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SUMMARY

Sequential, multiple assignment, randomized trial (SMART) designs have become increasingly popular
in the field of precision medicine by providing a means for comparing more than two sequences of
treatments tailored to the individual patient, i.e., dynamic treatment regime (DTR). The construction of
evidence-based DTRs promises a replacement to ad hoc one-size-fits-all decisions pervasive in patient
care. However, there are substantial statistical challenges in sizing SMART designs due to the correlation
structure between the DTRs embedded in the design (EDTR). Since a primary goal of SMARTs is the
construction of an optimal EDTR, investigators are interested in sizing SMARTs based on the ability
to screen out EDTRs inferior to the optimal EDTR by a given amount which cannot be done using
existing methods. In this article, we fill this gap by developing a rigorous power analysis framework
that leverages the multiple comparisons with the best methodology. Our method employs Monte Carlo
simulation to compute the number of individuals to enroll in an arbitrary SMART. We evaluate our method
through extensive simulation studies. We illustrate our method by retrospectively computing the power in
the Extending Treatment Effectiveness of Naltrexone (EXTEND) trial. An R package implementing our
methodology is available to download from the Comprehensive R Archive Network.

∗To whom correspondence should be addressed.

© The Author 2018. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.



Power analysis in a SMART design 433

Keywords: Embedded dynamic treatment regime (EDTR); Monte Carlo; Multiple comparisons with the
best; Power; Sample size; Sequential multiple assignment randomized trial (SMART).

1. INTRODUCTION

Sequential, multiple assignment, randomized trial (SMART) designs have gained considerable attention in
the field of precision medicine by providing an empirically rigorous experimental approach for comparing
more than two sequences of treatments tailored to the individual patient, i.e., dynamic treatment regime
(DTR) (Lavori and others, 2000; Murphy, 2005; Lei and others, 2012). A DTR is a treatment algorithm
implemented through a sequence of decision rules which dynamically adjusts treatments and dosages to
a patient’s unique changing need and circumstances (Murphy and others, 2001; Murphy, 2003; Robins,
2004; Nahum-Shani and others, 2012; Chakraborty and Moodie, 2013; Chakraborty and Murphy, 2014;
Laber and others, 2014). SMARTs are motivated by scientific questions concerning the construction of an
effective DTR. The sequential randomization in a SMART gives rise to several DTRs which are embedded
in the SMART by design (EDTR). Many SMARTs are designed to compare more than two EDTRs and
identify those showing greatest potential for improving a primary clinical outcome. The construction of
evidence-based EDTRs promises an alternative to ad hoc one-size-fits-all decisions pervasive in patient
care (Chakraborty, 2011).

The advent of SMART designs poses interesting statistical challenges in the planning phase of the
trials. In particular, determining an appropriate sample size of individuals to enroll becomes analytically
difficult due to the correlation structure between the EDTRs. Previous work includes sizing pilot SMARTs
(small scale versions of a SMART) so that each sequence of treatments has a pre-specified number of
individuals with some probability by the end of the trial (Almirall and others, 2012; Gunlicks-Stoessel
and others, 2016; Kim and others, 2016). The central questions motivating this work are feasibility of the
investigators to carry out the trial and acceptability of the treatments by patients. These methods do not
provide a means to size SMARTs for comparing EDTRs in terms of a primary clinical outcome.

Alternatively, Crivello and others (2007a) proposed a new objective for SMART sample size planning.
The question they address is how many individuals need to be enrolled so that the best EDTR has the
largest sample estimate with a given probability (Crivello and others, 2007b). Such an approach based on
estimation alone fails to account for the fact that some EDTRs may be statistically indistinguishable from
the true best EDTR for the given data in which case they should not necessarily be excluded as suboptimal.
Our approach goes one step further than Crivello’s by providing a means to size SMARTs in order to
construct narrow confidence intervals which not only tell which is the best EDTR, but also provide the
ability to screen out inferior EDTRs. Crivello and others (2007a) also discussed sizing SMARTs to attain
a specified power for testing hypotheses which compare only two treatments or two EDTRs as opposed to
comparing all EDTRs. The work of Crivello and others (2007a) focused mainly on a particular common
two-stage SMART design whereas our method is applicable to arbitrary SMART designs.

More recently, Ogbagaber and others (2016) proposed two methods for sizing a SMART. Their first
approach is to choose the sample size in order to achieve a specified power for a global chi-squared test of
equality of EDTR outcomes. Their second approach is to choose the sample size in order to detect pairwise
differences between EDTR outcomes while adjusting for a specified number of pairwise comparisons using
the Bonferroni correction. Their second approach sizes a SMART so that for each pairwise comparison,
a difference can be detected with a specified probability 1 − β. Our approach offers an alternative which
requires a smaller sample size to achieve the same power.

One of the main goals motivating SMARTs is to identify the optimal EDTR. It follows that investigators
are interested in sizing SMARTs based on the ability to screen out EDTRs which are inferior to the optimal
EDTR by a clinically meaningful amount while including the best EDTR with a specified probability. In
this article, we develop a rigorous power analysis framework that leverages the multiple comparisons with
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the best (MCB) methodology (Hsu, 1981, 1984, 1996). The main justification for using MCB to adjust for
multiple comparisons is that it involves fewer comparisons compared to other methods and thus, it yields
greater power for the same sample size with all else being equal (Ertefaie and others, 2015).

