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SUMMARY

Biclustering techniques can identify local patterns of a data matrix by clustering feature space and sample
space at the same time. Various biclustering methods have been proposed and successfully applied to
analysis of gene expression data. While existing biclustering methods have many desirable features, most
of them are developed for continuous data and few of them can efficiently handle -omics data of various
types, for example, binomial data as in single nucleotide polymorphism data or negative binomial data as
in RNA-seq data. In addition, none of existing methods can utilize biological information such as those
from functional genomics or proteomics. Recent work has shown that incorporating biological informa-
tion can improve variable selection and prediction performance in analyses such as linear regression and
multivariate analysis. In this article, we propose a novel Bayesian biclustering method that can handle
multiple data types including Gaussian, Binomial, and Negative Binomial. In addition, our method uses
a Bayesian adaptive structured shrinkage prior that enables feature selection guided by existing biologi-
cal information. Our simulation studies and application to multi-omics datasets demonstrate robust and
superior performance of the proposed method, compared to other existing biclustering methods.
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1. INTRODUCTION

Advances in high-throughput technologies have enabled researchers to uncover secrets of human genome
on various levels. From microarray to next-generation sequencing, these tools can reveal understandings
of genomic activity including DNA composition, abundance of transcriptome, epigenetic modification,
etc. Recently, there have been growing interests on integrative analysis of data from multiple -omic
modalities for identifying disease subtypes (Verhaak and others, 2010), inferring omics network (Ideker
and others, 2001; Tanay and others, 2004), and uncovering disease culprit genes (Network and others,
2011). One significant challenge in integrating multiple -omics data sources is that these data have different
characteristics and are difficult to be unified and explored by one single method.Although multiple attempts
have been made, more analytical techniques are needed to fully realize the potential of existing vast omics
data.

Biclustering is a popular unsupervised learning and data mining technique which can identify local
patterns of a data matrix by clustering feature space and sample space at the same time. The idea of
biclustering was first discussed by Hartigan (1972) using the term “direct clustering.” Biclustering of
gene expression microarray data was first formally introduced by Cheng and Church (2000). Since then,
various biclustering methods have been proposed and successfully applied to the analysis of microarray
data (Lazzeroni and Owen, 2002; Murali and Kasif, 2002; Bergmann and others, 2003; Sheng and others,
2003; Ben-Dor and others, 2003; Gu and Liu, 2008; Caldas and Kaski, 2008; Hochreiter and others, 2010;
Liu and others, 2014; Yu and others, 2017). Biclustering methods have been systematically compared in
several review papers (Prelić and others, 2006; Eren and others, 2012; Pontes and others, 2015; Padilha
and Campello, 2017).

Following the review paper by Padilha and Campello (2017), the existing biclustering methods can
be categorized as greedy algorithms, divide-and-conquer algorithms, exhaustive enumeration algorithms,
and distribution parameter identification algorithms. Greedy algorithms including CC (Cheng and Church,
2000), xMotifs (Murali and Kasif, 2002), ISA (Bergmann and others, 2003), etc.; divide-and-conquer
algorithms include Bimax (Prelić and others, 2006) and MTBGD (Huda and Noureen, 2016); exhaustive
enumeration algorithms include SAMBA (Tanay and others, 2002) and BiBit (Rodriguez-Baena and
others, 2011); distribution parameter identification algorithms include Plaid (Caldas and Kaski, 2008),
Bayesian Biclustering (BBC) (Gu and Liu, 2008), FABIA (Hochreiter and others, 2010), etc. BBC uses
a Bayesian framework and extends the Plaid model by constraining overlaps to 1D and allowing per-
bicluster error variance specification. But BBC only focuses on Gaussian data and does not impose any
sparsity constraint to model formulation. In addition to BBC, FABIA is of particular interest to us, as
it is closely related to our model formulation. FABIA uses a multiplicative model and imposes standard
Laplace priors on latent variables. Both Hochreiter and others (2010) and Padilha and Campello (2017)
show that FABIA achieves robust performance in their simulation studies and real data applications.

Although many biclustering approaches have been developed, few of them can utilize existing biological
information for identifying biclustering patterns such as those from functional genomics or proteomics.
An example of such biological information is demonstrated in Figure S1 of the supplementary material
available at Biostatistics online. Such gene network can be obtained from publicly available databases
such as KEGG pathway (Kanehisa and Goto, 2000; Keshava Prasad and others, 2008; Mi and others,
2015). In addition, recent work has shown that incorporating biological information can improve variable
selection and prediction performance in methods such as linear regression and multivariate analysis (Li
and Li, 2008; Zhao and others, 2016; Li and others, 2017; Safo and others, 2018; Chang and others,
2018). Furthermore, most, if not all, existing biclustering methods focus on analyzing gene expression
microarray data which are of continuous data type. Our simulation results have shown that the current
methods cannot identify biclusters with good accuracy on inputs of mixed data types, for example, data
generated from Gaussian distribution and Binomial distribution. To address this challenge, we develop a

