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Abstract

Background.—Newer analytic approaches for developing predictive models provides a method 

of creating decision support to translate findings into practice.

Objectives.—To develop and validate a clinically interpretable predictive model for 12-month 

mortality risk among community-dwelling older adults using routinely collected nursing 

assessment data to aide homecare nurses in identifying older adults who are at risk for decline, 

providing an opportunity to develop care plans that support patient and family goals for care.

Methods.—A retrospective secondary analysis of Medicare and Medicaid data of 635,590 

Outcomes Assessment and Information Set (OASIS-C) start-of-care assessments from 1/1/2012 – 

12/31/2012 were linked to the Master Beneficiary Summary File (2012–2013) for date-of-death. 

Decision tree, benchmarked against gold standards for predictive modeling, logistic regression and 

artificial neural network (ANN). The models underwent k-fold cross-validation and were 

compared using AUC and other data science metrics.

Results.—Decision tree variables associated with 12-month mortality risk included: Age, 

(M1034) Overall status, (M1800–1890) ADL Total Score, Cancer, Frailty, (M1410) Oxygen, and 
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(M2020) Oral Medication Management. The final models had good discrimination: decision tree, 

AUC = .71, 95% CI [.705, .712], sensitivity = .73, specificity = .58, MCC = .31; ANN, AUC = .74, 

95% CI [.74, .74], sensitivity = .68, specificity = .68, MCC = .35 and logistic regression, AUC 

= .74, 95% CI [.735, .742], sensitivity=.64, specificity = .70, MCC = .35.

Discussion.—The AUC and 95% CI for the decision tree are slightly less accurate than logistic 

regression and ANN, however, decision tree was more accurate in detecting mortality. The OASIS 

data set was useful to predict 12-month mortality risk. Decision tree is an interpretable predictive 

model developed from routinely collected nursing data that may be incorporated into routine care 

as a decision support tool to identify older adults at risk for death.
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Decision trees; Informatics; Predictive Modeling; Machine Learning, End of Life Care; Precision 
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Identifying individuals who are nearing the end-of-life (EOL) is becoming increasingly 

complex because people are living longer with multiple chronic illnesses and frailty, making 

it difficult to know when care interventions may become futile (Aldridge & Bradley, 2017; 

Bandeen-Roche et al., 2015). Targeting individuals who are most at risk for poor health 

outcomes improves concordance between stated preferences for EOL care and future care 

decisions (Auriemma et al., 2014). However, efforts to prevent unnecessary treatment by 

increasing the rates above 40% of advance care plans (ACP), written documents that outline 

serious illness goals of care, have been relatively unsuccessful (Institute of Medicine [IOM], 

2014; Yadav et al., 2017). It is possible this partly due to failures in identifying the right 

individuals at the right time who would benefit the most from having EOL conversations 

(Billings & Bernacki, 2014; Yadav et al., 2017). Precision health initiatives, which aim to 

engage patients in maintaining their own health (Gambhir, Ge, Vermesh, & Spitler, 2018), 

may also empower them to complete an ACP by providing timely, actionable knowledge of 

risk, thereby providing an opportunity to discuss EOL goals for care before significant 

decline.

Approximately 4.9 million people in the US received home healthcare in 2013 and these 

numbers are growing (Harris-Kojetin et al., 2016). By the year 2030, the Centers for Disease 

Control (CDC) estimates that the number of Americans who will be over the age of 65 will 

double, amounting to 72 million people, or about 20% of the population (Centers for 

Disease Control and Prevention [CDC], 2013). Currently, two out of three older adults are 

living with multiple chronic conditions, which increases their chances of unnecessary 

hospitalizations, non-beneficial treatments, poor health outcomes, and death (Cardona-

Morell et al, 2016; CDC, 2013). Predictive modeling may help homecare nurses identify 

older adults who are at risk for decline, providing an opportunity to raise the issue of limited 

life expectancy and potentially develop personalized care plans that support patient and 

family preferences for serious illness goals for care. However, there are few resources 

available for providers to use to evaluate the risk for decline among older adults who live at 

home (Yourman, Lee, Schonberg, Widera, & Smith, 2012).
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Nurses have been collecting and reporting structured health assessment data that is specific 

to the home environment to the Centers for Medicare and Medicaid Services (CMS) since 

1999 using the home health Outcome and Assessment Information Set (OASIS) (Centers for 

Medicare and Medicaid Services [CMS], 2018a). The OASIS contains health assessment 

information for documenting clinical assessments, evaluating outcomes, and facilitating care 

planning activities in licensed homecare agencies (CMS, 2018a). Utilizing routinely 

collected population-level OASIS data to develop an interpretable clinical prediction 

algorithm for mortality risk may facilitate the integration of a risk assessment tool into 

everyday workflows to support clinical decision-making. By recognizing mortality risk, 

homecare nurses may be able to identify community-dwelling older adults who have a 

higher probability of hospitalization or death within the next year than other older adults 

receiving homecare services.