In Section 2, we give a brief overview of SMARTs, notation, and background on estimation and MCB.
In Section 3, we present our power analysis framework. In Section 4, we look at the sensitivity of the power
to the covariance matrix of EDTR outcomes. In Section 5, we demonstrate the validity of our method
through extensive simulation studies. In Section 6, we apply our method to retrospectively compute the
power in the Extending Treatment Effectiveness of Naltrexone (EXTEND) trial. In Section 7, we discuss
how to choose the covariance matrix of EDTR outcomes for sample size calculations. In Sections 8 and 9,
we give concluding remarks. In the supplementary material available at Biostatistics online, we provide
additional details about our simulation study, a comparison with the method presented in Ogbagaber and
others (2016), and additional simulation studies for power analysis when data from a pilot SMART is
available. The R package “smartsizer” is available to download from the Comprehensive R Archive
Network.

2. PRELIMINARIES

2.1. Sequential multiple assignment randomized trials (SMART)

In a SMART, individuals proceed through multiple stages of randomization such that some or all indi-
viduals may be randomized more than once. Additionally, treatment assignment is often tailored to the
individuals’ ongoing response status (Nahum-Shani and others, 2012). For example, in the Extending
Treatment Effectiveness of Naltrexone (EXTEND) trial (see Figure 1 for the study design and Nahum-
Shani and others, 2017 for more details about this study), individuals were initially randomized to two
different criteria of non-response: lenient or stringent. Specifically, all individuals received the same fixed
dosage of naltrexone (NTX)—a medication that blocks some of the pleasurable effects resulting from
alcohol consumption. After the first 2 weeks, individuals were evaluated weekly to assess response status.
Individuals assigned to the lenient criterion were classified as non-responders as soon as they had five
or more heavy drinking days during the first 8 weeks of the study, whereas those assigned to the strin-
gent criterion were classified as non-responders as soon as they had two or more heavy drinking days
during the first eight weeks. As soon as participants were classified as non-responders, they transitioned
to the second stage where they were randomized to two subsequent rescue tactics: switch to combined
behavioral intervention (CBI) or add CBI to NTX (NTX + CBI). At week 8, individuals who did not meet
their assigned non-response criterion were classified as responders and re-randomized to two subsequent
maintenance interventions: add telephone disease management (TDM) to NTX (NTX + TDM) or continue
NTX alone. Note that the stage-2 treatment options in the SMART are tailored to the individuals’ early
response status. This leads to a total of eight EDTRs. For example, one of these EDTRs recommends
to start the treatment with NTX and monitor drinking behaviors weekly using the lenient criterion (i.e.,
5 or more heavy drinking days) to classify the individual as a non-responder. As soon as the individual
is classified as a non-responder, add CBI (NTX + CBI); if at week 8 the individual is classified as a
responder, add TDM (NTX + TDM). A primary goal motivating many SMARTs is the determination of
optimal EDTR. For example, determining an optimal EDTR in the EXTEND may guide in evaluating a
patient’s initial response to NTX and in selecting the best subsequent treatment. We develop our power
analysis framework with this goal in mind.

One important challenge for power analysis in SMART designs is the correlation of EDTR outcomes.
The correlation arises, in part, due to overlapping interventions in distinct EDTRs and because patients’
treatment histories may be consistent with more than a single EDTR. For example, patients in distinct
EDTRs of the EXTEND trial all receive NTX. Also, patients who are classified as responders in stage 2

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy064#supplementary-data
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Fig. 1. This diagram shows the structure of the EXTEND trial.

and subsequently randomized to NTX will be consistent with two EDTRs: one where non-responders are
offered CBI and one where non-responders are offered NTX + CBI. In Sections 4 and 5, we will discuss
the dependence of power on the covariance. We provide guidelines on choosing the covariance matrix in
Section 7.

2.2. Notation

We focus on notation for two-stage SMART designs, but the methods in this paper are applicable to an
arbitrary SMART. We use the same notation as in Ertefaie and others (2015). Let Oj and Aj denote the
observed covariates and treatment assignment, respectively, at stage j. Let Ōj and Āj denote the covariate
and treatment histories up to and including stage j, respectively. Let T the treatment trajectory be the
vector of counterfactual treatment assignments for an individual. For example, in a two-stage SMART
with stage-2 treatment tailored to response status, T may be of the form T = (A1, AR

2 , ANR
2 ) where AR

2 is the
stage-2 treatment assignment had the individual responded and ANR

2 is the stage-2 treatment assignment
had the individual not responded. The reason these are counterfactual treatment assignments is that for
an individual who responds to the stage-1 treatment, ANR

2 would be unobserved. Hence, the treatment
history Ā2 would be (A1, A2) while the treatment trajectory T would be (A1, AR

2 , ANR
2 ) and would include

the unobserved counterfactual. Let V be the embedded tailoring variable for the stage-2 treatment. For
example, in EXTEND, V is the indicator of response to the stage-1 treatment. Let Y denotes the continuous
observed outcome of an individual at the end of the study. Let the kth EDTR be denoted by EDTRk . Let
θ = (θ1, ..., θN )t be the true mean outcome vector of EDTRs where N is the total number of EDTRs. Let
n denote the sample size.
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2.3. Estimation

We summarize the estimation procedures inverse probability weighting (IPW) and augmented inverse
probability weighting (AIPW) introduced in Ertefaie and others (2015) for a two-stage SMART, but the
method can be extended to arbitrary SMART designs. In order to perform estimation with IPW/AIPW,
a marginal structural model (MSM) must be specified. A MSM models the response as a function of
the counterfactual random treatment assignments in the treatment trajectory vector T , while ignoring
non-treatment covariates. For example, in a two-stage SMART, a MSM is: m(T ; β) = β0 + β1A1 +
β2AR