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy081#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy081#supplementary-data


612 Z. LI AND OTHERS

more generalized approach to identify the biclustering patterns using one or multiple -omics datasets. Our
work takes advantage of recent work by Polson and others (2013), which developed a unified Bayesian
inference framework for analysis of data from exponential family distributions through the use of Pólya-
Gamma latent variables. Polson and others (2013) transforms common discrete data distributions into a
mixture of Gaussian distributions by introducing auxilary variables. By combining Pólya-Gamma latent
variables with a multiplicative modeling framework, we formulate a BBC model similar in spirit with
Hochreiter and others (2010) but can accept different data types as inputs. In addition, our approach
allows the incorporation of prior biological knowledge in the process of biclustering, if such biological
information exists. We call this approach Generalized Biclustering (GBC).

The structure of this article is as follows. Section 2 introduces our model formulation including the
adaptive structured prior and the computation of GBC for different data types. Section 3 presents the
simulations comparing the proposed method with other popular biclustering methods. Section 4 presents
the applications on real datasets.

2. METHODOLOGY

Suppose we have a random sample of n subjects for which data are obtained from H -omics platforms,
such as microarray and next-generation sequencing, denoted by X1, . . . , XH . Each of them is a ph × n
matrix, 1 ≤ h ≤ H , where ph is the number of features and n is the number of samples. Let X be their

vertical concatenation with size p × n, X =
⎡
⎢⎣

X1
...

XH

⎤
⎥⎦, where p = ∑H

h=1 ph. It follows that the rows

represent the feature space and the columns represent the sample space. Let μ denote the mean of X and μ

is related with latent components through μ = m1� + WZ where m is a p × 1 location vector, 1 is a n × 1
vector of ones, W is a p × L factor loading matrix, and Z is a L × n latent factor matrix. To understand
this model formulation, one may make an analogy between this framework and the generalized linear
model μ = g−1(Zβ)with observations X, covariates Z, and link function g(·). μ in both models are latent
components related with observations. Although data from different platforms are concatenated in the first
step, our model allows the use of different distributions for data from different platforms. Assuming the
observations xij’s are independent one from each other conditional on μ, the likelihood of observations
X is the multiplication of the likelihood of each individual observation and μ is the parameter of the
likelihood function, π(X|μ) = ∏

j

∏
i πj(xji|μji). In the remaining of Section 2, we only consider πj to be

an exponential family likelihood for the random variable xj.
Using the above notations, a number of distributions can be considered to model observed variables.

For instance, if the observation Xj from the jth platform is continuous and after appropriate transformation
as needed, one can assume xji follows the Gaussian distribution having mean μji and precision ρj with
density function as

πj(xji|μji, ρj) = ρ
1/2
j√
2π

e−ρj (xji−μji)
2/2. (2.1)

If the observation Xj is discrete and one can assume that xji follows a Binomial distribution with parameter
nj and pji. Using the logit link function, the likelihood function is

πj(xji|μji, nj) =
(

nj

xji

)
eμjixji

(1 + eμji )nj
, xji = 0, 1, . . . , nj. (2.2)
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If assuming xji follows Negative Binomial with rj and pji and again using the logit link function for pji,
the likelihood is given by

πj(xji|μji, rj) =
(

rj + xji − 1

xji

)
eμjixji

(1 + eμji )rj+xji
, xji = 0, 1, 2, . . . . (2.3)

Lastly, if assuming xji follows Poisson distribution with parameter eμji , the likelihood can be approximated
with large N and small pji = N −1eμji/(1 + N −1eμji ) in the form of Binomial distribution. It follows that
the likelihood is given by

πj(xji|μji) = e−e
μji eμjixji

xji! ≈
(

N

xji

)
N −xji eμjixji(
1 + 1

N eμji
)N , xji = 0, 1, . . . , N . (2.4)

In the following derivations, we take the above four distributions—Gaussian, Binomial, Negative-
Binomial, and Poisson—as examples to illustrate the proposed method. Other exponential family
distribution such as Bernoulli, Log-normal can be handled similarly.

2.1. Prior specification

We employ a Bayesian adaptive structured shrinkage prior formulation similar to Chang and others
(2018), and the goal is to achieve sparse estimations for W and Z while incorporating existing biological
information simultaneously. There are multiple components in this prior. First, a Bayesian Laplacian
shrinkage prior is imposed on W:

logπ(W|λ) = C +
∑

j,l

log λjl −
∑

j,l

λjl|wjl|,

where λjl is a parameter controlling the shrinkage level of wjl . Unlike standard Laplacian prior that uses
the same shrinkage parameter λ for all wjl’s, our approach adapts the shrinkage parameter to individual wjl ,
hence the term of adaptive shrinkage. We further impose a Bayesian shrinkage prior on λ to incorporate
biological information, also known as structural information, hence the term of structured shrinkage prior.