The Data, Information, Knowledge, Wisdom (DIKW) framework underpins this study 

(Matney, Avant, & Staggers, 2016). The DIKW postulates that wisdom in nursing may be 

derived from the hierarchical progression of data symbols, that in combination contribute to 

the nurses’ ability to “evaluate information and knowledge within the context of caring, and 

use judgement to make care decisions” (Matney et al., 2016, para. 21). In 2003, Lunney and 

colleagues examined population-level survey data to identify patterns of functional decline 

in community-dwelling older adults during the year leading up to death. This seminal 

research laid the groundwork to guide inquiries using other large datasets and to gain 

insights into how needs change as a person approaches death. In another study, Davis and 

colleagues (2016) identified High Persistent, Moderate Persistent, Progressive, and Late Rise 

spending patterns among Medicare decedents in the last year of life using administrative 

claims data for over a million beneficiaries. Similarly, administrative claims data were used 

to segment the population based on disease group (chronic disease, system failure, or 

cancer) and revealed distinctly different cost trajectories during terminal decline (Sullivan, 

Li, Wu, & Hewner, 2017). Moreover, a recent systematic review identified six prognostic 

indices for community-dwelling older adults (Yourman et al., 2012). These studies 

demonstrated the value of using large data sets, but were limited in subsequent use in 

practice.

In 2011, Westra and colleagues used data science approaches comparing machine learning 

methods to logistic regression for predicting medication management outcomes in older 

adults receiving homecare. The investigators found that the final models were similar in their 

predictive ability, and nurses preferred rules-based and decision tree algorithms to support 

clinical decision-making. This is an important consideration as prognostication tools for 

evaluating functional decline of older adults have been developed but not widely adopted 

because they are difficult to integrate into clinical workflows, so they are less likely to 

influence clinician behavior and effect patient outcomes (Yourman et al., 2012). These prior 

studies suggest that there is an opportunity to use data-driven approaches to improve health 

outcomes for community-dwelling older adults and inform nursing wisdom (Matney et al., 

2016).
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Objectives

The objective of this study is to compare two machine learning approaches with logistic 

regression to develop and validate a predictive model for identifying 12-month mortality risk 

among homebound older adults. The purpose of the predictive model is to provide a 

clinically interpretable clinical decision support tool for 12-month mortality risk for use by 

nurses to prompt discussions about serious illness goals for care. The research question 

addressed in this paper is: What machine learning methods yield a parsimonious and 

clinically interpretable decision support algorithm for use in identifying mortality risk in 

community dwelling older adults?

Methods

This data modeling study employed a retrospective secondary analysis of the OASIS after 

linking it to the Master Beneficiary Summary File (MBSF) (CMS, 2018a; Research Data 

Assistance Center [ResDAC], 2017). Data modeling is an inductive mathematical approach 

for determining the probabilistic relationship that exists between variables (Grus, 2015). 

Two decision tree algorithms were developed and benchmarked against the gold standard for 

prediction among machine learning approaches (artificial neural network [ANN]) and with 

the gold standard statistical approach for predicting health outcomes, logistic regression 

(Tabachnick & Fidell, 2013). For the purposes of this study, 12-month mortality risk is 

defined as the probability that a person will be “not alive” at 12-months from the initial 

OASIS assessment. The University at Buffalo, State University of New York internal review 

board (IRB) approved this study and determined it to be non-human subject research.

Sample

Data Collection.—The OASIS data file contains 11 domains and approximately 100 

questions represented by 279 predictor variables. The MBSF contains Medicare beneficiary 

enrollment data, which contains the date of death (ResDAC, 2017). Both data files were 

obtained from the Centers from Medicare and Medicaid Services (CMS) in April 2017 with 

the assistance of the Research Data Assistance Center (ResDAC).

