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Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) spectroscopy is a label-free, non-destructive
technique that can be applied to a vast range of biological applications, from imaging cancer tissues and live
cells, to determining protein content and protein secondary structure composition. This review summarises
the recent advances in applications of ATR-FTIR spectroscopy to biopharmaceuticals, the application of this tech-
nique to biosimilars, and the current uses of FTIR spectroscopy in biopharmaceutical production. We discuss the
use of ATR-FTIR spectroscopic imaging to investigate biopharmaceuticals, and finally, give an outlook on the pos-
sible future developments and applications of ATR-FTIR spectroscopy and spectroscopic imaging to this field.
Throughout the review comparisons will be made between FTIR spectroscopy and alternative analytical tech-
niques, and areas will be identified where FTIR spectroscopy could perhaps offer a better alternative in future
studies. This review focuses on themost recent advances in the field of using ATR-FTIR spectroscopy and spectro-
scopic imaging to characterise and evaluate biopharmaceuticals, both in industrial and academic research based
environments.

© 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Biopharmaceuticals, also commonly known as biologics, are drugs
derived from biological organisms. They are utilised in treating or
preventing a range of diseases such as arthritis, diabetes, and some can-
cers [4,5]. Biopharmaceuticals have a huge diversity of function due to
their variation in chemical composition and their conformational
an).
flexibility. Biopharmaceuticals are highly selective and have a low non-
specific toxicity, but their complexity promotes significant challenges in
production. This is due to their multiple routes of administration to pa-
tient (e.g. oral, pulmonary, transdermal), and variation in pharmacoki-
netic parameters, such as half-life (t1/2), protein binding, and
bioavailability. Their comparatively large size means it is unusual for
biopharmaceuticals, even small antibody fragments, to cross the blood
brain barrier (BBB) [9]. Although this can limit their application to
brain disorders, it also means there is reduced risk of unwanted side
effects.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.saa.2020.118636&domain=pdf
https://doi.org/10.1016/j.saa.2020.118636
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Monoclonal antibodies (mAbs) (Fig. 1) are the most common
biopharmaceuticals, and account for more than half of total biopharma-
ceutical product sales. Their major benefits are their ability to identify
and bind to cell surface targets with very high specificity, and their ca-
pacity to be isolated effectively through changes in salt concentration
and pH [10]. Alterations in the environment of biopharmaceuticals are
common in production, such as the implementation of extreme changes
in pHduring cleaning-in-place (CIP) protocols,which results in effective
separation of mAbs due to their intrinsic resistance to pH changes [11].
The hydrophobic interaction chromatography (HIC) step, also works
through altering the environment of the protein, the sample is loaded
onto the column at high salt concentrations, and is eluted at lower salt
concentrations [12].

The complexity of biopharmaceutical manufacture is two-fold.
Firstly, these large biopharmaceutical drugs are unpredictable due to
their sensitivity and propensity to aggregate. Secondly, their manufac-
ture is challenging due to the development and optimisation of the in-
dustrial multi-level production pathway. Current techniques in this
pathway such as mass spectrometry (MS) can be expensive to run,
and others such as nuclear magnetic resonance (NMR) have stringent
sample pre-requisites for optimum results, which include but are not
limited to, a pH range of 4–7, the use of a deuterated solvent, and the ab-
sence of excipients. This complex biopharmaceutical production path-
way therefore requires a technique which can be applied to multiple
uses, is inexpensive to run, and requires minimal to no sample prepara-
tion. FTIR spectroscopy is a label-free, non-destructive technique, which
can be used to analyse biological systems, as previously outlined in a
number of comprehensive review papers [13,14]. FTIR spectroscopy
can be used to observe key characteristics of biopharmaceuticals such
as denaturation and aggregation, prediction of metabolites, concentra-
tion, and to quantify levels of phosphorylation and glycosylation.
These characteristics of FTIR spectroscopy are critical to providing in-
sights into biotherapeutic behaviour and stability, and can also be
used to optimise the production process through acting as a quality con-
trol measure.