Suppose the biological information is given through graphs. H graphs Gh = 〈Ph, Eh〉 are given where Ph

is the set of variables 1, . . . , ph in the hth dataset and Eh is the set of edges between pairs of variables. The
presence of edges represents the correlations of corresponding variable pairs are non-zero. We combine
these H graphs into a single graph G = 〈P, E〉 by setting P = 1, . . . , p and E = {(ι(h, j), ι(h, k)) : (j, k) ∈
Eh, 1 ≤ h ≤ H } where ι(h, j) is the index in the matrix X of the jth variable in the hth dataset. Intuitively,
consider the situation when there is an edge between p1 and p2 and another edge between p2 and p3. If p1

is selected, we encourage p2 to be selected, and if p2 is selected, we encourage p3 to be selected. In the
case when p1 is selected, as long as p2 is not selected, we do not encourage p3 to be selected. One way
to achieve such effects is to encourage one variable to load on a factor if the other connected variable
has non-zero loading on the same factor. Translating this to notations shows that, if xj and xk are directly
connected in G and wjl is non-zero for some l, wkl should also be encouraged to have non-zero values. To
this end, we employ a graph-Laplacian prior for λ given the precision matrix � as:

logπ(α|�) = Cν2 + L

2
log |�| − 1

2ν2

∑
l

(αl − ν11
¯
)�(αl − ν11

¯
), (2.5)
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where αjl = log λjl and αl = (α1l , . . . ,αpl)
′ for 1 ≤ l ≤ L. ν1 and ν2 are hyper-parameters needed to be

specified a priori. The precision matrix � is defined as

� =

⎡
⎢⎢⎢⎢⎣

1 + ∑
j �=1 ω1j −ω12 · · · −ω1p

−ω21 1 + ∑
j �=2 ω2j

. . . −ω2p

...
. . .

. . .
...

−ωp1 −ωp2 · · · 1 + ∑
j �=p ωpj

⎤
⎥⎥⎥⎥⎦ .

Note that � is a symmetric matrix, i.e., ωjk = ωkj. The following prior is assigned on set ω = {ωjk : j < k}

π(ω) ∝ |�|−L/2
∏
(j,k)∈E

ω
aω−1
jk exp(−bωωjk)1(ωjk > 0)

∏
(j,k)�=E

δ0(ωjk). (2.6)

δ0(·) is the Dirac delta function concentrated at 0 and 1(·) is the indicator function. It can be shown that
(2.6) is a proper prior (Chang and others, 2018). Thus if xj and xk are directly connected in graph G, the
prior formula (2.6) encourages precision matrix components ωjk to be non-zero and the shrinkage terms
λjl and λkl are encouraged to be correlated through prior (2.5). Since wjl and wkl receive a similar level
of shrinkage under this prior specification, they tend to be zero or non-zero at the same time. In other
words, if genes j and k are directly connected in a pathway, they are encouraged to be selected together (or
not selected together) in bicluster l. As such, a salient feature of our approach is that the selected feature
set in each bicluster tends to include gene pathways rather than individual genes, leading to biologically
more meaningful results. Our current construction of the edge set automatically assumes that there are no
edges between features across distinct platforms. This assumption makes it easier to construct biological
information from real datasets, since such information is usually given per platform. But our formulation
allows the use of edges connecting nodes from different platforms. For example, one can connect the
nodes related to the same gene from different platforms.

To obtain sparse estimates for Z, we employ a Bayesian Laplacian shrinkage prior on Z as

logπ(Z|ξ) = C +
∑

l,i

log ξli −
∑

l,i

ξli|zli|,

where ξli > 0 are the shrinkage parameters. Since no prior biological information is available for subjects,
we impose a conjugate prior, i.e., a Gamma prior on ξ as

logπ(ξ) = Cν3,ν4 + (ν3 − 1)
∑

l,i

log ξil − 1

ν4

∑
l,i

ξli, (2.7)

where ν3 and ν4 need to be specified a priori. After W and Z are estimated, the product of the kth column
of W and the kth row of Z forms the kth bicluster. Because the priors specified above yield exact zeros
when estimating W and Z, non-zero elements in Z represent the subset of subjects belonging to the kth
bicluster, and non-zero elements in W represent the subset of features that contribute to the kth bicluster,
which is different from the thresholding method used in FABIA.

