, as expected (Rueda et al., 2007). The five trajectories all sample essentially 

the same configurational subspace, and were concatenated into a 500ns ensemble for 

subsequent analysis. In all calculations, atom-based quantities obtained from MD are 

combined to present results by residue. Motional and energy covariance matrices were 

computed from MD trajectories by standard methods using the AMBER utility cpptraj in 

AmberTools14 (Case, 2012). Spectral analysis was applied to the covariance matrices. The 

first eigenvalue of a spectral decomposition is by definition unity, and the remaining 

eigenvalues define a series of modes which comprise a series expansion of the covariance 

matrix in covariance space. The leading terms make the largest contributions to the 

expansion and, to be reasonably inclusive, MD sectors were defined based on the 

eigenvectors of the leading 20% of the eigenvalues of the spectral decomposition.

2.2 Distance Covariance.

There is a well-known deficiency in standard covariance algorithms for motional 

correlations between displacement vectors oriented in the vicinity of perpendicular to each 

other, in which a cosine factor results an unphysical reduction in magnitude. Roy and Post 

(2012) have recently revisited this issue, and demonstrated that the “distance covariance” 

algorithm (Szekely et al., 2007) effectively deals with the problem. Following this work, all 

motional correlations in our study are computed using the distance covariance algorithm 

using code generously provided by the Post laboratory. Spectral analysis was applied using 

the protocol of Ranganathan et. al as implemented in the MATLAB toolbox for SCA 

analysis, with the covariance of motional or energetic fluctuations in place of the 

evolutionary covariance matrix. MD sectors were defined inclusively as the top 20% of 

residues based on the eigenvalue distribution.
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3. Results

3.1 MD trajectories.

An overlay of equal time-spaced snapshots from the MD on PDZ3 is shown in Figure 2, and 

indicates that the range of dynamic motion predicted by MD is not large except for end 

effects. Figure 3 shows a plot of MD calculated thermal fluctuations for PDZ3 compared 

with the observed crystallographic B-factors for PDB 1BE9 (Doyle et al. 1996). There are 

some quantitative discrepancies as expected, but the trends in flexibility by residue are 

adequately reproduced for the purposes of our study.

3.2 MD sectors from motional correlations.

A heat map for MD-calculated motional covariance matrices in PDZ3 is shown in Figure 4. 

This matrix is the essential data structure submitted for spectral analysis. Correlations that 

arise from residues adjacent in the backbone of PDZ3 (blue regions of Figure 4) are 

expected de facto, and not included in the subsequent analysis. Spectral analysis of the MD-

calculated motional covariance matrix resulted in an MD sector of 21 residue positions. We 

stress that MD sectors are a heuristic, and there is no theoretical guarantee that all of the 

residues of a calculated sector are included in a functional cooperative network, nor that all 

residues of a functional network are identified in a sector calculation. However, the 

correlations of motional or energetic fluctuations (just as with fluctuations in evolutionary 

covariance) are to some extent a cooperative phenomenon, but whether the associated free 

energy changes are large enough to have an effect on function remains to be unequivocally 

established.

The MD sector representation of correlations of motional or energetic fluctuations define a 

physics- based theoretical prediction method for coupled site interactions, which is a 

network with some extent of cooperativity. The question to be posed to MD sectors at this 

point is, ‘To what extent is this strategy useful for obtaining a plausible hypothesis about 

functional allosteric communication?’ Validation of this (and all other prediction methods) 

can only come from the plausibility of results compared with experimental data. The 

comparison of the calculated physics-based MD sectors and bioinformatics driven SCA 

sectors is also of interest. In any case, validation by any means is heuristic, and there is no 

basis for demanding complete agreement amongst the various methods or with experiments. 

However, the more the better, especially in the latter case. The 21 amino acid positions in 

PDZ3 are depicted in Figure 5. In Figure 5a, the 21 MD sector residues are shown as 1 Å 

spheres centered on the Cα atoms of amino acid residues. We observe that many sector 

residues are in the region of the crystallographic binding pocket, which supports the idea 

that MD sector analysis indeed identifies functionally important residues. Figure 5b shows 

the same basic result with a VDW surface over the sector residues, which shows that the MD 

sector residues form a contiguous van der Waals network. Moreover, this includes residues 

of both the peptide binding site and the allosteric site on opposite face of the molecule. 

Thus, using the same metrics as applied to SCA sectors, MD sectors as obtained from 

motional correlations provides a plausible hypothesis about the nature of a cooperative 

network supporting allosterism in the PDZ domain.
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Figure 6 shows the coincidence of MD sector residues together with the positions observed 

as mutationally sensitive calculated from SCA is presented in the form of a Venn diagram. 