2 + β3ANR
2 + β4A1AR

2 + β5A1ANR
2 . Subsequently, the IPW and AIPW estimators β̂ IPW and β̂AIPW for

β = (β1, ..., βp)
t may be obtained by solving the following respective estimating equations:

Pn

N∑
k=1

ṁ(T ; β)w2(V , Ā2, k)(Y − m(T ; β)) = 0 (IPW)

Pn

N∑
k=1

ṁ(T ; β)
[
w2(V , Ā2, k)(Y − m(T , β))

− (w2(V , Ā2, k) − w1(A1, k)
) (

E[Y | Ā2 = EDTRV
k , Ō2, γ ] − m(T ; β)

)
− (w1(A1, k) − 1)(E[E{Y | Ā2 = EDTRV

k , Ō2, γ } | A1 = EDTRk ,1, O1, γ ] − m(T ; β)
)] = 0

(AIPW)

where Pn denotes the empirical average, ṁ(T , β) = ∂m

∂β
, EDTRv

k = (
EDTRk ,1, EDTRv

k ,2

)
is

the kth EDTR for V = v, w1(a1, k) = IEDTRk ,1(a1)

p(A1 = a1)
for A1 = a1, and w2(v, ā2, k) =

IEDTRk ,1(a1)IEDTRv
k ,2

(a2)

p(A1 = a1)p(A2 = a2 | A1 = a1, V = v)
for V = v and Ā2 = ā2.

Then, the EDTR outcome estimators are θ̂ IPW = Dβ̂ IPW and θ̂AIPW = Dβ̂AIPW where D is a N ×p matrix
with kth row of D corresponding to the kth EDTR contrast and p is the number of parameters in the MSM.
AIPW is doubly robust in the sense that it will still provide unbiased estimates of the MSM coefficients β

when either the conditional means or the treatment assignment probabilities are correctly specified. The
following theorem from Ertefaie and others (2015) is included for the sake of completeness.

THEOREM 2.1 Let � denote IPW or AIPW. Let θ̂
� = Dβ̂

�
. Then, under standard regulatory assumptions,√

n(θ̂
� − θ) → N (0, �� = D[�−1���′−1]D′) where � = −E[∑N

k=1 ṁ(T ; β)ṁ′(T ; β)] and �� =
E[U �U ′�] with

U AIPW =
N∑

k=1

ṁ(T ; β)
[
w2(V , A2, k)(Y − m(T , β))

− (w2(V , Ā2, k) − w1(A1, k)
) (

E[Y | Ā2 = EDTRV
k , Ō2, γ ] − m(T ; β)

)
− (w1(A1, k) − 1)(E[E{Y | Ā2 = EDTRV

k , Ō2, γ } | A1 = EDTRk ,1, O1, γ ] − m(T ; β)
)]

U IPW =
N∑

k=1

ṁ(T ; β)w2(V , Ā2, k)(Y − m(T ; β))
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The asymptotic variance �� may be estimated consistently by replacing the expectations with expectations
with respect to the empirical measure and (β, γ ) with its estimate (β̂

�
, γ̂ ) and may be denoted as �̂

� =
D[�̂−1

�̂
�
�̂

′−1]D′.

We will see the sample size needed in a SMART is a function of the asymptotic covariance matrix �

of the EDTR outcomes θ̂ . This is because the amount of variation in EDTR outcomes and the correlation
between EDTRs determines how easy it is to screen out inferior EDTRs. Identifying the optimal EDTRs
and excluding inferior EDTRs may be viewed as the multiple testing problem. In the next section, we
discuss how the MCB procedure (Hsu, 1981, 1984, 1996) can be used to address scientific questions
concerning the optimal EDTR.

2.4. Determining a set of best EDTRs using multiple comparison with the best (MCB)

The MCB procedure permits identification of a confidence set of EDTRs which cannot be statistically
distinguished from the true best EDTR for the given data while adjusting for multiple comparisons. In
particular, EDTRi is considered statistically indistinguishable from the best EDTR for the available data

if and only if
θ̂i − θ̂j

σij
≥ −ci,1−α for all j �= i where σij =

√
Var(θ̂i − θ̂j) and ci,1−α > 0 is chosen so that the

set of best EDTRs includes the best EDTR with at least a specified probability 1 −α. Then, the set of best
can be written as B̂ := {EDTRi : θ̂i ≥ max

j �=i
[θ̂j − ci,1−ασij]} where ci,1−α depends on α and the covariance

matrix �. The above α represents the type I error rate for excluding the best EDTR from B̂. To control the
type I error rate, it suffices to consider the situation in which the true mean outcomes are all equal. Then, a
sufficient condition for the type I error rate to be at most α is to choose ci,1−α so that the set of best includes
each EDTR with probability at least 1 − α: Pr(EDTRi ∈ B̂ | θ1 = · · · = θN ) = 1 − α for all i = 1, ..., N .
It is sufficient for ci,1−α to satisfy:

∫
Pr
(
Zj ≤ z + ci,1−ασij, for all j = 1, ..., N

)
dφ(z) = 1 − α, (2.1)

where φ(z) is the marginal cdf of Zi and (Z1, ..., ZN )t ∼ N (0, �). Observe that ci,1−α > 0 is a function of
� and α ≤ 0.5, but not of the sample size n. The integral in (2.1) is analytically intractable, but the ci,1−α

may be determined using Monte Carlo methods.
It is important to note that while EDTRs included in the set of best are statistically indistinguishable

for the given data, this does not mean that the EDTRs are equivalent in efficacy. This is because SMART
designs may not have enough individuals in each EDTR to justify the interpretation of equivalence without
an unrealistically large sample size. Our method sizes SMARTs for screening out EDTRs inferior to the
best and does not size for testing equivalence.

