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SUMMARY

A common phenomenon in cancer syndromes is for an individual to have multiple primary cancers (MPC)
at different sites during his/her lifetime. Patients with Li-Fraumeni syndrome (LFS), a rare pediatric cancer
syndrome mainly caused by germlineTP53 mutations, are known to have a higher probability of developing
a second primary cancer than those with other cancer syndromes. In this context, it is desirable to model the
development of MPC to enable better clinical management of LFS. Here, we propose a Bayesian recurrent
event model based on a non-homogeneous Poisson process in order to obtain penetrance estimates for MPC
related to LFS. We employed a familywise likelihood that facilitates using genetic information inherited
through the family pedigree and properly adjusted for the ascertainment bias that was inevitable in studies
of rare diseases by using an inverse probability weighting scheme. We applied the proposed method to
data on LFS, using a family cohort collected through pediatric sarcoma patients at MD Anderson Cancer
Center from 1944 to 1982. Both internal and external validation studies showed that the proposed model
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provides reliable penetrance estimates for MPC in LFS, which, to the best of our knowledge, have not
been reported in the LFS literature.

Keywords: Age-at-onset penetrance; Familywise likelihood; Li-Fraumeni syndrome; Multiple primary
cancers; Recurrent event model.

1. INTRODUCTION

A second primary cancer develops independently at different sites and involves different histology than
the original primary cancer; it is not caused by extension, recurrence, or metastasis of the original cancer
(Hayat and others, 2007). Multiple primary cancers (MPC) is a term for the development of primary
cancers more than once in a given patient over the follow-up time. The occurrence of MPC is becoming
more common due to advances in cancer treatment and related medical technologies, which enable more
people to survive certain cancers. The National Cancer Institute estimated that the US population in 2005
included around 11 million cancer survivors, which was more than triple the number in 1970 (Curtis
and others, 2006). Furthermore, surviving a given cancer does not necessarily suggest a decreased risk
of developing another cancer. For example, van Eggermond and others (2014) reported that the risk of
developing a second primary cancer among survivors of Hodgkin’s lymphoma is 4.7-fold more than that
among the general population. The risk of developing MPC varies by genetic susceptibility factors as well.
For example, Li-Fraumeni syndrome (LFS), a rare pediatric disease involving higher risk of developing
MPC, is associated with germline mutation in the tumor suppressor gene TP53 (Malkin and others, 1990;
Eeles, 1994).

Penetrance is defined as the probability of actually experiencing clinical symptoms of a particular
trait (phenotype) given the status of the genetic variants (genotype) that may cause the trait. Penetrance
plays a crucial role in many genetic epidemiology studies as it characterizes the association of a germline
mutation with disease outcomes (Khoury and others, 1988). For example, penetrance is an essential
quantity for disease risk assessment, which involves identifying the at-risk individuals and providing
prompt disease prevention strategies. To be more specific, popular risk assessment models often require
penetrance estimates as inputs (Domchek and others, 2003; Chen and Parmigiani, 2007).

The data that motivated our study is a family cohort of LFS collected through probands with pediatric
sarcoma treated at MD Anderson Cancer Center (MDACC) from January 1944 to December 1982 and
their extended relatives (Strong and Williams, 1987; Bondy and others, 1992; Lustbader and others, 1992;
Hwang and others, 2003; Wu and others, 2006). We use “proband” to denote the affected individual who
seeks medical assistance, and based on whom the family data are then gathered for inclusion in datasets
(Bennett, 2011). In the LFS application, the MPC-specific penetrance is defined as

Pr {(k + 1)th primary cancer diagnosis | TP53 mutation status, history of k cancers} , k = 0, 1, 2, · · ·
(1.1)

If an individual currently has no cancer history (i.e., k = 0), then the MPC-specific penetrance (1.1)
becomes Pr {First primary cancer diagnosis | TP53 mutation status}, which has been estimated previously
by Wu and others (2010) ignoring MPC. It shall, therefore, lead to more accurate cancer risk assessment
in LFS for both cancer survivors and no-cancer-history individuals by utilizing more detailed individual
cancer histories with MPC.

Few attempts have been made to account for MPC in penetrance estimation. Wang and others (2010)
used Bayes rule to calculate multiple primary melanoma (MPM)-specific penetrance, based on penetrance
estimates for TP53 mutation carriers, the ratio of MPM patients among carriers and non-carriers, and the
ratio of MPM and patients with single primary melanoma (SPM) among carriers. However, that estimation



Penetrance estimation with multiple primary cancers 469

did not account for age and other factors that may contribute to variations observed in patients with SPM
and MPM, and relied on previous population estimates of penetrance and relative risk.