A nationally representative random sample of OASIS-C assessments (N=2,989,451) of 

999,000 individual Medicare beneficiaries were received from CMS. OASIS-C assessments 

were included in the study if the individual was 65 years or older and had a start-of-care 

(SOC) completed between 1/1/2012 and 12/31/2012. The OASIS-C was linked to the MBSF, 

(1/1/2012 – 12/31/2013) using an encrypted, de-identified, beneficiary identification 

“BENE_ID” number provided by CMS. After linking the files on the BENE_ID and 

removing duplicates, the dataset was limited to the first SOC in 2012. The range in days 

from the initial SOC date to either the date of death or 12-months from the SOC date was 

calculated. The outcome variable was dichotomized based on the whether or not the 

individual was “alive” or “not alive” after one calendar year. After limiting the linked 

datasets to meet the inclusion criteria, and dichotomizing the outcome variable, 635,590 

individual OASIS-C assessments remained, and 112,499 (17.7%) of the file contained 

individuals who were “not alive” at 12-months.

Sullivan et al. Page 4

Nurs Res. Author manuscript; available in PMC 2020 June 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Next, three unique datasets were created that contained 100,000 randomly selected OASIS-C 

assessments, which were made up of an equal number of records for patients who were 

“alive” and “not alive” at 12-months (50,000 cases each). Three datasets were created so that 

it would become evident whether the model performance was stable across the random 

samples. It was necessary to over-sample the data for those who were “not alive” because of 

the imbalance in the outcomes, which can bias the model towards the majority class 

(Boughorbel, Jarray, & El-Anbari, 2017). Outliers were retained in the analysis, as there was 

no identifiable pattern of bias, and this nationally representative dataset exemplifies actual 

patient care, therefore there was no reasonable justification to remove them.

Data Analysis

Data Preprocessing.—All preprocessing and analytic steps in this study used Microsoft 

Access version 16, Microsoft Excel version 16, and SPSS Grad Pack 25.0 Premium (IBM 

SPSS, 2017). Preprocessing was conducted iteratively on the entire dataset to meet the 

assumptions of each analytic method prior to sampling and modeling. Data transformation 

and reduction decisions were based on a combination of statistical testing and content 

expertise. Descriptive statistics and correlational analysis were used to examine the data and 

prepare it for modeling. Prior to transforming any OASIS-C variable, each question was 

conceptually evaluated for relevance to the outcome “alive”/”not alive” by the first author 

who has an extensive background working with the OASIS-C in a clinical setting. For 

example, items used for billing purposes only were eliminated from the dataset. In addition, 

items that were highly correlated, such as Activity of Daily Living Status (ADL) (M1800–

1890) were transformed into a total score (range 0–45), with a higher score indicating 

decreased functional status, and a weighted severity score was developed for pressure ulcers 

(M1300–1324) (Westra et al., 2011). The weighted severity score was calculated by 

multiplying the number of pressure ulcers with the associated stage and unobservable ulcers 

received an additional point. Therefore, if a person had one stage-two pressure ulcer, two 

stage-three pressure ulcers, and one unobservable pressure ulcer, the final weighted severity 

score would equal nine (Westra et al., 2011). Final candidate variables were then evaluated 

for clinical relevance by the first and second authors and a determination was made to 

include or exclude the variables. The candidate items were tested individually for their 

relationship with the outcome variable “alive”/”not alive” and retained if chi-square was 

significant at p < .01. The final data file contained 36 independent variables after all 

transformations were completed.

International Classification of Diseases (ICD-9) diagnostic codes in the OASIS-C for 

inpatient diagnosis or medical treatment change within the past 14 days (M1010 and 

M1016), and Primary and Payment Diagnoses (M1020-M1024), were combined and 

categorized into five groups using the COMPLEXedex algorithm (Hewner, Seo, Gothard, & 

Johnson, 2014). The COMPLEXedex was developed using the H-CUP-Clinical 

Classifications Software CCS categories available from the Agency for Health Research and 

Quality (Agency for Health Research and Policy, 2017, October). The algorithm categorizes 

ICD-9 codes into hierarchies of chronic disease groupings (No Chronic, Minor Chronic, 

Major Chronic, and System Failure) to classify the relative importance of 19-different 

combinations of multimorbidity. An updated, unpublished version of the COMPLEXedex 
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that includes the following additional categories: Frailty, Behavioral Health, and Cancer, was 

also used to group the diagnoses codes.

Model Building using Machine Learning Approaches.—Machine learning is a 

mathematical approach where probabilistic models are learned from data with known 

outcomes that can be then applied to predict outcomes on unseen data (Grus, 2015). 