2.2. Computation

As the likelihoods given in functions (2.1) to (2.4) are dissimilar with inputs of different data types, usually
the computation procedures to optimize such likelihoods are also not the same. However, by introducting
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Table 1. Formula components of Pólya-Gamma classes

Data type ψji κji bji π∗
j (ρj)

Gaussian Xji 0 NA ρji ≡ ρj ∼ G
(
ζj+n

2 ,
ζj
2

)
Binomial 0 Xji − nj/2 nj ρji ∼ PG(bji, 0)

Neg binomial 0 (Xji − rj)/2 Xji + rj ρji ∼ PG(bji, 0)

Poisson log N Xji − N/2 N ρji ∼ PG(bji, 0)

the Pólya-Gamma latent variables as in Polson and others (2013), we are able to build a unified likelihood
for inputs of different data types. Such unified likelihood facilitates the subsequent computations and
allows the proposed method to have the flexibility in analyzing data from various sources. We use the
identity formula provided in Polson and others (2013):

eμjixji

(1 + eμji )bji
= 2−bji eκjiμji

∫ ∞

0
e−ρjiμ

2
ji/2πji(ρji)dρji,

where κji = xji − bji/2 and πji(ρji) is the density of the Pólya-Gamma class PG(bji, 0). This approach
transforms a non-trivial density function into a mixture of Gaussian formulation. Thus the likelihood
functions (2.1) to (2.4) can be written in the following universal form:

πj(xj|μj) ∝ e− 1
2

∑
i ρji(μji−ψji)

2+∑
i κjiμjiπ∗

j (ρj), (2.8)

where the unknown components are summarized in Table 1. Besides offering a unified likelihood function,
the augmentation with Pólya-Gamma latent variable ρ enables the use of efficient lasso algorithms for
solving for W and Z in the M-steps of EM algorithms, which otherwise is not possible. In addition, the
approach of Polson and others (2013) also enables the use of Gibbs sampling via Markov chain Monte
Carlo (MCMC) instead of Metropolis–Hastings, if MCMC was implemented.

Similar to Hochreiter and others (2010), we use expectation–maximization (EM) algorithm to compute
maximum a posteriori (MAP) estimation of the likelihood function (2.8). To the best of our knowl-
edge, this is the first paper to propose EM algorithm using Pólya-Gamma variables. The MAP estimator
(Ŵ , Ẑ , m̂, α̂, ξ̂) is defined as,

(Ŵ , Ẑ , m̂, α̂, ξ̂) = arg max
W ,Z ,m,α,ξ

∫ ∫
π(W , Z , m, α, ξ , ρ, �|X )dρd�,

with ρ, � marginalized out. Of note, our EM algorithm treats ρ and � as missing variables which are to
be imputed, and yields sparse solutions for W and Z . Although MCMC could also provide solutions, EM
algorithm is more scalable to high dimensional settings of our interest while a full MCMC can be very
expensive. Moreover, it requires additional steps to define bicluster membership from MCMC solutions,
which is further complicated by the fact that MCMC solutions do not have exact zeroes under the proposed
shrinkage priors, and hence may not be sparse. We adopt a recent computational technique called dynamic
weighted lasso (Chang and Tsay, 2010) in each EM iteration which further speeds up the algorithm.

EM algorithm
The inputs of this algorithm include a p × n observed data matrix X, a p element vector for data types,
and a p element vector for specific parameter values of each data type. If prior biological information is
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available, edges between directly connected variables should also be provided. The vector for parameter
values for different data types is defined as follows. For Gaussian, Binomial, Negative Binomial and
Poisson data, prior parameter for variance specification ζj (Gaussian), number of trials nj (Binomial),
number of failures rj (Negative Binomial), and large number N (Poisson) should be specified. Definitions
of these parameters are demonstrated in the likelihood functions (2.1) to (2.4).

We develop an EM algorithm for obtaining MAP. The objective function to be optimized at the t-th
EM iteration step is given by

Qt(Z, W, m, α, ξ) = −1

2

∑
i,j

ρ
(t)
ji (μji − ψji)

2 +
∑

i,j

κjiμji +
∑

j,l

αjl −
∑

j,l

λjl|wjl|

+ ν3

∑
l,i

log ξi,l −
∑

i,l

ξl,i

(
|zli| + 1

ν4

)
− 1

2ν2

∑
l

(αl − ν11)T �(t)(αl − ν11),

where μ = m(t−1) + W(t−1)Z(t−1), ρ(t)ij = E(ρij|X, W(t−1), Z(t−1), m(t−1), α(t−1), ξ (t−1)
), and �(t) =

E(ωij|X, W(t−1), Z(t−1), m(t−1), α(t−1), ξ (t−1)
). The detailed steps of the EM algorithm are explained in

Section S1 of the supplementary material available at Biostatistics online. In Figure S2 of the
supplementary material available at Biostatistics online, we plot the likelihood by the number of iterations
which suggests that our algorithm converges fairly quickly.

Initialization
We initialize m(0) by m(0)

j = median(X (0)
j1 , . . . , X (0)

jn ), where

X (0)
ji =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Xij, if Xj is Gaussian,

logit(
Xji+1

nj+2 ), if Xj is Binomial,

logit(
Xji+1

rj+Xji+2 ), if Xj is Negative Binomial,

log(Xji + 1), if Xj is Poisson.

W and Z are initialized by the singular value decomposition of X (0)−m(0)1
′ = UDV

′
, and let W(0) = UD

and Z(0) = V
′
.