MPC can naturally be regarded as recurrent events, which have been extensively studied in statistics
(Cook and Lawless, 2007). However, the MPC-specific penetrance estimation from LFS data is more
challenging than estimations that use the conventional recurrent event model due to the following reasons.
Most individuals (74%) in the LFS family data have unknown TP53 genotypes, and the LFS data are
collected through high-risk probands, e.g., those diagnosed with pediatric sarcoma at MDACC, resulting
in ascertainment biases. Such bias is inevitable in the study of rare diseases such as LFS as they require
an enrichment of cases to achieve a sufficient sample size.

Shin and others (2018) recently investigated both of the aforementioned problems for the LFS data
under a competing risk framework to provide a set of cancer-specific penetrance estimates. In particular,
they defined the familywise likelihood by averaging the individual likelihoods within the family over
the missing genotypes, which is possible since the exact distribution of missing genotypes is available
according to the Mendelian law of inheritance. The familywise likelihood can minimize the efficiency loss
since the missing genetic information is taken into account in its calculation. They also proposed to use
the ascertainment-corrected joint (ACJ) likelihood (Iversen and Chen, 2005) to correct the ascertainment
bias for the LFS data.

In this article, we propose a Bayesian semiparametric recurrent event model based on a non-
homogeneous Poisson process (NHPP) (Brown and others, 2005; Cook and Lawless, 2007; Weinberg
and others, 2007) in order to reflect the age-dependent and time-varying nature of the cancer occurrence
rate in LFS. Our preliminary analysis justifies the NHPP model for the LFS data. We develop what we call
the ascertainment-corrected familywise likelihood for the proposed NHPP model and estimate the param-
eters using a Markov chain Monte Carlo (MCMC) algorithm. Then, we provide a set of MPC-specific
penetrances for LFS, which, to the best of our knowledge, have never been reported in the literature.

The rest of this article is organized as follows. In Section 2, we introduce the LFS family data that
motivate this study. In Section 2.2, we provide an explorative analysis for the data to justify our approach.
In Section 3, we propose a semiparametric recurrent event model for MPC based on NHPP. In Section
4, we describe in detail how to construct the familywise likelihood, including the ascertainment bias
correction. We provide the posterior updating scheme via MCMC in Section 5. We describe a simulation
study in Section 6. In Section 7, we apply the proposed method to the LFS data and obtain the estimated
age-at-onset MPC-specific penetrances. We also carry out both internal and external validation analyses.
Our final discussion follows in Section 8.

2. PRELIMINARY ANALYSIS OF THE LFS DATA

2.1. LFS data summary

The pediatric sarcoma cohort data from MDACC consists of 189 unrelated families, with 17 of them
being TP53 mutation positive families in which there is at least one TP53 mutation carrier, and 172 being
negative ones with no carrier (Appendix G in supplementary material available at Biostatistics online).
The TP53 status was determined by PCR of TP53 exonic regions. Ascertainment is carried out through
identification of a proband who has a diagnosis of pediatric sarcoma and who introduces his/her family
into the data collection. After a family was ascertained, family members were contacted regularly and
continually recruited into the study over 1944–1982. Blood samples from members of the family were
collected whenever available. The genetic testing of TP53 was performed on these blood samples, which
constitutes the genotype data. Among a total of 3706 individuals, 964 of them had TP53 testing results.
The age at the diagnosis of each invasive primary tumor for each individual was recorded. The follow-up
periods for each family ranges from 22 years to 62 years starting from the ascertainment date of probands.
Among 570 individuals with a history of cancer, a total of 52 had been diagnosed with more than one
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Table 1. Number of primary cancers in the LFS dataset

Number of primary cancers Gender Wildtype Mutation Unknown

0 Male 300 10 1294
Female 344 8 1214

1 Male 100 24 123
Female 118 21 96

2 Male 3 9 6
Female 3 11 5

3 Male 0 3 0
Female 0 3 4

4 Male 0 2 0
Female 0 1 0

5 Male 0 0 0
Female 0 2 0

7 Male 0 0 0
Female 0 2 0

Total number of individuals 868 96 2742
Total number of cancer patients 224 78 234
Total number of MPC patients 6 33 15

primary cancer (Table 1). Further details on data collection and germline mutation testing can be found
in Hwang and others (2003) and Peng and others (2017).