FTIR spectroscopic imaging uses a focal plane array (FPA) detector
instead of a traditional single element detector. The FPA typically con-
sists of 64 × 64 or 128 × 128 pixels, and collects an interactive image
containing thousands of spectra. FTIR spectroscopy and spectroscopic
imaging have a variety of setups and approaches, offering the capability
to investigate biopharmaceutical structural integrity, which is para-
mount to producing a reliable and safe product. The applications of
FTIR spectroscopy and spectroscopic imaging to the manufacture of
biopharmaceuticals are outlined and critically discussed in the follow-
ing review.
Intrachain
disulphide

Interchain
disulphide

N-Glycans

Fab
region

Fc
region

Fig. 1. Schematic of amAb showing the Fab and Fc regions, disulphide bonds and N-glycan
positions.
2. Biopharmaceuticals

In recent years there has been rising demand for effective biophar-
maceutical drugs; in 2019, 8 of the 48 drugs approved by the FDA
were for antibodies or antibody-drug conjugates [15]. However, the
fast commercialisation of biopharmaceuticals in comparison to small
molecule drugs remains a challenge, partly due to their relative chemi-
cal and physical instabilities. Analytical techniques are therefore re-
quired for characterisation of biopharmaceuticals, to ensure the
effective monitoring of their stability and efficacy throughout produc-
tion and delivery to the patient. This characterisation commonly in-
volves the use of techniques such as liquid chromatography tandem
mass spectrometry (LC-MS-MS) to monitor changes in mass [16], high
pressure liquid chromatography (HPLC) to determine impurity profiles
of samples [17], and infrared spectroscopy (IR) to identify impurities
and compare biosimilars to the original, ‘reference drugs’ [8].

Most studies where FTIR spectroscopic analysis has been utilised to
investigate biopharmaceuticals are focussed on mAbs as opposed to
other biopharmaceuticals due to their highly specific, comparatively
stable nature [10,18,19]. This specificity is determined by the chemical
composition, physical forces, and molecular structure at the fragment
antigen-binding (Fab) region (Fig. 1). The umbrella term of mAbs also
includes derivative antibodies, such as bispecific antibodies (bsAbs),
antibody-drug conjugates, radiolabelled antibody conjugates, antigen-
binding fragment Fab, and Fc-fusion proteins [20]. Someof themore un-
usual biopharmaceuticals such as Fc fusion proteins, PEGylated proteins
and antibody drug conjugates (ADCs), viruses, and virus like particles
(VLPs), pose unique problems and challenges which require stringent
monitoring of their higher order structures. For example, during pro-
duction, VLP-based vaccines encounter problems due to their lack of a
viral genome (essential for the formation of a virus) causing instability
in downstream processing [21].

The high demand for mAbs is well-founded, and despite the chal-
lenges associated with industrial grade production of homogeneous
and efficacious product, they have been used in a number of novel appli-
cations [22,23]. Research has suggested mAbs, when combined with
BBB peptide shuttles, could penetrate the BBB, and deliver an effective
treatment for brain metastases [9]. This could occur through the use of
antibody fragments to reduce molecular weight, or the incorporation
of cell penetrating peptides (CPPs) into mAbs to deliver large cargoes
across cell membranes, and even the BBB [24]. Another created an
affordable immunoassay using 4C9C9 and 4C9E11 mAbs in a
sandwich-type UMELISA® assay to identify cystic fibrosis in new-
borns, specifically for use in Cuba and other Latin American countries
[22].

Irrespective of the benefits, producing biopharmaceutical drugs has
some significant drawbacks. Production requires substantial costs in
terms of time, monetary investment, and protocol optimisation. An un-
fortunate consequence of this is a high cost to thepatients. One course of
biotherapeutics for arthritis costs around USD $20,000 annually [25],
and for Crohn's disease it can exceed USD $44,000 annually [26]. Al-
though this cost can be reduced by the use of biosimilars, it is still essen-
tial that efficiency in the process is retained through theminimisation of
loss of product. The structural and functional integrity of the drug prod-
uct must also be preserved throughout the varied conditions required
for production, including isolation and storage, and delivery to the pa-
tient [27].

Selected biopharmaceuticals such as therapeutic antibodies and an-
tibody fragments are prone to significant aggregation and misfolding
during production and delivery [28]. To make both production and de-
livery more effective, it is essential to be able to observe, and fully un-
derstand the mechanisms by which aggregation and/or unfolding
occur. Certain points have been identified in the production pathway
where therapeutic proteins aremore prone to aggregation or unfolding.
These points are generally where the proteins are placed under stress
conditions such as thermal [29], oxidative [30], and mechanical stress