Tuning
The parameters needed to be specified a priori include ν1 and ν2 from (2.5), aω and bω from (2.6), and ν3

and ν4 from (2.7). Based on our experience in numerical experiments, we fix aω as 4 and bω as 1 so that
the prior of � has large prior correlation and at the same time is relatively uninformative. We also fix ν2

as ln 2 and ν3 as 1 so that the corresponding priors for α and ξ have a unit coefficient of variation. ν1 and
ν4 control the sparseness of the solutions to W and Z, i.e., the size of each bicluster. We choose ν1 and ν4

by the Bayesian information criterion (BIC). The BIC is given by

BIC = −2 ln(L(X, μ̂))+ (||Ŵ||0 + ||Ẑ||0) ln(np)

where L(X, μ̂) is the observed likelihood of μ, ||Ŵ||0 and ||Ẑ||0 are the cardinalities of Ŵ and Ẑ. We
conduct grid search and the combinations of ν1 and ν4 with the smallest BIC value are chosen as the
optimal tuning parameter values for each simulation dataset and real data application.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy081#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy081#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy081#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy081#supplementary-data
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3. SIMULATION

We design a series of simulation studies to examine the performance of the proposed method and compare it
with existing methods. GBC represents the proposed method without utilizing any biological information
and sGBC is the version incorporating biological information.As discussed in Section 2, GBC incorporates
structural information by employing a graph-Laplacian prior on the shrinkage parameter λ. For each
simulation dataset, an working edge matrix is generated by assuming that each bicluster is a fully connected
graph and randomly sampling 5% of true edges from all the underlying true biclusters. These edge matrices
are used as structural information in sGBC.

The existing methods used as comparators are plaid (Caldas and Kaski, 2008), CC (Cheng and Church,
2000), FABIA (Hochreiter and others, 2010), xMotifs (Murali and Kasif, 2002), and ISA (Bergmann
and others, 2003). All the methods have implementations in R. Specifically, FABIA is implemented
in R/Bioconductor package FABIA, ISA is implemented in R/CRAN package isa2, and plaid, CC, and
xMotifs are implemented in R/CRAN package biclust. To choose appropriate tuning parameters for each
method, we have evaluated the tuning parameter options provided in Padilha and Campello (2017) and
Eren and others (2012). We follow the parameter selections suggested in Padilha and Campello (2017).
For methods which parameter tuning is not specifically discussed about in Padilha and Campello (2017),
including FABIA and CC, we use the default settings of these methods. For Plaid, we find the best
combination of row.release and col.release in the interval [0.1, 0.5] with steps of 0.1. For xMotifs, we
relax the α to 0.05 as suggested by Padilha and Campello (2017) and used sd = 5 in synthetic datasets and
sd = 1 in real data applications, because otherwise no biclusters can be identified. BBC is not included in
our comparison, since Eren and others (2012) demonstrated that FABIA, ISA, xMotifs, and Plaid have
overall better performance. The searching area for ν1 and ν4 of GBC and sGBC is {2, 3, 4, 5, 6, 7} by
{10, 20, 30, 40, 50, 60} in simulation study.

Two evaluation criteria are used in both the simulation study and real data applications: clustering error
(CE) (Patrikainen and Meila, 2006) and consensus score (CS) (Hochreiter and others, 2010). CE finds the
maximum overlapping proportions of two biclusters after an optimal matching of clusters. Similarly, CS
finds the optimal mapping between clusters that maximizes the sum of similarities between matched pairs.
The only difference between CE and CS is that CS uses the size of bicluster union at the denominator, i.e.,
CS does not take bicluster size into consideration and gives same weights on all biclusters. Big biclusters
may have greater impact on CE than CS. It is worth noting that our CE is one minus the CE defined in
Patrikainen and Meila (2006). Both CE and CS lie between 0 and 1. Higher CE, CS values mean greater
overlaps between estimated biclusters and true biclusters. Besides CE and CS, we also compute sensitivity
(SEN), specificity (SPE), and Matthews correlation coefficient (MCC) in the simulation studies. All these
metrics also have values between 0 and 1, and higher values indicate better performance.

3.1. Settings

In each simulation setting, we generate 100 simulation datasets. Each dataset has p = 1000 genes and
n = 300 samples. We assume L = 5 underlying true biclusters. The parameter μ is computed by a
multiplicative model μ = WZ where W is a p×L matrix and Z is a L×n matrix. The number of non-zero
elements in each column of W is set as 50 and the number of non-zero elements in each row of Z is
randomly drawn from Poisson distribution with parameter 30. The row numbers with non-zero elements
in W are consecutive while the column numbers with non-zero elements in Z are randomly drawn from
1 to n. And the elements of different columns of W are allowed to have overlaps. The non-zero elements
of both W and Z are generated from normal distribution with mean 1.5 and standard deviation 0.1,
and are randomly assigned to be positive or negative. We use O to represent the number of overlapping
rows/columns between adjacent biclusters. O is set to 0 or 15.
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Four simulation settings are generated: Gaussian, Binomial, Negative Binomial, and mixed data types.
For the Gaussian case, the observed p × n data matrix X is generated by X = μ + ε. The noise elements
εij are randomly chosen from N (0, 4). For the Binomial case, each element of X is generated from
Binomial(nj, 1