Machine learning includes classification, association analysis, clustering, and anomaly 

analysis, which are useful alternatives to traditional statistical approaches, as the algorithms 

have the capacity to identify non-linear patterns in data (Tan, Steinbach, & Kumar, 2006). In 

healthcare, machine learning models are emerging as powerful tools for predicting health 

outcomes such as the risk of dying (Luo et al., 2016).

A decision tree is a classification algorithm that takes a non-parametric approach to identify 

models that best fit the relationship between the OASIS-C predictor variables and outcome 

label (“alive”/”not alive”) by recursively dividing training data into increasingly purer 

subsets (Tan et al., 2006). The final model is visually represented as a tree-like hierarchy 

where each internal node creates a point for decision-making (yes/no) that can be followed 

from top to bottom and left to right until a terminal node containing the “pure” category 

(probability) of the predicted outcome is reached.

During model building, “decisions” are made by the algorithm based on a calculation of 

“impurity” and how much information is gained each time the data are split (Tan et al., 

2006). There are two different decision tree classification algorithm options available in 

SPSS: the Chi-squared Automatic Interaction Detection (CHAID) and the Classification and 

Regression Tree (CRT). The CHAID algorithm chooses the predictor that has the strongest 

interaction with the outcome variable and the CRT algorithm maximizes node homogeneity 

to achieve purity (IBM SPSS, 2017). The CHAID algorithm determines the best split using p 
< .05 significance level and the Bonferroni correction. The CRT algorithm measures 

impurity using the Gini index to maximize homogeneity at each node. This study evaluates 

three randomly selected, balanced datasets (n=100,000) using nine separate experiments to 

determine if the models were stable across datasets. The experiments employed two decision 

tree classification algorithms (CHAID and CRT) which are grown to three, four, and five 

levels each, and the results are then compared and benchmarked with the gold standards, 

ANN (training and test), and logistic regression.

Artificial Intelligence, also known as an ANN, represent the most powerful of machine 

learning algorithms. ANNs work by changing the signal strength of the data as it passes 

through a “black box” that cannot be seen by the researcher. The automated process is 

similar to the fluctuation of synaptic transmissions in the brain that facilitates learning (Tan 

et al., 2006). However, the “black box” nature of the process makes it impossible to know 

how the algorithm reaches conclusions and the output is not easy to interpret, so it is a poor 

fit for the clinical setting, but it is useful for benchmarking.

Model Building using Logistic Regression.—Logistic Regression is a traditional 

statistical approach to data modeling that is used to determine the probabilistic relationship 

between predictor and dichotomous outcome variables. Logistic Regression has been used 
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extensively in the biomedical sciences and is considered the gold standard for predicting the 

absence or presence of disease (Tabachnick & Fidell, 2013). Prior to sampling and analysis, 

the original data (N=635,590) were tested for meeting the statistical assumptions of logistic 

regression, which includes the presence of multi-collinearity, outliers, and linearity with the 

outcome variable. The Box-Tidwell procedure was used to assess the assumption of linearity 

of the continuous variables with respect to the logit of the dependent variable (“alive”/”not 

alive”) at 12 months. A Bonferroni correction was applied and statistical significance for 

accepting candidate terms for the model was adjusted to p < .001 (Laerd Statistics, 2015; 

Tabachnick & Fidell, 2013). The logistic regression model was built using a backwards 

stepwise approach.

Validity and Reliability

The OASIS was rigorously developed over 10 years at the University of Colorado in the 

1990’s and has been updated several times since then (CMS, 2018a; CMS, 2018b; O’Connor 

& Davitt, 2012). This study uses the OASIS-C version. Most OASIS items report an inter-

rater reliability Cohen’s Kappa minimum of .6 and a criterion validity of .49 – .71 

(O’Connor & Davitt, 2012). The date of death provided by CMS was the only item retrieved 

from the MBSF.