2.2. Exploratory analysis

We first carry out a preliminary analysis of the LFS data to propose a model that correctly reflects the
nature of the data. For simplicity in this analysis, we ignore the family structure. Let (T, V , G, S) be a
set of data given for an arbitrary individual. For an individual who experiences K , K = 0, 1, · · · primary
cancers, T = (Tk ; k = 0, · · · , K) denotes the individual’s age at diagnosis of the kth primary cancer,
with T0 = 0; V is the censored age at which the individual is lost to follow-up, which is assumed to
be independent of all Tk ’s; G denotes the genotype variable, coded as 1 for germline mutation and 0 for
wildtype, with a large number of missing values as shown in Table 1; and S denotes sex, coded as 1 for
male and 0 for female.

In the analysis of MPC, a primary objective is to model the time to the next cancer given the current
cancer history.We let Wk = Tk −Tk−1 denote the kth gap time between two adjacent primary cancers, where
k = 1, 2, · · · . In analyzing the serial gap times W1, W2, · · · , the censoring time V , although independent
of Tk , can be dependent on Wk when the Wk ’s are not independent (Lin and others, 1999). This is often
referred to as dependent censoring in the literature. Dependent censoring makes it inappropriate to fit
marginal models for the kth gap times Wk(k ≥ 2). For example, Cook and Lawless (2007) showed that
ignoring dependent censoring can lead to underestimation of the survival functions of the second and
subsequent gap times.

To check the dependent censoring, we compute the correlation between W1 and W2 using Kendall’s τ .
Table 1 shows that values of Wk(k ≥ 3) are rarely observed in the LFS data, and we therefore, exclude
them from the analysis. Noting that both W1 and W2 can be censored, we use the inverse probability-of-
censoring weighted (IPCW) estimates of Kendall’s τ after adjusting for the induced dependent censoring
issue (Lakhal-Chaieb and others, 2010). In the analysis, we exclude probands who are the index person
for family ascertainment. More details about IPCW estimates of Kendall’s τ can be found in Appendix
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A (supplementary material available at Biostatistics online). Finally, the estimated IPCW Kendall’s τ =
−0.017 (jackknife estimation of the standard error = 0.005), which indicates a statistically significant,
but very weak correlation between the two gap times within individuals. We have further calculated
Kendall’s τ within subgroups of mutation carriers and non-carriers. Neither of the subgroup τ estimates
was significantly different from zero.

We computed Kaplan–Meier estimates of survival functions S1(t) = Pr(W1 > t) and S2(t) = Pr(W2 >

t), stratified by genotype (Appendix G in the supplementary material available at Biostatistics online). The
risk set used for calculating S2(t) considers only patients with a single primary cancer (SPC) and MPC
starting from the first cancer, while S1(t) includes all individuals. For bothTP53 mutation carriers and non-
carriers or untested individuals, the lengths of the first and second gap times are not identically distributed,
with the first gap time significantly longer than the second one. This suggests a time trend in the process
where the rate of event occurrence increases with age. Moreover, the mutation carriers appear to have
different length distributions for wildtype and untested individuals. This empirical difference in successive
survival also suggests the importance of providing subgroup-specific and MPC-specific penetrance.

3. MODEL

3.1. Semiparametric recurrent event model for MPC

Viewing the MPC as recurrent events that occur over time, we employ a counting process to model the
MPC.

Let {N (t), t ≥ 0} be the number of primary cancers that an individual experiences by age t. The intensity
function λ(t|H (t)) that characterizes the counting process N (t) is defined as

λ(t|H (t)) = lim
�t→0

Pr{N (t + �t)− N (t) > 0|H (t)}
�t

(3.1)

where H (t) denotes the event history up to time t−, i.e., H (t) = {N (s), 0 ≤ s < t}, with t− being a time
infinitesimally before t (Cook and Lawless, 2007; Ning and others, 2015).

For the LFS data, we incorporate a covariate X(t) = {G, S, G × S, D(t), G × D(t)}T into the Poisson
process model, where D(t) is a time-dependent, but periodically fixed MPC variable that is coded as 1
if t > T1 and 0 otherwise. We propose the following multiplicative model for the conditional intensity
function given X(t) as

λ(t|X(t), ξi) = ξiλ0(t) exp(βT X(t)), (3.2)

where β denotes the coefficient parameter that controls effect of covariate X(t) on the intensity and λ0(t) is
a baseline intensity function. Here, ξi is the ith family-specific frailty used to account for the within-family
correlation induced by non-genetic factors that are not included in X(t). We remark that ξi allows us to
relax the assumption that the disease histories are conditionally independent given the genotypes. We

consider the gamma frailty model that assumes ξ1, · · · , ξI
iid∼ Gamma(φ,φ), where I denotes the number

of families. The gamma frailty model has been used as a canonical choice (Duchateau and Janssen, 2007)
due to the mathematical convenience. Recalling that E(ξi) = 1 and var(ξi) = φ−1, a large value of φ
indicates that the within-family correlation is negligible, and we can drop the frailty term to obtain a more
parsimonious model.