The MCB procedure has an important advantage over other procedures which adjust for multiple
comparisons: MCB provides a set with fewer EDTRs since fewer comparisons yields increased power to
exclude inferior EDTRs from the set of best. Specifically, for a SMART design where N is the number of
EDTRs, the MCB procedure involves only N −1 comparisons whereas, for example, all pairwise multiple
comparison procedures entail

(N
2

)
comparisons.

In the next section, we introduce our Monte Carlo simulation based approach to compute the number
of individuals to enroll in a SMART to achieve a specified power to exclude EDTRs inferior by a specified
amount from the set of best.
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3. METHODS

Let N be the index of the best EDTR, 	min > 0 be the minimum detectable difference between the
mean best EDTR outcome and the other mean EDTR outcomes, α be the type I error rate, and � be the
asymptotic covariance matrix of

√
nθ̂ where n is the sample size. Furthermore, let 1−β denote the desired

power to exclude EDTRs with true outcome 	min or more away from that of the true best outcome. Let �

be the vector of differences between the mean best EDTR outcome and all other mean EDTR outcomes.
So, 	i = θN − θi for all i. We also refer to � as the vector of effect sizes and 	min as the minimum
detectable effect size, but this terminology should not be confused with a standardized effect size such as
Cohen’s d.

We wish to exclude all i from the set of best for which 	i ≥ 	min. We have that

Power = Pr

⎛
⎝ ⋂

i:	i≥	min

{
θ̂i < max

j �=i
[θ̂j − ci,1−ασij]

}⎞⎠ (3.2)

However, the max operator makes (3.2) analytically and computationally complicated, so we will
instead bound the RHS of the following inequality:

Pr

⎛
⎝ ⋂

i:	i≥	min

{
θ̂i < max

j �=i
[θ̂j − ci,1−ασij]

}⎞⎠ ≥ Pr

⎛
⎝ ⋂

i:	i≥	min

{
θ̂i < θ̂N − ci,1−ασiN

}⎞⎠ (3.3)

Theoretically, the bound obtained using (3.3) may be conservative, but it is often beneficial to be
conservative when conducting sample size calculations because of unpredictable circumstances such
as loss to follow up, patient dropout, and/or highly skewed responses. Since the normal distribution is
a location-scale family, the power only depends on the vector of mean differences � and not on θ .
Henceforth, we write Powerα,n (�, �, 	min) for the RHS of (3.3). It follows that

Powerα,n (�, �, 	min) = Pr

⎛
⎝ ⋂

i:	i≥	min

{
θ̂i < θ̂N − ci,1−ασiN

}⎞⎠

= Pr

⎛
⎝ ⋂

i:	i≥	min

{√
n(θ̂i − (θ̂N − 	i))

σiN
√

n
< −ci,1−α + 	i

√
n

σiN
√

n

}⎞⎠

= Pr

⎛
⎝ ⋂

i:	i≥	min

{
Wi < −ci,1−α + 	i

√
n

σiN
√

n

}⎞⎠ , (3.4)

where W = (W1, ..., WM )t ∼ N
(

0, �̃
)

and

�̃ij = Cov

(√
n(θ̂i − (θ̂N − 	i))

σiN
√

n
,

√
n(θ̂j − (θ̂N − 	j))

σjN
√

n

)
, and M is the number of indices i : 	i ≥ 	min.

Note that W , ci,1−α , and σiN
√

n = √

ii + 
NN − 2
iN do not depend on the sample size n since � does

not depend on n. If the effect sizes δi which are standardized by the standard deviation of the difference
are specified instead of 	i, then 	i may be replaced by δiσiN

√
n. Note that δi is not the same as Cohen’s d

which is standardized by the pooled standard deviation rather than the standard deviation of the difference.
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Algorithm 1 SMART power computation

1. Given � = Var(
√

nθ̂), compute ci,1−α for i = 1, ..., N .

2. Given � and 	min, generate W (k) =
(

W (k)

1 , ..., W (k)

M

)t ∼ N
(

0, �̃
)

, for k = 1, ..., m,

where �̃ij = Cov

(√
n(θ̂i − (θ̂N − 	i))

σiN
√

n
,

√
n(θ̂j − (θ̂N − 	j))

σjN
√

n

)
, m is the number of Monte Carlo

repetitions, and M is the number of indices i : 	i ≥ 	min.
3. Compute the Monte Carlo probability

PowerMC,n,α (�, �, 	min) ≈ Pm

[
I
( ⋂

i:	i≥	

{
Wi < −ci,1−α + 	i

√
n

σiN
√

n

})]

for some m ∈ N where Pm denotes the empirical average and I denotes the indicator.

It follows that the power may be computed by simulating normal random variables and substituting the
probability in (3.4) with the empirical mean Pm of the indicator variable as is shown in Algorithm 1.