The performance of the models across the three datasets were assessed by calculating 

sensitivity (TPR), specificity (TNR), positive predictive value (PPV), negative predictive 

value (NPV), Matthews Correlation Coefficient (MCC), and the Area under the Curve 

(AUC) with 95% Confidence Intervals (CIs) (Tan et al., 2006). Sensitivity (TPR) is defined 

as the proportion of cases that are correctly predicted by the model to be “not alive” at 12-

months (Equation 1) (Laerd Statistics, 2015, Boughorbel et al., 2017). This metric is an 

indication of the ability of the model to correctly identify the item of interest (“not alive”) at 

one year. Specificity (TNR) indicates the proportion of people that were correctly predicted 

to not have the item of interest (“not alive”) at the end of the year (actual negatives) 

(Equation 2). These individuals, therefore, were both predicted to be, and actually were 

“alive” at one year. PPV and NPV indicate the ability of the model to predict presence or 

absence of the item of interest “alive”/”not alive,” compared to the total number of cases 

predicted to have or not have the characteristic, respectively (Equation 3, Equation 4). The 

quality, strength, and direction of relationship between observed and predicted binary 

classifications are measured using MCC, with possible scores ranging from −1 to 1 

(Equation 5) (Boughorbel et al., 2017).

Equations

Sensitivity or true positive rate  TPR
TPR  =  TP / TP  +  FN 1.

Specificity  SPC  or true negative rate  TNR
TNR  =  TN / TN  +  FP 2.
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Precision or positive predictive value  PPV
PPV   =  TP / TP + FP 3.

Negative predictive Value  NPV
NPV   =  TN / TN  +  FN 4.

Matthews correlation coefficient

MCC  = TP   x TN −  FP x FN 
  TP   +  FN TP   +  FP TN   +   FP TN   +   FN

5.

False positive rate  FPR
FPR  = 1  –  SPC 6.

The AUC is a graphic representation of the tradeoff between the sensitivity (TPR) and false 

positive rate (FPR) of a classifier (Tan et al., 2006). The FPR is the probability of falsely 

rejecting the null hypothesis, or the probability of making a Type 1 error (Equation 6). A 

“perfect” AUC has a value of one and chance (random guess) has a value of .5. To measure 

model accuracy (goodness of fit), an AUC was generated based on the predicted 

probabilities of the outcome variable to assess discrimination for all methods (decision tree 

(CHAID/CRT), ANN, and logistic regression). Model discrimination was determined by the 

following AUC metrics: .50 to .59 indicates poor, .60 to .69 indicates moderate, .70 to .79 

indicates good, .80 to .89 indicates very good, and .90 or greater, indicates excellent 

discrimination (Yourman et al., 2012).

The machine learning models were cross-validated in each of the three datasets by dividing 

them individually into training and test data samples using k-fold cross-validation methods. 

The decision tree algorithms (CHAID and CRT) were trained on 90% and tested on 10% of 

the data in each dataset #1–3 (n=100,000). K-fold cross validation is an automated, iterative 

process available in SPSS. The algorithm randomly divides the dataset into 10 subsamples. 

The first sample is set aside and a tree is created using all of the remaining cases. Next, a 

second tree is created from all of the cases except for those in the second fold. This process 

is repeated until all 10-folds have been cross-validated (k-fold). A misclassification risk 

error for each tree is estimated and a final tree model is produced based on an average risk 

estimate across of all of the trees (IBM SPSS, 2017). To cross-validate the ANN, each of the 

three datasets were split into a 70/30 ratio where the larger proportion was used to train the 

data and the remaining proportion was used to test the models. This process was repeated 

three times in each of the individual data samples.

Results

In this study, four models (CHAID, CRT, ANN, and logistic regression) for predicting 12-

month mortality risk among community-dwelling, older adults were developed and validated 

across three independently sampled datasets #1–3. The study aimed to answer the research 

question: What machine learning methods yield a parsimonious and clinically interpretable 
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decision support algorithm for use in identifying mortality risk in community dwelling older 

adults? The final data file (N = 635,590) from which three random samples of 100,000 

OASIS-C assessments balanced for the outcome variable “alive”/”not alive” at 12 months 

included: 63.3% female, 79.7% White, 37.7% ages 75 – 84 years old, 28.3% Healthy, 39.1% 

At Risk, 28.3% had a Frailty Diagnosis, and 6% had Cancer (Table 1).

Machine Learning Results

Decision trees provide a clinically interpretable model that can be used to identify the 

probability that an individual will not be alive at 12-months based on the hierarchical 

relationship of the predictor variables with the outcome variable of “not alive” depicted in 

the (oval-shaped) terminal nodes (Figure 1). The CHAID and CRT decision trees had similar 

statistical results, however, the CRT had superior performance so it was selected for further 

testing. Across datasets #1–3 CRT AUC, M = .71, SD = .013, MCC, M = .31, SD = .015. 