There are several choices for the baseline intensity function. Constant or polynomial baseline intensity
can be used due to its simplicity, but it may be too restrictive in practice. As an alternative, the piece-
wise constant model has been widely used due to its flexibility. However, the selection of knot points
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may be subjective, and it always produces a non-smooth function estimate, which is not desired in some
applications. We propose to employ Bernstein polynomials to approximate the cumulative baseline inten-
sity function, �0(t) = ∫

λ0(u)du, which is monotonically increasing. Bernstein polynomials are widely
used in Bayesian nonparametric function estimation with shape constraints. Assuming t ∈ [0, 1] without
loss of generality, Bernstein polynomials of degree M for �0(t) are BM (t;�0) = γ T FM (t), where the
parameter vector γ = (γ1, · · · , γM ) with γm = �0(

m
M ) − �0(

m−1
M ), m = 1, · · · , M and �0(0) = 0; and

FM (t) = (FM (t, 1), · · · , FM (t, M ))T , with FM (t, m) being the beta distribution function with parameters
m and M − m + 1 evaluated at t (Curtis and Ghosh, 2011). We restrict γm ≥ 0, m = 1, · · · , M to have�0

monotonically increasing. The Bernstein-polynomial model for λ0(t) is then obtained by

λ0(t) ≈ d

dt
BM (t;�0) = γ T fM (t), (3.3)

where fM (t)T = (fM (t, 1), · · · , fM (t, M ))) denotes the beta density with parameters m and M − m + 1
evaluated at t.

A large value of M provides more flexibility to model the shape of baseline rate function, but at the
cost of increased computations. Gelfand and Mallick (1995) empirically showed that a relatively small
value of M works well in practice, and we assume M = 5 in the upcoming analyses.

Finally, the proposed semi-parametric model for the intensity function of NHPP is given by

λ(t|X(t), ξi) = ξiγ
T fM (t) exp{βT X(t)}.

3.2. MPC-specific penetrance

The MPC-specific age-at-onset penetrance defined in (1.1) is equivalently rewritten as

Pr(Wk+1 ≤ w|Tk , X(t)), (3.4)

which is identical to Pr(Wk+1 ≤ w|Tk , X(Tk)) since D(t) is periodically fixed. The MPC-specific
penetrance (3.4) is then obtained by marginalizing out the random frailty ξ as follows:

Pr(Wk+1 ≤ w|Tk = tk , X(tk)) = 1 −
∫ ∞

0
exp

(
−

∫ tk +w

tk

λ(u|X(u), ξ)du

)
f (ξ |φ)dξ

= 1 −
(

φ

φ + ∫ tk +w
tk

λ(u|X(u))du

)φ

,

where f (ξ |φ) is the gamma density function of the frailty ξ given φ, and λ(t|X(t)) = λ0(t) exp{βT X(t)}.

4. COMPUTING LIKELIHOOD

In this work, the computing likelihood is not trivial due to a large number of missing genotypes and the
ascertainment bias. In this section, we propose an ascertainment-bias-corrected familywise likelihood to
tackle these issues.

Let vij and Kij denote the censoring time and the total number of primary cancers developed for individual
j = 1, · · · , ni from family i = 1, · · · , I , respectively. Suppose we are given a set of data (tij, vij, gij, sij),
where tij = {tij,k : k = 1, · · · , Kij}T and gij and sij are the observed genotype and sex, respectively. Given
the data, we can easily define the observed version of D(t) denoted by dij(t) as 1 if t > tij,1 and 0 otherwise,
and xij(t) = {gij, sij, gij × sij, dij(t), gij × dij(t)}T .
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4.1. Individual likelihood

Let tij,0 = 0 and vij ≥ tij,Kij , conditioning on ξi, the likelihood contribution of the kth event since the
(k − 1)th event is

λ(tij,k |xij(tij,k), ξi) exp
(

−
∫ tij,k

tij,k−1

λ(u|xij(u), ξi)du

)
, (4.1)

(Cook and Lawless, 2007).
Let xij = {xij(tij,k), k = 1, · · · , Kij} and θ = (β, γ ,φ) denote the parameter vectors of interest. Given

ξi, the likelihood of the jth individual of the ith family with primary cancer events hij = (tij, vij), denoted
by Pr(hij|xij, θ , ξi) is