MD sectors coincide in 15/20 of the experimentally observed MSR positions, and also 

include 10/13 amino acids residues in the peptide binding pocket (McLaughlin, Poelwijk, 

Raman, Gusal, Ranganathan, 2012). We find that MD and SCA sectors coincide with SCA 

in 14/20 residue positions, an agreement commensurate with that reported as significant 

agreement between SCA and MSR results on PDZ3. In the case of MD as well as SCA, both 

SCA and MD sectors include residues of a groove in the vicinity of secondary structure 

elements α1 and β1 distal to the binding pocket that has been identified as region of an 

allosteric effector site in experiments on Par-6 PDZ. (Peterson, Penkert, Volkman & 

Prehoda, 2004; Whitney, Peterson, Kovrigin & Volkman, 2013). The MD sector includes 

residues H372, G329, G330 and I336 where mutations switch the preference for binding 

between Class I and Class II sequences, even though the latter three are distal to the binding 

site. The so-called “hidden” allosterism that was observed upon deletion of the C-terminal 

helix α3 (Petit, Zhang, Sapienza, Fuentes & Lee, 2009) is notable, but the residues involved 

are not included the 1BE9 structure.

Once the MD-sector residues have been established, the diagonal and off diagonal elements 

of the correlation matrix can be used to compose a Laplacian matrix and analyzed complex 

network theory using the program xpyder.(Pasi, Tiberti, Arrigoni & Papaleo, 2012) The 

results for SCA and MD sectors are shown in Figure 7. A notable feature of the results in 

Figure 7 is that the ligand binding pocket and allosteric region of PDZ3 are linked by no 

more than two degrees of separation, indicating that a sequential pathway of interacting 

amino acid residues may not be necessary for communication via motional correlations. This 

is interesting in light of current theories of the ensemble nature of protein allosterism 

provided by Hilser and coworkers (Hilser, Wrabl, & Motlagh, 2012).

3.3 MD Sectors for NBI energy correlations

The MD sector residues obtained from spectral analysis of the covariance of inter-residue 

non-bonded interaction (NBI) energy fluctuations is shown in Figure 8. A Venn diagram 

indicating the coincidences of sector residues obtained from SCA, MD, and the observed 

mutationally sensitive residues is shown in Figure 9. As in the related results of Kong and 

Karplus, (2007; 2009) the MD sector residues based on energy correlations show a 

somewhat different distribution from that of the motional correlations, and give results 

which are more consistent with observed NMR relaxation time measurements. The energy 

based MD sectors also show contiguity between the binding pocket and the allosteric site on 

PDZ3. Thus, MD sector analysis leads to the hypothesis of two different viable pathways of 

allosteric communication, one based on motional and one based on energetic correlations. 

Precedents for multiple pathways of allosteric communication in a protein have been 

compiled by Nussinov and co-workers (del Sol, Tsai, Ma & Nussinov, 2009). Some in the 

field also hold to the idea that allosteric communication is a collective property of the energy 

landscape of a protein, and thus distinct pathways of changes is not necessarily the way to 

look at the problem. Thayer and coworkers have estimated the plausibility of multiple means 

of allosteric communication within proteins from lattice models with PDZ as an example 

(Thayer, Galganov, & Stein, 2017).
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3.4 Sectors obtained from Anisotropic Network Model Calculations

All-atom MD simulations are computationally intensive, and thus there is considerable 

interest in the extent to which MD results might coincide with those obtained much more 

rapidly with a coarser grained potential. Gur et al(Gur, Zomot & Bahar, 2013) have provided 

informative results on this issue in general, comparing micro- and milliseconds of all-atom 

MD with normal mode analysis (NMA) using the Anisotropic Network Model (ANM) 

(Eyal, Yang & Bahar, 2006). We obtained a motional correlation matrix for PDZ3 from 

NMA based on the ANM potential using the program ProDy from the Ivet Bahar Laboratory 

(Bakan, Meireles & Bahar, 2011) with default settings. We then calculated “ANM sectors” 

using a spectral decomposition analogous to that used in obtaining MD sectors. The result is 

shown in Figure 10. While a number of residues of SCA and MD sectors coincide with the 

ANM results, notably including the putative allosterism between H372 and the region of 

helices α1- β1 of PDZ3, there are also significant differences: certain residues in the binding 

pocket are not included in the ANM sector. However, ANM calculations do capture a 

considerable extent of the covariance in motions as calculated from all-atom MD. This is 

only the result of a single case; a more comprehensive study is required to take a well-

informed position on this issue.

4. Discussion

In summary, we find that positions of PDZ3 obtained from spectral analysis of MD 

covariance matrix predicts a network of residues that are viable candidates for supporting 

allostery and cooperative effects in general. The MD calculated sector residues correspond 

well with experimentally observed MSR on PDZ domains, and show considerable 

coincidence with those obtained by SCA analysis. Since these results are achieved by 

independent methods, the correspondence we find among predictions based on MD sectors, 

SCA sectors and MSR is not likely to be fortuitous, and provides leading evidence that SCA 

sectors arise to some extent from correlations dynamical fluctuations.