Fig. 3. ATR-FTIR spectroscopic set up demonstrating IR light being directed from the
spectrometer to the accessory mirrors, towards the IRE, where it will interact with the
sample on the surface of the IRE to a penetration depth of 0.5–5 μm, and will then be
directed to the FPA detector.
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[31], repetitive freeze thaw conditions [29], and/or interface agitation
[32]. It is therefore ideal that data is collected at each biopharmaceutical
process stage, and is utilised to make a real-time decision in order to
produce high quality products. Diversity in production pathways
mean a variety of monitoring techniques are employed at each phase
to ensure safety and efficacy of final product. In-line, on-line, and off-
line measurements (Fig. 2), summarised by Holzer et al. [33] all have
their merits, but in-line measurements such as NIR spectroscopy [34]
and ATR-FTIR spectroscopy can be combined with other techniques to
offer real-time decision making [35]. For example in-line ATR-FTIR
and NIR spectroscopy can be incorporated into a feedback loop to re-
duce the presence of contaminants or aggregates, therefore reducing
the time and monetary costs of production.

3. FTIR spectroscopy and spectroscopic imaging

FTIR spectroscopy offers fast data acquisition with minimal sample
preparation, and has limited sample volume requirements. There are
abundant review articles outlining FTIR spectroscopy and spectroscopic
imaging [13,36], and the successful application of FTIR spectroscopy to
proteins in general [37] [38]. As these review papers discuss, the capa-
bilities of FTIR spectroscopy can be enhanced with different accessories
to cater to specific requirements, including micro and macro imaging,
ATR, transflection, and transmission modes. ATR-FTIR spectroscopy
measures samples at a depth of penetration of 0.5–5 μm from the sur-
face of the internal reflection element (IRE). Despite the fact that FTIR
spectroscopy in transmissionmeasures thewhole thickness of a sample,
measured thickness for aqueous solutions is generally limited to 6 μm
due to the strong absorbance of water [39]. Sample preparation using
this transmission mode of measurement can also be laborious. There-
fore, the most commonly used technique when studying solutions of
proteins is ATR-FTIR spectroscopy (Fig. 3), which usually employs a di-
amond, Ge, Si or ZnSe IRE, and collects information from the layer of the
sample adjacent to the surface of the IRE. Recent research has identified
that IgG aggregates distribute unevenly close to the surface of the ZnSe
IRE using a high-throughput ATR-FTIR spectroscopic imaging approach
[6]. Thus, appropriate spectral processing must be undertaken when
conducting measurements of protein samples to take this into account.

Current techniques used in biopharmaceutical processing are typi-
cally suited to only monitoring a few sample characteristics simulta-
neously, require lengthy sample preparation, or are costly. For
example, mass spectrometry (MS), is usually focussed at the molecular
level to monitor post translational modifications (PTMs), and for the
identification of numerous proteins in a protein mixture, but it is costly
to run [40]. UV spectroscopy is utilised in a variety of set ups to elucidate
protein-protein interactions through monitoring changes in UV absor-
bance using delta absorbance (ΔAbs), but is used primarily for protein
concentrationmeasurements [41–43]. A recently revived technique, an-
alytical ultracentrifugation, obtains high resolution data aboutmolecule
In-line
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Fig. 2. Schematic showing different sampling points in a biopharmaceutical production
pathway as follows: off-line, when a portion of sample is taken away for further
analysis, in-line, when all of the flowing sample is analysed, and on-line, when a portion
of the sample is analysed and returned to the system in a closed loop.
size of the sample in liquid state, allowing information to be collected
about the aggregation status of the protein [44]. Although these tech-
niques can all be applied to investigate protein structure and function,
and to determine the feasibility of biopharmaceuticals in the production
pathway, they all have their downsides. FTIR spectroscopy addresses
most, if not all of these concerns, through its high throughput capabili-
ties, inexpensive and easy sample preparation, and its range of technical
applications.

Althoughmultifaceted and useful, FTIR spectroscopy requires appro-
priate spectral processing to ensure reliability and to optimise results.
This is carried out straight after data collection and is primarily used
to remove or reduce unwanted signals in spectra. Incorrect usage of
these processing steps can have a serious impact on the reliability of
data [45,46]. Post data collection spectral processing such as second de-
rivative analysis is commonly used for quantification of proteins, and
can combat the slightly changing backgrounds between different sam-
ples, as well as to accentuate spectral features [47–50]. Researchers
have proposed slightly altered techniques such as simultaneous fitting
of absorption and second derivative spectra [51], and have conducted
comparability studies on the most effective second derivative tech-
niques [52]. The correct usage of spectral processing techniques is es-
sential in order to exploit the full power of ATR-FTIR spectroscopy in
biopharmaceuticalmonitoring and processing. The choice and composi-
tion of biopharmaceutical buffers is also paramount to ensuring bio sta-
bility [53], and has a large effect on spectral quality, therefore sufficient
corrections must be made to final spectra in order to account for this,
and to obtain the most reliable information.
4. ATR-FTIR spectroscopy to characterise biopharmaceuticals