1+e
−μij ) and nj is randomly sampled from 5 to 20. Similarly, each element in Negative

Binomial case of X is generated from NB(rj, 1

1+e
−μij ) and the parameter rj is randomly sampled from 5 to

20. For the mixed data type, we randomly sample each row from these three distributions with the same
parameter values as the previous three settings. We demonstrate the general overflow of our simulation
study in Figure S3 of the supplementary material available at Biostatistics online.

3.2. Results

Tables 2 and 3 and Tables S1 and S2 of the supplementary material available at Biostatistics online present
simulation results for Gaussian, Binomial, Negative Binomial, and mixed data type settings, respectively.
All the results are generated based on 100 Monte Carlo datasets. Table 2 shows that in the Gaussian case,
FABIA, GBC, and sGBC outperforms all the other methods. GBC and FABIA have similar CE and CS
values, around 0.5 for both non-overlapping scenario and overlap (O = 15) scenario. sGBC has higher CE
and CS, around 0.7 for non-overlapping scenario, and around 0.6 for overlapping scenario. CC, xMotifs,
and ISA have the worst results with CE and CS around 0, suggesting that they fail to identify any biclusters.
Plaid has better performance than CC, xMotifs, and ISA, but is worse than GBC and FABIA, with CE
and CS values around 0.2.

Table 3 shows that in the Binomial case, GBC and sGBC still perform best with CE and CS more
than 0.5, but FABIA performs worse than in the Gaussian case. In addition, all the other methods, Plaid,
CC, xMotifs, and ISA all perform poorly in this setting. It is worth noting that incorporating structural
information in GBC is shown to effectively improve performance in both settings. For example, in Gaussian
setting with zero overlap, sGBC improves CE from 0.557 to 0.724, which is about a 30% increase.

Table 2. Simulation results for Gaussian settings. Results are generated based on 100 simulated datasets:
mean(sd)

Gaussian

Overlap Method CE CS SEN SPE MCC

0

Plaid 0.24(3e−02) 0.24(3e−02) 0.29(2e−02) 1(5e−06) 0.43(5e−02)
CC 0(0e+00) 0(0e+00) 0(0e+00) 1(5e−05) −0.0025(1e−04)

FABIA 0.54(3ev02) 0.54(3e−02) 0.57(3e−02) 1(1e−04) 0.72(3e−02)
XMotifs 0(0e+00) 0(0e+00) 0(0e+00) 1(0e+00) 0(0e+00)

ISA 0(0e+00) 0(0e+00) 0(0e+00) 0(0e+00) 0(0e+00)
GBC 0.64(9e−02) 0.63(9e−02) 0.88(1e−01) 0.99(4e−03) 0.78(6e−02)
sGBC 0.76(7e−02) 0.76(8e−02) 0.95(8e−02) 0.99(2e−03) 0.86(5e−02)

15

Plaid 0.24(2e−02) 0.23(3e−02) 0.28(2e−02) 1(1e−04) 0.42(4e−02)
CC 0(0e+00) 0(0e+00) 0(0e+00) 1(5e−05) −0.0027(1e−04)

FABIA 0.51(8e−02) 0.52(7e−02) 0.56(3e−02) 1(1e−03) 0.68(9e−02)
XMotifs 0(0e+00) 0(0e+00) 0(0e+00) 1(0e+00) 0(0e+00)

ISA 0(0e+00) 0(0e+00) 0(0e+00) 0(0e+00) 0(0e+00)
GBC 0.57(1e−01) 0.57(1e−01) 0.91(1e−01) 0.98(7e−03) 0.76(7e−02)
sGBC 0.66(9e−02) 0.66(9e−02) 0.95(9e−02) 0.99(4e−03) 0.81(5e−02)

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy081#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy081#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy081#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy081#supplementary-data
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Table 3. Simulation results for binomial settings. Results are generated based on 100 simulated datasets:
mean(sd)

Binomial

Overlap Method CE CS SEN SPE MCC

0

Plaid 0.01(9e−04) 0.18(2e−02) 0.4(2e−02) 0.9(1e−01) 0.036(3e−03)
CC 0.0048(8e−04) 0.0022(4e−04) 0.015(2e−03) 0.99(2e−04) 0.003(2ev03)

FABIA 0.072(1e−02) 0.37(2e−02) 0.41(2e−02) 0.98(2e−03) 0.17(2e−02)
XMotifs 0.0013(9e−04) 0.0013(9e−04) 0.0014(1e−03) 1(4e−05) 0.003(3e−03)