Overall, the 30-node CRT (4-level) decision tree from dataset #2 was the best model in 

terms of identifying mortality cases (Figure 1). The model had good discrimination, AUC 

= .71, 95% CI [.705, .712], and was the most accurate in identifying the item of interest “not 

alive” at 12-month, sensitivity (TPR) = .73. Model specificity (TNR) = .58, PPV = .63, NPV 

= .68, and MCC = .31. The model predicted 36,480 people to be “not alive” at 12 months 

out of 50,000 individuals who died within the year. Therefore, the decision tree accurately 

predicted mortality risk 73% of the time and it missed identifying a person who was “not 

alive” at 12-months 27% of the time (Table 2).

Figure 1 shows the final decision tree for the 4-level CRT algorithm from dataset #2. 

According to this algorithm, reading from top-to-bottom like a tree, a person deemed to have 

the highest risk of dying at 12-months was identified as being likely to remain fragile or die 

(M1034 Patient Overall Status), had an ADL score <21.5 (M1800–1890) (with higher scores 

indicating lower functional status), a cancer diagnosis, and used oxygen (M1410 Respiratory 

Oxygen). These individuals had an 87.9% probability of dying at one year (Figure 1). There 

were 926 people in this group. Whereas, those identified as being stable or having a 

temporary health risk (M1034 Patient Overall Status), who independently managed oral 

medications (M2020 Management of Oral Medication), did not use O2 (M1410 Respiratory 

Oxygen), and were between the ages of 65 and 84 had the lowest (23.9%) probability of 

dying at 12 months (Figure 1). There are 22,006 people in this group.

Artificial Neural Network (ANN) Benchmarking

The decision tree was benchmarked against the gold standard for machine learning, the 

ANN. The ANN results were stable across datasets #1–3, AUC, M = .74, SD = 0, 95% CI 

[.74, .74], MCC, M = .35, SD = .01 (Table 2). The ANN classifier reported 32.5% incorrect 

predictions on the training data and 32.6% on the test data. Sensitivity (TPR) for the training 

data, M = .66, SD = .012 and test data, M = .66, SD = .017. The most accurate ANN has an 

AUC = .74, 95% CI [.74, .74], was 68% correct in predicting 12-month mortality risk and 

missed identifying individuals who were “not alive” at 12-months 32% of the time 

(sensitivity (TPR) = .68). Model specificity (TNR) = .68, PPV = .66, NPV .69, and MCC 

= .35 (Table 2).
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Logistic Regression Results

There were 12 OASIS predictors retained in the final model (Table 3, SDC 1). The AUC M 

= .74, SD = 0 and MCC, M = .35, SD = .01. Model performance was best in dataset #3, χ2 

(19) = 17263.75, p < .001. The final model explained 22% (Nagelkerke/Pseudo R2) of the 

variance in dying at 12-months, and was a good predictor of mortality risk, AUC = .74, 95% 

CI [.735, .742]. This model accurately predicted mortality risk 64% of the time and missed 

36% of the people who died by 12-months (sensitivity (TPR) = .64) (Tables 2 & 3). Model 

specificity (TNR) = .70, PPV = .68, NPV = .67, MCC = .35.

The logistic regression models were consistent across all three datasets. The models indicate 

that increasing age and male gender is associated with dying at one year. In addition, there is 

a three-fold odds of dying within the year for people with a cancer diagnosis, and if an 

individual is determined to be high risk for dying based on the nurse’s subjective assessment 

of mortality risk (M1034 Patient Overall Status), they are twice as likely to die by year end. 

Moreover, if an older adult lives in a congregate situation or has dyspnea, there is an 

increased odds of dying at one year. Using oxygen, even intermittently, indicates that the 

older adult is more than twice as likely to die as a person who does not use oxygen. Bowel 

incontinence, increased total ADL score (low functional ability), the inability to manage oral 

medications, and the presence of at least one pressure ulcer, regardless of stage, are all 

associated with 12-month mortality risk (p < .001) (Laerd Statistics, 2015).

Discussion

This manuscript introduced cutting-edge machine learning approaches, comparing decision 

trees with ANN and logistic regression that will advance secondary analysis of electronic 

health records (EHR) and the use of routinely collected assessment data combined with a 

unique data source to determine risk of mortality. This study explores the potential of two 

decision tree algorithms (CHAID and CRT) to provide an interpretable tool for identifying 

mortality risk among community-dwelling older adults by benchmarking it with gold 

standards for predictive modeling, the ANN and logistic regression. The results of this study 

indicate that it is possible to use machine learning approaches to develop and validate a 

predictive model identifying 12-month mortality risk using the OASIS-C with reasonable 

discrimination as indicated by the stability of the models across methods.