Pr(hij|xij, θ , ξi) ∝
⎧⎨
⎩

Kij∏
k=1

λ(tij,k |xij(tij,k), ξi)

⎫⎬
⎭ ×

exp

⎧⎨
⎩−

Kij∑
k=1

∫ tij,k

tij,k−1

λ(u|xij(u), ξi)du

⎫⎬
⎭ × exp

{
−

∫ vij

tij,Kij

λ(u|xij(u), ξi)du

}
. (4.2)

4.2. Familywise likelihood

Tentatively assuming that the covariates xij are completely observed for every individual, the likelihood
for the ith family is simply given by

∏ni
j=1 Pr(hij|xij, θ , ξi). However, in the LFS data, most individuals

have not undergone testing for their TP53 mutation status. For simplicity, we partition the covariate vector
xij = {gij, gc

ij}, where gij and gc
ij denote the covariates that are related and unrelated to the genotype gij,

respectively. Let hi = (hi1, · · · , hini ), gi = (gi1, · · · , gini ) and gc
i = (gc

i1, · · · , gc
ini
). Due to a large number

of family members without genotype information, gi, we further introduce gi,obs and gi,mis to respectively
denote the observed and missing parts of genotype vector gi, i.e., gi = {gi,obs, gi,mis}. The familywise
likelihood for the ith family is naturally defined by

Pr(hi|gi,obs, gc
i , θ , ξi), (4.3)

while its evaluation is not trivial since hi1, · · · , hini are correlated through gi,mis.
To tackle this issue, we employ Elston–Stewart’s peeling algorithm to recursively calculate (4.3) (Elston

and Stewart, 1971; Lange and Elston, 1975; Fernando and others, 1993). Let us suppress the conditional
arguments in (4.3) except gi,obs for simplicity. The peeling algorithm is developed to evaluate the pedigree
likelihood Pr(hi), not Pr(hi|gi,obs), accounting for the probability distribution of genotype configurations
of all family members (e.g., 3n genotype configurations for one gene and n family members). It proceeds by
recursively partitioning a large family into smaller ones. An illustrative example of the peeling algorithm
for the familywise likelihood evaluation is given in Appendix B (supplementary material available at
Biostatistics online). Notice that if there is no genotype observed, i.e., gi = gi,mis, then (4.3) can be
evaluated by directly applying the peeling algorithm. We have made slight modification on the peeling
algorithm to include known genotype information of some family members in our data (Shin and others,
2018).

4.3. Ascertainment bias correction

Ascertainment bias is inevitable in studies of rare diseases like LFS because the datasets are usually
collected from a high-risk population. For example, our LFS dataset is ascertained through probands
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diagnosed at LFS primary cancers such as pediatric sarcoma at MDAnderson Cancer Center, and therefore,
has oversampled LFS primary cancer patients. Such ascertainment must be properly adjusted to generalize
the corresponding results to the population, for which the familywise likelihood (4.3) alone is not sufficient.

We propose to use an ACJ likelihood (Kraft and Thomas, 2000; Iversen and Chen, 2005). Introducing
an ascertainment indicator variable Ai = 1 that takes 1 if the ith family is ascertained and 0 otherwise,
the ACJ likelihood for the ith family is given by

Pr(hi, gi,obs|gc
i , θ , ξi, Ai = 1) ∝ Pr(hi|gi,obs, gc

i , θ , ξi)

Pr(Ai = 1|gc
i , θ , ξi)

. (4.4)

That is, the ACJ likelihood corrects the ascertainment bias by inverse-probability weighting (4.3) by the
corresponding ascertainment probability. Now, the ascertainment probability, the denominator in (4.4), is
the likelihood contribution of the proband, computed as follows:

Pr(Ai = 1|gc
i , θ , ξi)

=
∑

g∈{0,1}

[
λ(ti1,1|xi1(ti1,1; g), ξi) exp

{
−

∫ ti1,1

0
λ(u|xi1(u), ξi)du

}]
Pr(Gi1 = g|gc

i1), (4.5)

where xi1(t; g) = {g, si1, g × si1, di1(t), g × di1(t)}T for the proband in family i. Notice this likelihood
is marginalized over genotype since the genotype information for the proband is not available when the
ascertainment decision is made. In general, the covariate specific prevalence Pr(Gi1 = g|gc

i1) is assumed
to be known. In our LFS application, we assume the TP53 mutation prevalence is independent of all
non-genetic variables, and therefore, the conditional prevalence is equal to the unconditional prevalence
Pr(Gi1 = g) for a general population, which can be calculated from the mutated allele frequency denoted
byψA: Pr(Gi1 = 0) = (1−ψA)