ISA 0(0e+00) 0(0e+00) 0(0e+00) 0(0e+00) 0(0e+00)
GBC 0.57(1e−01) 0.6(1e−01) 0.99(1e−02) 0.98(9e−03) 0.77(7e−02)
sGBC 0.61(1e−01) 0.63(9e−02) 1(8e−04) 0.98(6e−03) 0.79(6e−02)

15

Plaid 0.012(1e−03) 0.17(2e−02) 0.4(2e−02) 0.82(5e−02) 0.039(4e−03)
CC 0.0064(1e−03) 0.0027(4e−04) 0.017(3e−03) 0.99(2e−04) 0.005(2e−03)

FABIA 0.1(3e−02) 0.34(4e−02) 0.39(3e−02) 0.98(4e−03) 0.21(4e−02)
XMotifs 0.0014(9e−04) 0.0014(9e−04) 0.0015(1e−03) 1(5e−05) 0.0036(3e−03)

ISA 0.012(4e−03) 0.0033(1e−03) 0.017(7e−03) 1(2e−04) 0.025(8e−03)
GBC 0.43(2e−01) 0.48(1e−01) 1(9e−03) 0.97(1e−02) 0.7(8e−02)
sGBC 0.6(1e−01) 0.61(9e−02) 1(3e−03) 0.98(6e−03) 0.79(5e−02)

Tables S1 and S2 of the supplementary material available at Biostatistics online show that in the Negative
Binomial and mixed data types, GBC and sGBC still perform best among all the methods. Their CE and
CS reach around 0.6 in Negative Binomial, around 0.5 in mixed data types. FABIA also outperforms the
rest of the methods, obtaining CE and CS values ranging from 0.1 to 0.2. Plaid, CC, xMotifs, and ISA
still have the worst results, with CE and CS around 0.

In addition to CE and CS, the proposed methods also have better performance in sensitivity, specificity,
and MCC. We find all the methods generally have high specificity and low sensitivity, suggesting that they
fail to identify biclusters instead of misidentifying biclusters. And sGBC usually has higher sensitivity
than GBC, indicating that considering structural information helps improve the sensitivity of identifying
true biclusters.

4. REAL DATA APPLICATIONS

To evaluate our methods in comparison with the existing methods in real data applications, we obtain
one proteomics dataset, one RNAseq dataset, and one integrative dataset. The first two datasets have
validated or known subgroup/cluster information on subject level, which are used as the gold standard
to compute all evaluation metrics. In the integrative data set, there are no known or validated subgroups.
To assess performance, we use patient survival time to define subgroups, which provides evidence that
clusters detected by a method are clinically meaningful. Again we followed the tuning parameter options
provided in Padilha and Campello (2017) and Eren and others (2012) for existing methods. For GBC and
sGBC, we use search area {7, 9, 11, 13, 15, 20, 25} by {20, 40, 50, 60, 70, 90, 110} for ν1 and ν4, as previous
experience shows real datasets need larger tuning parameter to achieve the smallest BIC.

4.1. Proteomics dataset

A proteomics dataset is obtained from the AMP-AD knowledge portal of the Synapse website
(www.synapse.org) with ID syn3607470. Synapse is an organization dedicated to the research of brain

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy081#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy081#supplementary-data
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Table 4. Results of real data applications

Method
ASD: proteomics data ASD: RNAseq data GBM: mixed data

CE CS CE CS CE CS

PLAID 0 0 0 0 0.263 0.175
CC 0.238 0.200 0.147 0.125 0.004 0.004
FABIA 0.254 0.140 0.147 0.103 0.260 0.186
xMotif 0.106 0.081 0 0 0 0
ISA 0.045 0.010 0.113 0.096 0.045 0.015
GBC 0.313 0.167 0.239 0.211 0.265 0.263
sGBC 0.313 0.160 0.239 0.211 0.281 0.221

diseases and service patients who have brain injuries. This proteomics dataset includes the measurements
for 6533 protein levels from 20Alzheimer’s Disease (AD) patients, 13AsymptomaticAlzheimer’s Disease
(AsymAD) patients, and 14 controls. All the measurements are conducted on post-mortem brain tissues
from both the dorsolateral prefrontal cortex and precuneus. Both regions have been previously reported
to be affected in AD (Cox and others, 2011). The disease status of all subjects was confirmed through
post-mortem neuropathological evaluation and is used as ground truth in our analyses. According to the
data description, the dataset has been normalized based on isotopically labeled retention time peptide
standards and the central limit tendency theorem 3 (Callister and others, 2006). To remove noise, we use
the top 300 variables with the largest variance.

We apply all the methods on this dataset and report CE and CS in the second and third columns of
Table 4. We set the maximum number of clusters to 5 in all the methods. Pathway information is extracted
from KEGG Pathway and used in the sGBC. GBC and sGBC achieves the highest CE and CS among all
the methods. CC, xMotifs, and FABIA have relatively good performance with CE more than 0.20. On this
dataset Plaid does not find any biclusters.