When comparing decision tree, ANN and logistic regression approaches, it is important to 

consider the resources required to conduct big data research using the different methods. 

Machine learning is designed to quickly process very large quantities of data that were not 

collected for research purposes, such as data contained within the EHR. In contrast, logistic 

regression approaches require a thoughtful and well-executed research design, manual 

selection of items, and a significant amount of data preprocessing to meet the assumptions of 

the statistical modeling methodology. In addition, logistic regression models will provide a 

mathematical formula for determining risk, rather than an interpretable visual model, 

effectively limiting their usefulness when performing patient care. Moreover, the study 

revealed that it is important to consider the sensitivity (TPR) of the model when interpreting 

results due to the fact that AUC scores did not necessarily represent the model that best 

identified the item of interest (“not alive” at 12-months). This is an important consideration 
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from a clinical perspective, since the presumed goal is to miss the fewest number of older 

adults who are at risk for dying, even if that increases the probability of falsely predicting 

12-month mortality risk.

The purpose of building a predictive model is to provide an evidence-base for identifying 

individuals who may benefit from a focused nursing assessment for risks to well-being and 

safety. If the individual is deemed to be high risk for 12-month mortality, this may be an 

indication that it is the right time to raise the issue of discussing serious illness goals for care 

and possibly complete an Advance Care Plan (Billings & Bernacki, 2014). Thus, the 

OASIS-C is a valuable tool for identifying individual-level risk factors that are specific to 

homebound older adults that may not be evident in other care settings, such as functional 

independence and the ability to manage oral medications in the home.

The decision tree is a unique and useful tool when compared to logistic regression because it 

links 12 variables organized by the highest probability of mortality, which makes it easy to 

interpret during patient care activities and may enhance clinical judgement by reducing bias. 

In particular, the relative hierarchical relationship of the variables provided by the decision 

tree provides insights into the probability of mortality risk that is superior to existing linear 

frameworks in terms of clinical interpretability (Table 4). In contrast, the logistic regression 

model merely relates items to a dichotomous outcome using a mathematical formula that 

would require complex calculations to ascertain risk from the multiple significant predictor 

variables. Therefore, the decision tree algorithm is an interpretable tool that has the added 

benefit of providing patient-specific mortality risk scores at a glance.

Limitations

This study has some limitations. First, it uses retrospective data that were not collected with 

a research intent. Second, extensive data preprocessing was required in order to compare 

methods, which could have reduced the dimensionality of the data. The AUC and MCC 

indicate that the models are “good” at predicting mortality risk at one-year, but there is room 

for improvement. The models reported FPR rates ranging between 30 and 42%, which is an 

indication of the risk of making a type 1 error. However, this is not a critical shortcoming of 

the study since most models are able to identify mortality cases with reasonable accuracy, 

and from a clinical perspective, all homebound older adults have some degree of risk for 

adverse health outcomes or death. Therefore, the assumption is that even if the older adult is 

falsely predicted to be at risk for dying, everyone receiving homecare could likely benefit 

from a careful nursing assessment to determine if there are clinical interventions that could 

benefit the older adult, such as initiating discussions about EOL goals for care, even if they 

live longer than a year.

Conclusion

This study compares four models for predicting 12-month morality risk using the OASIS-C. 

The findings of this study demonstrate that nursing data is a valuable resource for 

developing predictive models that may be integrated into clinical workflows to support 

clinical decision-making. Comparing the machine learning approaches to logistic regression 

helps to establish that data science methods produce comparable results to traditional 
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statistical approaches to predictive modeling when using home health nursing data, while 

providing helpful insights and improved interpretability.

A strength of the predictive models are that they were built using a federally mandated, 

standardized health assessment tool, which collects information specific to the home 

environment. Using the OASIS-C dataset improves generalizability of the models because it 

does not contribute to documentation burdens, as nurses are already routinely collecting this 

information. If operationalized into home healthcare, this OASIS-C based predictive model 

would provide a standardized, pragmatic approach to identifying risk for decline that could 

potentially be used nationwide. Moreover, this study makes a contribution to the 

methodological literature because data science methods are only emerging in nursing 

research. Now that it has been established that it is possible to predict mortality risk using 

the OASIS dataset, the model needs to be strengthened, perhaps by linking the OASIS with 

other homecare data, and it needs to be externally validated. Because the purpose of data 

mining approaches is to discover knowledge in databases, additional research is needed to 

determine implications for practice such as designating cutoff points for the probability of 

mortality risk to trigger ACP conversations. Future work also needs to explore how to best 

integrate the model into clinical workflows so that it can be used to support clinical decision-

making.