2 and Pr(Gi1 = 1) = 1−(1−ψA)
2. Here,ψA = 0.0006 for TP53 mutations

in the Western population (Lalloo and others, 2003).
Finally, the ACJ familywise likelihood for the LFS data is then given by

Pr(H, Gobs|Gc, θ , ξ , A) ∝
I∏

i=1

Pr(hi|gi,obs, gc
i , θ , ξi)

Pr(Ai = 1|gc
i , θ , ξi)

where H = (h1, · · · hI ), Gobs = (g1,obs, · · · , gI ,obs), Gc = (gc
1, · · · , gc

I ), and ξ = (ξ1, · · · , ξI ), and A =
(A1, · · · , AI ).

5. POSTERIOR SAMPLING THROUGH MCMC

We set an independent normal prior for β where β ∼ N (0, σ 2I) where 0 and I denote a zero vector
and an identity matrix, respectively, and σ = 100 for vague priors. We assign nonnegative flat priors for
γ ∼ Gamma(0.01, 0.01) for the baseline intensity. We assume a gamma prior forφ ∼ Gamma(0.01, 0.01).
The joint posterior distribution of (θ ,φ, ξ) is

Pr(θ ,φ, ξ |H, Gobx, Gc, A) ∝ Pr(H, Gobs|Gc, θ , ξ , A)Pr(θ)Pr(ξ |φ)Pr(φ). (5.1)

where Pr(θ) and Pr(φ) denote prior distributions, and Pr(ξ |φ) is a frailty density that we assume to follow
gamma distribution. We use a random walk Metropolis-Hastings-within-Gibbs algorithm to generate
100 000 posterior estimates in total, with the first 5000 as burn-in. Details about the algorithm steps, R
code and convergence diagnostics can be found in the Appendix C (supplementary material available at
Biostatistics online).
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6. SIMULATION STUDY

We simulated family history data containing patients with single and MPC as follows:

(1) We first simulated the genotype of the proband by G ∼ Bernoulli(0.001), based on which we
generated the first and second gap times, W1 and W2, from the exponential distribution with the rate
parameter being

λ(t|G, D) = ξλ0(t) exp(β1G + β2D), (6.1)

where D = 0 for W1 and D = 1 for W2. We set a constant baseline λ0(t) = 0.0005, and β1 = 6
and β2 = 1. We simulated ξ ∼ Gamma(φ,φ) with φ = 1. The two gap times were then compared
to censoring time generated by V ∼ Exponential(0.5) to determine the event indicator. To mimic
the ascertainment procedure, for the family data simulation, we retained only the probands with at
least one primary cancer observed.

(2) Given the proband’s data, we generated his/her family data for three generations. The complete
pedigree structure for the simulation is depicted in Appendix G (supplementary material available
at Biostatistics online). We set the genotype of all family members as G = 0 if the proband was a
non-carrier. If the proband was a TP53 mutation carrier, one of his/her parents was randomly set
as a carrier, and the proband’s siblings and offsprings were set independently as carriers with a
probability of 0.5. The offspring of the proband’s siblings were also randomly set as carriers with
a probability of 0.5 if the proband’s siblings were carriers. To mimic the scenario of the rate of a
rare mutation such as that of the TP53 gene, all family members with non-blood relationships with
the proband were set as non-carriers.

(3) We simulated the first two gap times and the cancer event indicators for the probands’ relatives as
we did for the probands. We simulated a total of 100 such families, each of which had 30 family
members. To mimic the real scenario in which genotype data are not available for a majority of
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Fig. 1. Simulation results: The top panel reports root mean squared errors and absolute biases (in parenthesis) of the
estimates from the models with and without frailty term. The bottom panel shows boxplots of the estimates from 100
independent repetitions with the corresponding true values depicted in dashed line. The truths for the simulation data
are: β1 = 6, β2 = 1, and λ0 = 0.0005.
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Table 2. Summary of posterior estimates

Coefficient
Frailty No frailty

Median SD 2.5% 97.5% Median SD 2.5% 97.5%

βG 3.516 0.256 3.068 3.953 3.288 0.223 2.871 3.687
βS 0.027 0.115 −0.189 0.232 0.027 0.118 −0.187 0.241
βG×S −0.332 0.246 −0.809 0.139 −0.354 0.239 −0.817 0.106
βD(t) −0.380 0.363 −1.152 0.259 −0.197 0.336 −0.929 0.389
βG×D(t) 0.716 0.429 −0.070 1.601 0.700 0.402 −0.033 1.548
φ 5.883 1.695 3.427 9.855 Not available

SD, standard deviation

family members, we randomly removed 70% of the genotype information from non-proband family
members.