Recall the main point of this article is to assist investigators in choosing the sample size for a SMART.
To this end, we will derive a method for finding the minimum n such that Powerα,n (�, �, 	min) ≥ 1 − β.
We proceed by rewriting the RHS of 3.3:

Powerα,n (�, �, 	min) = Pr

⎛
⎝ ⋂

i:	i≥	min

{√
n(θ̂i − θ̂N + 	i + ci,1−ασiN )

	i
<

√
n

}⎞⎠

= Pr

⎛
⎝ ⋂

i:	i≥	min

{
Xi < c∗

1−β

}⎞⎠, (3.5)

where X = (X1, ..., XM )t ∼ N

((
c1,1−ασ1N

√
n

	1
, ...,

cM ,1−ασMN
√

n

	M

)t

, �̃

)
,

�̃ij = Cov

⎛
⎝

√
n
(
θ̂i − θ̂N

)
	i

,

√
n
(
θ̂j − θ̂N

)
	j

⎞
⎠, M is the number of indices i : 	i ≥ 	min, and c∗

1−β is the

1 −β equicoordinate quantile for the probability in (3.5). It follows from (3.5) that n = (c∗
1−β)

2. Here, we
write the quantile c∗

1−β with an asterisk to distinguish it from the quantile ci,1−α which controls the type
I error rate α. The constant c∗

1−β may be computed using Monte Carlo simulation to find the inverse of
equation (3.5) after first computing the ci,1−α’s as is shown in Algorithm 2. The above procedure works
because the ci,1−α’s do not change with n, so the distribution of X is constant as a function of n. Our
approach for computing n is an extension of the sample size computation method in the appendix of Hsu
(1996) to the SMART setting when � is known. Algorithms 1 and 2 are implemented in an R package
“smartsizer” available at the Comprehensive R Archive Network.

In the next section, we will explore the sensitivity of the power to the covariance matrix.

4. SENSITIVITY OF POWER TO �

We now examine how sensitive the power is to the choice of �. We will address the case in which � is
unknown in Section 5. For simplicity, we consider the most conservative case in which the effect sizes are
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Algorithm 2 SMART sample size computation

1. Given � = Var(
√

nθ̂), compute ci,1−α for i = 1, ..., N .

2. Given � and 	min, generate X (k) =
(

X (k)

1 , ..., X (k)

M

)t ∼ N

⎛
⎜⎜⎜⎝
⎛
⎜⎜⎜⎝

c1,1−ασ1N
√

n/	1

c2,1−ασ2N
√

n/	2
...

cM ,1−ασMN
√

n/	M

⎞
⎟⎟⎟⎠ , �̃

⎞
⎟⎟⎟⎠,

for k = 1, ..., m, where �̃ij = Cov

⎛
⎝

√
n
(
θ̂i − θ̂N

)
	i

,

√
n
(
θ̂j − θ̂N

)
	j

⎞
⎠, m is the number of Monte Carlo

repetitions, and M is the number of indices i : 	i ≥ 	min.
3. Find the 1 − β equicoordinate quantile c∗

1−β of the simulated X (k) for each k = 1, ..., m.

4. The sample size is n ≈ (c∗
1−β

)2
.

all equal: 	i = 	 for all i. In Figure 2, we evaluated the power over a grid of values for � using Equation
3.4 and Algorithm 1. These plots suggest the trend that higher correlations and lower variances tend to
yield higher power which means that in order to obtain conservative power estimates, larger variances,
and smaller correlations should be used. Furthermore, the correlation between best and non-best EDTRs
appears to have a greater influence on power than the correlation between two inferior EDTRs as we see
in the left-hand plot of Figure 2. We discuss this further in Section 7.

It is analytically difficult to prove monotonicity for a general � structure. However, it can be proven the
power is a monotone non-decreasing function of the correlation and a monotone non-increasing function
of the variance for an exchangeable covariance matrix. We conjecture this property is true in general for
n sufficiently large. To confirm that a conservative estimate of power is obtained, one may compute the
power for different values of the correlation and variance and confirm the monotone trend when using a
non-exchangeable covariance matrix.

THEOREM 4.1 Let � be exchangeable: � = σ 2I N + ρσ 2
(
1N 1t

N − I N

)
where I N = diag(1, ..., 1) and

1N = (1, ..., 1)t . The power is an increasing function of ρ and a decreasing function of σ 2.

5. SIMULATION STUDY

We have explored how the power changes in terms of a known covariance matrix. In this section, we
present simulation studies for two different SMART designs in which we evaluate the assumption of a
known covariance matrix. In practice, the true covariance matrix is estimated consistently by some �̂

(see Section 2.3 for more details). The designs and generating models are based on those discussed in
Ertefaie and others (2015). For each SMART, we simulated 1000 datasets across a grid of sample sizes
n. We computed the sets of best EDTRs using the estimates θ̂ and �̂ obtained using the AIPW estimation
method after correctly specifying an appropriate MSM and conditional means (see Appendix A and the
Tables and Figures of the supplementary material available at Biostatistics online for more details).

5.1. SMART simulation design 1

In SMART simulation design 1, the stage-2 randomization is tailored based on response to the stage-1
treatment assignment. Individuals are considered responders if and only if O21 > 0 where O21 is an

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy064#supplementary-data
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Fig. 2. The left-hand plot shows the 3D contours of the power (denoted by shade/color) as a function of ρ1, ρ2, σ 2

where � =
⎛
⎜⎝

1 ρ1 0 0
ρ1 1 0 0
0 0 1 ρ2σ

0 0 ρ2σ σ 2

⎞
⎟⎠ and the fourth EDTR is best. � = (0.25, 0.25, 0.25, 0) and 	min = 0.25. The

right-hand plot shows power contours over the correlations where � =
⎛
⎜⎝

1 0 0 0
0 1 0 ρ1
0 0 1 ρ2
0 ρ1 ρ2 1

⎞
⎟⎠. Note that the power

appears monotone with respect to ρ1 and ρ2. The finger-shaped boundary is due to the feasible region of values for ρ1
and ρ2 such that � is positive definite. The sequence of contour curves in the left-hand plot in ascending order from
σ 2 = 0.1 to σ 2 = 4 corresponds to the order of the power key from 0.8 to 0.4.