Advances in the volume, variety, velocity, and veracity of modern health datasets present 

many exciting possibilities for knowledge discovery for use in personalizing healthcare 

around the globe (Brennan & Bakken, 2015). The predictive models developed in this study 

promote precision health initiatives by providing nurses with actionable knowledge from 

data for identifying individual risk, which in turn, provides an opportunity to raise the issue 

of discussing serious illness goals for care in the context of the patient’s personal value and 

belief systems. The findings of this study suggest that the ease of analyzing data using 

machine learning methods, combined with the relative accuracy and superior interpretability 

of the models, support the notion that big data science approaches have a legitimate place in 

the biomedical sciences, and that further research should be conducted using standardized 

nursing datasets. The results of this study indicate that it is possible to use nursing data to 

predict 12-month mortality risk with considerable accuracy, and that data generated by 

nurses can have an impact on improving the lives of real people, while demonstrating the 

value of nursing care.
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Figure 1. 
Decision Tree Prognostic Model 12-month Mortality Risk

Note. Terminal (oval-end) nodes indicate the probability of the outcome “not-alive” at 12 

months. Dx = diagnosis; ADL = Activities of Daily Living total summary score based on the 

combined responses of M1800-M1890.
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Table 2

Comparison of Models across Datasets # 1– 3

Method Sensitivity (TPR) Specificity (TNR) PPV NPV MCC AUC 95% CI Pseudo R2

Dataset #1
N =100,000

CRT-3 Level .66 .62 .64 .65 .29 .69 [.684, .691]

CRT-4 Level .69 .61 .64 .66 .30 .71 [.703, .710]

CRT-5 Level .65 .67 .67 .65 .32 .72 [.716, .722]

ANN Perceptron .74 [.74, .74]

 Train .66 .69 .67 .68 .35

 Test .65 .69 .66 .68 .34

Logistic Regression .64 .70 .68 .67 .34 .74 [.732, .738] .22

Dataset #2
N =100,000

CRT-3 Level .65 .63 .64 .65 .29 .69 [.687, .693]

CRT-4 Level .73 .58 .63 .68 .31 .71 [.705, .712]

CRT-5 Level .69 .64 .66 .67 .33 .72 [.718, .724]

Ann Perceptron .74 [.74, .74]

 Train .68 .68 .66 .69 .35

 Test .68 .67 .66 .69 .35

Logistic Regression .64 .70 .68 .67 .34 .74 [.733, .739] .22

Dataset #3
N =100,000

CRT-3 Level .70 .61 .64 .67 .31 .69 [.688, .694]

CRT-4 Level .69 .63 .65 .67 .32 .71 [.709, .715]

CRT-5 Level .66 .67 .66 .66 .33 .72 [.719, .726]

Ann Perceptron .74 [.74, .74]

 Train .66 .68 .66 .68 .35

 Test .65 .69 .67 .67 .34

Logistic Regression .64 .70 .68 .67 .35 .74 [.735, .742] .22

Note. ANN = Artificial Neural Network; CRT = Classification and Regression Tree; TPR = True Positive Rate; TNR = True Negative Rate; PPV = 
Positive Predictive Value; NPV = Negative Predictive Value; MCC = Matthews Correlation Coefficient; AUC = Area Under the Receiver Operating 
Characteristic Curve; CI = Confidence Interval.
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Table 4

Comparison of Final Predictors by Method

Logistic Regression Decision Tree

Age Range Age Range

M0069 Gender M1010–1016 or M1020–1022 Cancer

M1010–1016 or M1020–1022 Chronic Illness M1010–1016 or M1020–1022 Frailty

M1010–1016 or M1020–1022 Cancer M1034 Overall Status

M1034 Overall Status M1410 Oxygen

M1100 Living Situation M1800’s Activities of Daily Living Total Score

M1308 Pressure Ulcer M2020 Management of Oral Medication

M1400 Dyspnea

M1410 Oxygen

M1620 Bowel Incontinence

M1800’s Activities of Daily Living Total Score

M2020 Management of Oral Medication

Note. Activities of Daily Living Total Score is the sum of the responses to OASIS variables M1800 – M1890.
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