We applied the proposed methods to the simulated data. We generated 5000 posterior samples from the
MCMC algorithm, with the first 1000 as burn-in, and checked that the MCMC chains converged well.
Simulation results based on 100 independent repetitions are summarized in Figure 1. The proposed method
can successfully recover the true parameters. See the top panel for the comparison to a model without
frailty, in terms of the root mean squared error and absolute bias, and the bottom panel for the comparison
to a model without ascertainment bias correction.

7. CASE STUDY

We applied our method to the LFS data (Section 2.2) and estimated the parameters using the MCMC
algorithm as described in Section 5. We performed cross-validation, in which we compared our prediction
of the 5-year risk of developing the next cancer given the individual’s cancer history and genotype infor-
mation with the observed outcome, based on our penetrance estimates. We also compared our penetrance
results with population estimates and the results in previous studies on TP53 penetrance.

7.1. Model fitting

We fit our model to the LFS data up to the second cancer event due to the limited number of individuals
with three or more primary cancers in the dataset (Table 1). Our model contains three relevant covariates:
genotype, sex, and cancer status at time t, respectively denoted by G, S, and D(t). We also included two
interaction effects on genotype.

We applied the proposed method to the entire dataset to obtain penetrance estimates for SPCs and
MPCs given the TP53 mutation status. We first conducted a sensitivity analysis, which showed that the
penetrance estimates are not overly sensitive to the choice of priors. The results of the sensitivity analysis
are provided in Appendix D (supplementary material available at Biostatistics online).

We then computed the deviance information criterion (DIC) to identify the best set of covariates.
We compare five different combinations of G, S, and D(t). We observe that the simplest model with
{G, S, D(t)} achieves the minimum DIC value. However, we decided to select the second best model in
terms of the DIC, with {G, S, D(t), G × S, G × D(t)} as our final model since it has been reported that
cancer status has different effects on cancer risk for mutation carriers and non-carriers (van Eggermond
and others, 2014; Mai and others, 2016). All posterior estimates of the model generated from the MCMC
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algorithm converged well and had reasonable acceptance ratios. See Appendix G (supplementary material
available at Biostatistics online) for the model comparison results.

Table 2 contains summaries of the posterior estimates for both the frailty and no-frailty models. We
observe that the variance of frailty, φ−1, is estimated to be quite small, which indicates that the no-frailty
model may be preferred. It turns out that both models produce nearly identical penetrance estimates
(Appendix E in the supplementary material available at Biostatistics online), and we decide to use the no-
frailty model to analyze the LFS data. The genotype has dominant effects on increasing cancer risk, both
through a main effect and through interaction with the cancer history, as expected from the exploratory
analysis (Section 2.2).

Figure 2 compares penetrance estimates at different ages for females and males, respectively, stratified
by genotype. As expected, TP53 mutation has a clear effect on the increase of cancer risk, especially when
the individual has a recent history of cancer. For an individual without a TP53 mutation, a history of cancer
also has a positive effect on increasing the risk of developing subsequent cancer.

Wu and others (2010) estimated TP53 penetrance for the first primary cancer only from six pediatric
sarcoma families, a subset of our LFS dataset. Figure 2 shows that, for mutation carriers, this age-at-onset
TP53 penetrance estimate aligns with those for SPC in our model but is slightly increased at an older
age. Such consistency with a published analysis validates the performance of our model in real data.
Another validation is when we compared our estimates for non-carriers to population estimates from the
Surveillance, Epidemiology, and End (SEER) Results program (LAG and others, 2008), they also align
well (Figure 2c and d, more consistent in males than in females).

7.2. Cancer risk prediction

We assessed the ability of our model to predict cancer risk using 10-fold cross-validation. We randomly
split the 189 families into 10 portions and repeatedly fit our model to the nine portions of all the families to
estimate the penetrance, based on which we made predictions using the remaining one portion of the data.
The individuals used for prediction are those who have known genotype information. We removed the
probands because they were not randomly selected for genotype testing. We rolled back five years from
the age of diagnosis of cancer or the censoring age. Based on the rolled-back time, we then calculated
a 5-year cumulative cancer risk. We made two types of risk predictions that are of clinical interest. In
the first scenario, we predicted the 5-year risk of developing a cancer given that the individual has no
history of cancer (affected versus unaffected). In the second scenario, we predicted the risk of developing
the next cancer when the individual had developed cancer previously (SPC versus MPC). We combined
these results with those from the 10-fold cross-validation together and evaluated them using the receiver
operating characteristic (ROC) curves. To assess the variation in prediction caused by data partitioning,
we performed random splits for cross-validation 25 times. Figure 3 shows the risk prediction results from
each random split. The median area under the ROC curve (AUC) is 0.804 for predicting the status of
being affected by cancer versus the status of not being affected by cancer, given that the individual has no
history of cancer. The median AUC is 0.749 for predicting the status of the next cancer when the subject
has had one primary cancer. The validation showed that the model performance is robust to random splits
in cross-validation.