4.2. RNAseq dataset

An RNA-seq dataset is obtained from the AMP-AD knowledge portal of the Synapse website with ID
syn5223705. This dataset include next-generation RNA sequencing (RNAseq) from 82AD, 84 progressive
supranuclear palsy, 28 pathologic aging subjects, and 77 elder controls. These measurements are from
cerebellum RNA samples collected by the Mayo Clinic Brain Bank and Banner Sun Health Research
Institute. Reads are aligned by the SNAPR software1 with the GRCh38 reference and Ensembl v77 gene
models and data are normalized by the R/Bioconductor package edgeR (Robinson and others, 2010).
The original dataset has 64 253 features, and we use the top 300 features with largest variability for the
biclustering analysis. Pathway information is extracted from KEGG Pathway and used in the sGBC as
prior biological information.

We apply all the methods on this dataset and CE and CS are reported in the fourth and fifth columns
of Table 4. We set the maximum number of clusters to 4 in all the methods. In Table 4, GBC and sGBC
have similar CE and CS performance and are the best performing methods among all the methods. CC
and FABIA are the second best methods and have CE 0.147 and CS around 0.1. PLAID and xMotif do
not find any biclusters in this dataset.

1 https://price.systemsbiology.org/research/snapr/.
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4.3. Integrative dataset

The data of this integrative analysis are obtained from a TCGA study in glioblastoma multiforme (GBM),
which is the most common and aggressive type of malignant brain tumor (Holland, 2000). From the
TCGA data portal2, microarray gene expression data, DNA methylation data, and DNA copy number
data are downloaded for a cohort of 233 GBM patients. All the data are pre-processed, normalized, and
annotated to the gene level (see Wang and others 2012 for details). Our analysis focus on 48 genes that
overlap with the three critical signaling pathways—RTK/PI3K, p53, and Rb, which have been found to
relate with migration, survival, and apoptosis progression of cell cycles (Furnari and others, 2007). Thus
the data matrix consists of 48 genes mapped to these core pathways from three platforms resulting in
p = 48 × 3 = 144 for n = 233 subjects. Note that both microarray gene expression data and DNA
methylation data are continuous, while copy number is converted to binary data via thresholding, having
0 corresponding to normal probes and 1 corresponding to abnormal (gain or loss) probes. The survival
information of all subjects is obtained. We use Kaplan–Meier imputed survival time in the case that the
subjects are censored, and we categorize the subjects into four groups according to their survival time (or
imputed survival time) using 25th, 50th, 75th percentile as cutoffs. These four groups are used as ground
truth for clustering patients.

We conduct biclustering analysis using the existing methods and the proposed methods. Five are given
to all methods as maximum number of biclusters. In GBC and sGBC, we use normal distribution for both
microarray gene expression data and DNA methylation data, and binomial distribution for copy number
data. A total of 48 edges are extracted from the KEGG Pathway and are used as biological information in
sGBC. We have visualized the gene interaction graph of these 48 edges in Figure S1 of the supplementary
material available at Biostatistics online. We present CE and CS in the last two columns of Table 4. GBC
and sGBC have highest CE and CS values among all the methods. Plaid and FABIA also have similar
CE values as GBC, which is around 0.26. GBC has higher CS value while sGBC has higher CE value,
which may indicate that GBC identify more biclusters regardless of their sizes while GBC with biological
information incorporated can identify biclusters with larger size.

5. CONCLUSION

In this article, we propose a BBC algorithm which not only adapts to inputs of different types but also
can incorporate biological information. Although a large number of different biclustering approaches have
been developed, we are not aware of any existing biclustering methods that can incorporate prior biological
information. In addition, our simulation study demonstrates that none of the existing methods considered
can efficiently identify biclusters using input data of various distribution types. The proposed methods
fill these gaps and become a useful tool in integrative analysis of multiple -omics datasets or analysis of
single -omics dataset including proteomic data and genomic data. In the integrative data set, there are no
known or validated subgroups. To assess performance, we use patient survival time to define subgroups,
which provides evidence that clusters detected by a method are clinically meaningful.

Future directions of research may address two challenges. One is to include more input datatypes in
addition to Gaussian, Binomial, and Negative Binomial, for example, beta-Binomial distribution as in
bisulfite sequencing data. To achieve this goal, one may need to seek other solutions instead of using
the Pólya-Gamma framework. The other one is that the current methods may not be able to retrieve
useful biclustering information when input matrix is very sparse, such as data matrices containing the

2 http://tcga-data.nci.nih.gov/tcga/.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy081#supplementary-data
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information of somatic mutations. Thus the direction of developing biclustering methods for sparse data
matrix is worth further investigation.

6. SOFTWARE

Software in the form of R code, together with a sample input data set and sample code is available on
Github at https://github.com/ziyili20/GBC.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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