intermediate outcome. Non-responders to the stage-1 treatment are subsequently re-randomized to one of
the two intervention options while responders continue on the initial treatment assignment. We generated
1000 data sets for each sample size n = 100, 150, ..., 500 according to the following scheme:

1. (a) Generate O11, O12 ∼ N (0, 1) (baseline covariates)
(b) Generate A1 ∈ {−1, +1} from a Bernoulli distribution with probability 0.5 (stage-1 treatment

option indicator)
2. (a) Generate O21 | O11, A1 ∼ N (0.5O11 + 0.5I (A1 = −1), 1) and O22 | O12, A1 ∼ N (0.5O12 +

0.5I (A1 = +1), 1) (intermediate outcomes)
(b) Generate ANR

2 ∈ {−1, +1} from a Bernoulli distribution with probability 0.5 (stage-2 treatment
option indicator for non-responders)

3. Y | O11, O12, O21, O22, A1, ANR
2 ∼ Normal with unit variance and mean equal to

1 + O11 − O12 + O22 + O21 + A1(δ + O11/2) + I (O21 < 0)ANR
2 δ/2

where δ = 0.25

The true θ is (1.802, 1.300, 1.699, 1.197). Note the first EDTR is the best. The vector of effect sizes �

is (0, 0.502, 0.103, 0.605) and the minimum detectable effect size 	min was set to 0.5. We computed the
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Fig. 3. The plots shows the power as a function of the sample size n with a horizontal line where the power is 80%.
The plot shows the power curves for � = I 4, � = �True, � = �Conservative, and the empirical power curve.

set of best EDTRs using MCB for each data set and sample size n. The empirical power was calculated as
the fraction of datasets which excluded all EDTRs with true mean outcome 	min or more away from the
best EDTR (in this case EDTRs 2 and 4), for each n. The true covariance matrix �True for this SMART
was estimated using AIPW by averaging the estimated covariance matrix of 1000 simulated datasets each
of 10000 individuals:

�True =

⎛
⎜⎜⎝

10.50 2.52 9.83 1.85
2.52 7.55 1.81 6.83
9.83 1.81 10.84 2.81
1.85 6.83 2.81 7.79

⎞
⎟⎟⎠ (5.6)

5.1.1. SMART simulation design 1: results The simulation results are summarized in the plot on the
left-hand side of Figure 3. The plot shows the sample size is sensitive to the choice of �. Choosing
� = I 4 will greatly underestimate the required sample size, predicting 72 individuals compared to the
true 423 individuals needed to achieve 80% power. We also looked at the power for a covariance matrix
�Conservative which yields a conservative estimate of power. �Conservative had variances chosen to be equal to
the true variances and correlations chosen to be equal to zero to achieve a lower bound on the power. The
minimum sample size to achieve 80% power for the conservative covariance matrix was 649.

5.2. SMART simulation design 2

In SMART simulation design 2, stage-2 randomization depends on both prior treatment and intermediate
outcomes. In particular, individuals are randomized at stage-2 if and only if they are non-responders whose
stage-1 treatment option corresponded to A1 = −1 (call this condition B). Individuals are considered
responders if and only if O22 > 0 where O22 is an intermediate outcome. We generated 1000 data sets for
each sample size n = 100, 150, ..., 500 according to the following scheme:

1. (a) Generate O11, O12 ∼ N (0, 1) (baseline covariates)
(b) Generate A1 ∈ {−1, +1} from a Bernoulli distribution with probability 0.5 (stage-1 treatment

option indicator)
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Table 1. Extend trial: EDTR outcome estimates and standard errors

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8

IPW Estimate 7.56 9.53 8.05 10.02 7.71 9.68 8.19 10.17
SD 0.76 0.81 0.71 0.83 0.74 0.80 0.69 0.82

AIPW Estimate 7.65 9.44 7.83 9.62 8.06 9.85 8.24 10.03
SD 0.67 0.76 0.70 0.70 0.67 0.77 0.70 0.72

2. (a) Generate O21 | O11, A1 ∼ N (0.5O11 + 0.5I (A1 = −1), 1) and
O22 | O12, A1 ∼ N (0.5O12 + 0.5I (A1 = +1), 1) (intermediate outcomes)

(b) Generate AB
2 ∈ {1, 2, 3, 4} from a Multinomial distribution with probability 0.25 (stage-2

treatment option indicator for individuals satisfying condition B)
3. Y | O11, O12, O21, O22, A1, AB

2 ∼ Normal with unit variance and mean equal to

1 + O11 − O12 + O21 + O22 + I (A1 = −1)(δ + O11/2) + I (O22 < 0)I (A1 = −1)[−δ/4I (A2 =
1) + δ/2I (A2 = 2) + 0I (A2 = 3) + δ/2O21I (A2 = 2)]
where δ = 2.00

The true θ value is (1.500, 3.501, 3.251, 4.251, 3.501). The vector of effect sizes � is
(2.751, 0.750, 1.000, 0.000, 0.750), and the minimum detectable effect size 	min was set to 0.7. The set
of best was computed for each data set. For each sample size, the empirical power is the fraction of 1000
data sets which exclude EDTRs 1, 2, 3, and 5. The true covariance matrix �True for this SMART was
estimated using AIPW by averaging the estimated covariance matrices of 1000 simulated datasets each
of 10000 individuals:

�True =

⎛
⎜⎜⎜⎜⎝

9.50 1.25 1.19 1.76 1.24
1.25 17.26 13.55 13.85 13.25
1.19 13.55 18.32 13.96 13.55
1.76 13.85 13.96 23.06 13.85
1.24 13.25 13.55 13.85 17.27

⎞
⎟⎟⎟⎟⎠. (5.7)

5.2.1. SMART simulation design 2: results Our simulation results are summarized in the plot on the
right-hand side of Figure 3. The power plot shows the predicted power is similar to the empirical power
when assuming the correct � = �True. The anticipated sample size is 246 individuals for �True. Choosing
� = I 5 yields overestimated power for each sample size, predicting 40 individuals necessary to achieve
80% power. Conversely, choosing a conservative covariance matrix �Conservative underestimates the power.
The �Conservative is a diagonal matrix with variances set to the true variances and the correlation set to 0. The
sample size for the conservative covariance matrix is 786 to achieve 80% power. The loss of power when
assuming the conservative covariance matrix compared with the true covariance is due to there being a
high correlation between EDTR outcomes.

6. ILLUSTRATION: EXTEND RETROSPECTIVE POWER CALCULATION

In this section, we examine how much power there was to distinguish between EDTRs 	min away from
the best in the EXTEND trial. Please see Section 2.1 for more details about EXTEND and Figure 1 for a
diagram depicting the trial. The true sample size was 250. The outcome of interest was the Penn Alcohol
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Craving Scale (PACS) and lower PACS were considered better outcomes. The covariance matrix �̂ and
the vector of EDTR outcomes θ were estimated using both IPW and AIPW. See Table 1 for the mean
EDTR outcome estimates. The covariance matrices are:

�̂IPW =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

145.86 54.88 77.24 −13.74 101.55 10.57 32.93 −58.05
54.88 163.02 1.13 109.27 12.66 120.80 −41.09 67.05
77.24 1.13 125.54 49.42 33.34 −42.77 81.64 5.53

−13.74 109.27 49.42 172.43 −55.55 67.46 7.62 130.63
101.55 12.66 33.34 −55.55 138.36 49.47 70.16 −18.73
10.57 120.80 −42.77 67.46 49.47 159.71 −3.87 106.37
32.93 −41.09 81.64 7.62 70.16 −3.87 118.86 44.84

−58.05 67.05 5.53 130.63 −18.73 106.37 44.84 169.94

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�̂AIPW =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

113.35 32.52 82.01 1.19 103.80 22.97 72.46 −8.36
32.52 143.74 −13.93 97.28 25.91 137.12 −20.55 90.67
82.01 −13.93 123.63 27.69 72.32 −23.63 113.94 17.99
1.19 97.28 27.69 123.78 −5.58 90.52 20.92 117.02

103.80 25.91 72.32 −5.58 112.10 34.21 80.62 2.73
22.97 137.12 −23.63 90.52 34.21 148.36 −12.39 101.76
72.46 −20.55 113.94 20.92 80.62 −12.39 122.09 29.08
−8.36 90.67 17.99 117.02 2.73 101.76 29.08 128.11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The EDTR outcome vectors θ̂ IPW and θ̂AIPW are summarized in Table 1. The vector of effect
sizes for IPW is �IPW = (0.00, 1.97, 0.49, 2.46, 0.15, 2.12, 0.63, 2.61) and for AIPW is �AIPW =
(0.00, 1.79, 0.18, 1.97, 0.41, 2.20, 0.59, 2.38). The set of best when performing estimation using AIPW
excluded EDTRs 6 and 8. The set of best when using IPW failed to exclude any of the inferior EDTRs. In
order to evaluate the power there was to exclude EDTRs 6 and 8, we set the minimum detectable effect
size 	min to 2.15.

At an α level of 0.05, the power to exclude all EDTRs inferior to the best by 	min or more was 34%
for IPW and 46% for AIPW. AIPW yields greater power than IPW because AIPW yields smaller standard
errors compared with IPW (Ertefaie and others, 2015). Our method estimates that a total of 644 individuals
would need to be enrolled to achieve a power of 80% using IPW and a total of 482 individuals would need
to be enrolled when using AIPW.

In the left-hand plot of Figure 4, we computed the power over a grid of 	min values to see how the
power changes as a function of effect size. In the right-hand side of Figure 4, we show how the power
changes as a function of a uniform effect size. Specifically, we assume EDTR 1 is the best and set the
effect sizes of EDTRs 2, 3,..., 8 to be equal. We then vary this uniform effect size. In this case, we ignore
the actual effect sizes of the true EDTR estimates θ̂ . We see the trend that AIPW yields greater power
when compared with IPW.

7. GUIDELINES FOR CHOOSING THE COVARIANCE MATRIX �

We saw in Sections 4 and 5 that the power is sensitive to �. However, the dependence of power on the
covariance matrix is not unique to MCB. We argue this is a necessary feature of power analysis in SMART
designs because it entails comparisons of correlated EDTR outcomes. We demonstrate the sensitivity of
the power to the covariance matrix when sizing a SMART to detect differences in pairwise comparisons
in Appendix B of the supplementary material available at Biostatistics online.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy064#supplementary-data
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Fig. 4. The left-hand plot shows the power as a function of 	min in the EXTEND trial when performing estimation
with IPW and AIPW, respectively. The right-hand side of the plot shows the power as a function of the uniform effect
size in the EXTEND trial when performing estimation with IPW and AIPW, respectively.