8. DISCUSSIONS

To our knowledge, this is the first attempt to estimate MPC-specific penetrance forTP53 germline mutation
to include family members with unknown genotype information, which will, in turn, substantially improve
the sample size and power of a study. In our LFS study, the increases in the number of cancer patients
used in the analysis are 48% (from 27 to 40) for MPCs, and 89% (from 274 to 518) for the control group
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Fig. 2. Age-at-onset penetrances of SPC and MPC for (a) female mutation carriers, (b) male mutation carri-
ers, (c) female non-carriers, and (d) male non-carriers. The shaded area is the 95% credible bands. Note the
y-axis scales between carriers and non-carriers are different. Notations: G = 1, mutation carriers; S = 1,
male; T1 = 20, the first primary cancer diagnosed at age 20. “LFS penetrance” denotes an estimate for
Pr {First primary cancer diagnosis | TP53 mutation status} that was previously published using a subset of our LFS
dataset without considering the onset of multiple primary cancers.
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Fig. 3. ROC of the 5-year risk of developing the second primary cancer in the LFS dataset. The dotted lines denote
the ROC curves for 25 random splits of the data, each undergone a 10-fold cross-validation. The solid lines denote
the median ROC curves. Affected vs. Unaffected, prediction of developing a cancer given that the individual has no
history of cancer; MPC versus SPC, prediction of developing the next cancer given that the individual has had one
primary cancer (SPC). Sample size: n(Affected) = 116, n(Unaffected) = 661, n(MPC) = 29, n(SPC) = 87. se, standard
error.

of SPCs. We developed a novel NHPP and incorporated it with a familywise likelihood so that it can
model MPC events in the context of a family, while properly accounting for age effects and time-varying
cancer status. We applied a Bayesian framework to estimate the unknown parameters in the model. We
also adjusted for ascertainment bias in the likelihood calculation so that our penetrance estimates can be
compared to those generated from the general population. Our new method provides a flexible framework
for the penetrance estimation of MPC data, and shows reasonable predictive performance of cancer risk.
As the number of patients with MPC continues to rise in the general population, our method will be useful
to predict subsequent cancers and to assist in clinical management of the disease.

Some possible extensions remain. First, we restricted our analysis up to the second primary cancer
because of the limited power in the LFS dataset. This makes our penetrance estimation unsuitable for
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individuals with a history of more than two cancers. It is straightforward to extend our model to account
for three or more cancers if we have such cases for each subpopulation.

Second, the occurrence of primary cancers may depend on other factors such as cancer treatment. For
example, radiotherapy can damage normal cells in tumor-adjacent areas and is associated with excessive
incidence of secondary solid cancers (Inskip and Curtis, 2007). Our model can include additional covariates
to adjust for such dependency between successive events. However, the availability of reliable data on
radiotherapy is scarce and we have shown here that the current model can have reasonable predictive
performance even without incorporating treatment factors.

Third, because the correlation between the first two gap times in the real data is very small, the
recurrent event model we used in this study does not explicitly consider such an association. For future
datasets that exhibit a stronger level of correlation between the gap times, we would expect the predictive
performance for the second or subsequent primary cancers to be improved by properly utilizing such
correlation information (i.e., through Bayesian parametric copula models for sequential gap time analyses
(Meyer and Romeo, 2015)).

Finally, in MPC studies, there usually exist multiple types of cancer. In our LFS study, even though our
genetic background is simple, TP53 germline mutations, the presentation of cancer outcomes is diverse.
LFS is characterized by occurrence of many different cancer types, such as sarcoma, breast cancer and
lung cancer. Patients with MPC are thus subject to the competing risk of multiple types of cancer. In our
current model, we pool together all cancer types and do not address the onset of second primary cancer
at any specific site. As we collect more datasets on LFS from multiple clinics to increase our sample
size, future work will include extending our methodology to provide MPC-specific and cancer-specific
penetrance estimation.

9. SOFTWARE

Finally, we provide an illustration of our method in Appendix F (supplementary material available at
Biostatistics online). The associated example dataset and results, and all of the source code, are available
at http://github.com/wwylab/MPC.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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