MD sector residues calculated based on the covariance of the fluctuations of non-bonded 

interaction energies proposes two possible pathways of communication, which is supported 

by NMR relaxation experiments on related PDZ domains. This expands on the proposition 

of Nussinov and co-workers (Gunasekeran, Ma, & Nussinov, 2004) that all proteins are 

capable of allosterism to include the possibility that different mechanisms of signal 

transmission may be available for allosterism within a protein. The results presented herein 

are based only a single case study and consideration of more and diverse systems will be 

necessary to make any general conclusions. Also, we must stress that the connection 

between allosterism and either MD or SCA sectors or the results of any other coupled site 

prediction method with allosterism is heuristic approach to generating hypotheses. All that is 

actually required for allosterism in proteins is an effector ligand binding which perturbs the 

free energy landscape such that the activity at a distal functional site is modulated. While 

one or more pathways may be involved, this is not unequivocally established and the idea 

that allosterism is a collective property of amino acid residues, i.e. an energy landscape 

model. In any case, we feel the results presented here provide support for the idea that 

protein sectors obtained ab initio from MD simulations on proteins and other biological 
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macromolecules is well worth pursuing, and has the potential to open up a significant new 

approach to the theoretical analysis of cooperativity and allosterism from the dynamical 

structure of proteins.

The task of identifying the composition of cooperative networks in proteins in general is a 

formidable task, and we do not presume to have solved this problem. For one thing there is 

no guarantee that evolutionary covariance from SCA and the covariance of motional or 

energetic covariance from MD captures all of the factors which make up the cooperative 

behavior in a protein. There is an implicit redundancy in the sector paradigm as derived from 

covariance matrices, since a strong signal can be obtained by one or two large matrix 

elements or a large number of small ones. A good feature is that a sector representation 

transcends pairwise additivity, since spectral analysis is an operation on the entire 

covariance.

5. Conclusions

We note in concluding that we have recently obtained MD sectors for several more proteins, 

including U1A, p53, DHFR and MutS. These results are available in the Wesleyan 

University PhD thesis of Dr. Bharat Lakhani (Lakhani, 2017), and are now being prepared 

for publication. We have recently applied the MD sector analysis to a study of allostery in 

the 1500 residue DNA repair protein MutS (Lakhani, Thayer, Hingorani & Beveridge, 2017) 

In this latter study we have obtained explicit computational evidence that MD sectors do 

comprise a network which exhibits cooperative effects. The MD trajectories on PDZ3 in the 

present investigation have also formed the basis for a study of the role of induced fit and 

conformational selection in protein ligand binding and allosterism using Markov State 

Models (Thayer, Lakhani, & Beveridge, 2017).
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Figure 1. 
a) Crystal structure of PDZ3 bound to a peptide ligand (Doyle et al., 1996) (PDB ID 1be9), 

including the annotation of secondary structure followed in this article. b) Calculated SCA 

sector for PDZ domains (Suel, Lockless, Wall & Ranganathan, 2003); and c) Observed 

mutationally sensitive residues (MSR) of PDZ3 (McLaughlin et al., 2012).
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Figure 2. 
MD calculated dynamical structure of PDZ3, presented as an overlay of 10 snapshots.
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Figure 3. 
MD calculated fluctuations per residue compared with observed crystallographic B-factors 

(Doyle et al., 1996).
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Figure 4. Heat map of the covariance matrix for fluctuations in MD calculated motional 
displacements <Δrij >.
The indices i and j run over amino acid residues in PDZ3. The regions in blue correspond to 

neighboring inter-residue contacts, based on an interatomic distance cutoff < 10 Å.
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Figure 5. 
Two views of the MD calculated sector residues for PDZ3. a) Residues shown as discrete 

blue spheres; b) surface representation indicating contiguity of sector positions.

Lakhani et al. Page 17

J Biomol Struct Dyn. Author manuscript; available in PMC 2020 June 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Venn diagram indicating the coincidences of sector residues obtained from SCA analysis, 

SCA and MD sectors, and MSR. First letter of each label is the one letter abbreviation for 

the residue in the wild type of the protein, next is the residue number, and last is the location 

of the residue in the secondary structure, c.f. Figure 1a.The sector residues listed here appear 

mapped to the structure in Figure 5.
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Figure 7. 
Pairwise links between a) MD and b) SCA sector residues, based on magnitude of 

correlations by residue. Plots were generated using the xPyder program (Pasi, Tiberti, 

Arrigoni, Papaleo, 2012)
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Figure 8. 
Heat map of the covariance matrix for fluctuations in MD calculated non-bonded 

interaction energies <Δεij > where i and j are running indices over amino acid residues in 

PDZ3.
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Figure 9. 
MD sector residues for PDZ3 based on fluctuations in non-bonded interaction energies <Δεij 

>. a) Individual sector residues shown as discrete blue spheres; b) collective surface 

representation of non-bonded interaction sector residues indicating extent of contiguity of 

<Δεin > sector residues.
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Figure 10. 
Results of sector Analysis of PDZ3 based on ANM calculations. a): ANM correlation 

matrix; b: sector residues obtained from ANM, in sphere and surface representations. All 

ANM calculations were carried out using ProDy (Bakan, Meireles & Bahar, 2011).
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