We focus on how to choose the covariance when the variances can be estimated (or an upper-bound
given). We consider the situation in which the correlations are unknown in the absence of pilot SMART
data and the situation in which pilot SMART data are available to estimate the correlations. In the absence
of information about the correlation between EDTR outcomes, it is reasonable to assume all correlations
are equal. Figure 2 illustrates that the correlation between the best EDTR and the non-best EDTR outcomes
has a greater impact on power than the correlation between two non-best EDTR outcomes. Therefore, the
correlation between the best EDTR and second best EDTR is important while the other correlations do not
have as great an impact on the power, so we may make the working assumption that the correlations are
equal. For example, the conservative covariance matrices in the simulation studies have equal correlations.
Theorem 4.1 shows that the power for an exchangeable matrix is a monotone increasing function of the
common correlation and a decreasing function of the variances. A similar monotone trend can be seen in
Figure 2 for non-exchangeable covariance matrices. Specifically, larger variances and smaller correlations
are more conservative. This is rather intuitive as if there is less variation, then it will be easier to distinguish
between EDTRs.

When only an upper bound can be obtained for the variance of EDTR outcomes, one may assume a
conservative exchangeable covariance matrix in which the diagonal elements are all equal to the upper
bound on the variance and the correlation is set to the smallest plausible value. Information about the
variances of outcomes for each EDTR may be obtained from prior non-SMART studies that provide the
variation in outcomes for the treatments embedded in each EDTR. In this case, one may assume a matrix in
which the diagonal elements equal the known variances and the correlation is set to the smallest plausible
value. If a negative correlation between EDTR outcomes is implausible, a diagonal matrix may be chosen
to obtain a conservative power estimate. For a covariance matrix in which the correlations are equal, the
minimum negative correlation is bounded below by −1/(N − 1) for the covariance matrix to be positive
definite (Tong, 2012).

As an alternative to sizing SMARTs based off a conservative covariance matrix, we propose con-
ducting a pilot SMART to estimate the correlations in � in order to fine-tune power calculations. In
addition to assisting in sample size calculations, pilot SMARTs are able to answer questions about the
feasibility of the investigators to carry out the SMART and acceptability of the treatments by patients
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(Almirall and others, 2012; Gunlicks-Stoessel and others, 2016; Kim and others, 2016). If estimates of
the variances of each EDTR outcome are known (by choosing the largest plausible values based off knowl-
edge of the variance of response to treatments embedded in the EDTRs), the pilot SMART may be used to
estimate the correlations by first estimating the full covariance matrix using AIPW and then transforming
to a correlation matrix. The covariance matrix with given variances may then be obtained by left and right
multiplying the correlation matrix by the square root of the diagonal matrix whose elements consist of
the variances of EDTR outcomes. We propose the following algorithm: (i) conduct a pilot SMART; (ii)
bootstrap K times to obtain K estimates of the covariance matrix using an estimation procedure such as
AIPW; (iii) transform the covariance matrix estimates to correlation matrices and then use the variances
of EDTR outcomes obtained from prior study data to transform back to covariance matrices; (iv) compute
the sample size for each bootstrapped covariance matrix and choose the maximum sample size (or 97.5th
percentile, for example). When planning the pilot SMART, it is necessary to choose the pilot SMART
sample size sufficiently large so that there are patients in each EDTR in order for the covariance to be
estimated. It is the subject of future work to develop methods for sizing pilot SMARTs to estimate the
unknown covariance matrix to a specified accuracy. For now, we refer readers to Kim and others (2016)
and Almirall and others (2012) for sizing a pilot SMART. In Appendix B of the supplementary materials
available at Biostatistics online, we demonstrate the above algorithm for two simulated pilot SMARTs
with 50 individuals.

8. FINAL COMMENTS

If practitioners size a SMART using MCB, the study may be underpowered for conducting all pairwise
comparisons since MCB yields greater power compared with approaches which entail a greater number
of comparisons. Such confidence intervals obtained by all pairwise comparisons might not be sufficiently
narrow. An important point is that MCB does not provide a p-value, so practitioners may wish to apply
a method such as the global test for equality of EDTR outcomes (Ogbagaber and others, 2016). Sizing a
SMART based off our method may overpower such an approach.

9. DISCUSSION

One important goal of SMARTs is determination of an optimal EDTR. It is hence crucial to enroll a
sufficient sample size to be able to detect the best EDTR and exclude EDTRs inferior to the best one
by a clinically meaningful quantity. We introduced a novel method for carrying out power analyses for
SMART designs which leverages multiple comparison with the best and Monte Carlo simulation. We saw
the power is sensitive to the covariance matrix and have provided guidelines for choosing it. We illustrated
our method on the EXTEND SMART to see how much power there was to exclude inferior EDTRs from
the set of best and the necessary sample size to achieve 80% power.

Other work has focused on estimating the optimal DTR (not embedded DTR) based on tailoring
variables not embedded in the SMART. Such methods include Q-learning (Watkins, 1989; Chakraborty
and Moodie, 2013; Ertefaie and others, 2016). These analyses are exploratory in nature and are typically
not the primary goal of SMARTs. Future work will involve developing methods for sizing a SMART for
such exploratory aims (Laber and others, 2016; Kidwell and others, 2018).

SOFTWARE

The R package smartsizer implementing Algorithms 1 and 2 is available to download at the Com-
prehensive R Archive Network (https://cran.r-project.org/web/packages/smartsizer/). The R code used in
this manuscript is also available to download at https://github.com/wilart/SMART-Sizer-Paper.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy064#supplementary-data
https://cran.r-project.org/web/packages/smartsizer/
https://github.com/wilart/SMART-Sizer-Paper
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SUPPLEMENTARY MATERIAL

Supplementary material is available online at http://biostatistics.oxfordjournals.org.
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