It iswell known that protein secondary structural changes can be de-
tected using FTIR spectroscopy [29,54–56]. Amide spectral bands are
most commonly used for this protein characterisation, particularly the
Amide I (1650 cm−1) and Amide II (1545 cm−1) bands [47,57,58]. The
Amide I band between 1600 and 1700 cm−1 mostly consists of C_O
stretching vibrations and C\\N groups, and its peak position is deter-
mined by the backbone conformation and hydrogen bonding pattern,
whilst theAmide II bandbetween 1510 and 1580 cm−1 consists primar-
ily of N\\H bending, but also C\\N, and C\\C stretching vibrations [59].
Due to the strong overlap of the bendingmodewater band (1635 cm−1)
with Amide I, it has been proposed that other bands such as Amide III
(1300–1200 cm−1), could be used to discern secondary structure [49].
This could be beneficial due to the lack of overlap with the bending
mode water band, and the supposed improved resolving nature of indi-
vidual bands [60,61]. However, these claims are disputed by
Goormaghtigh et al., who suggest that Amide III bands are irrelevant
when you have obtained information from the 1545 cm−1 Amide II
band [49]. Others imply that the Amide III band is significantly affected
by side chains, and will be altered by the amino acid composition [62].
Therefore, the majority of research still uses Amide I and II bands for ef-
fective analysis and structure elucidation.



Fig. 5. FTIR spectra of glycoproteins, displaying different spectral signatures, due to the
sensitivity of spectra to minor changes in glycan and monosaccharide composition [2].
(Reprinted with permission from Derenne, A.; Derfoufi, K. M.; Cowper, B.; Delporte, C.;
Goormaghtigh, E., FTIR spectroscopy as an analytical tool to compare glycosylation in
therapeutic monoclonal antibodies. Analytica Chimica Acta 2020).

Fig. 6. Extract of a figure demonstrating the changes in Amide bands at various stages of
the cleaning in place (CIP) cycle. This spectrum demonstrates the Amide I
(1600–1700 cm−1), Amide II 1510–1580 cm−1 and Amide III (1300–1200 cm−1) bands,
commonly used to monitor protein structure and PTMs [3].
(Reprinted with permission from Boulet-Audet, M.; Kazarian, S. G.; Byrne, B., In-column
ATR-FTIR spectroscopy to monitor affinity chromatography purification of monoclonal
antibodies. Sci Rep 2016, 6, 30526).

4 H. Tiernan et al. / Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 241 (2020) 118636
FTIR spectroscopy, combined with recent advances in data process-
ing and chemometrics, is an ideal tool to investigate the stability and
suitability of biopharmaceuticals. If proteins are of a high concentration
(N30 mg/ml), which is typical in biopharmaceutical production, amide
bands can more easily be seen, however lower concentrations also
yield good Amide I and II spectra (Fig. 4) [63].Macro ATR-FTIR spectros-
copy is commonly used due to the ease of sample preparation and data
collection. It is therefore well suited as an in-line technique to the anal-
ysis of biopharmaceuticals both during and post production, for exam-
ple, the monitoring of protein concentration and secondary structure,
as well as providing insights into PTMs (Fig. 5).

ATR-FTIR spectroscopy has many uses in biopharmaceutical pro-
cessing, some examples being the effective characterisation of biomate-
rials [64], the monitoring of monoclonal antibody purification [3], and
biopharmaceutical bioactivity under stress conditions [65]. Other uses
include the investigation of structural stability of biopharmaceuticals
such as Bevacizumab® [65], Humatrope® [66], and Humalog® [67].
ATR-FTIR spectroscopy has been used to study protein adsorption on
ZnSe IRE [68], and in-column affinity chromatography purification of
monoclonal antibodies,where ATR-FTIR spectroscopywas used to dem-
onstrate changes in protein content at various stages of purification,
such as after culture fluid binding (Fig. 6) [3].

ATR-FTIR spectroscopy is able to monitor a wide range of PTMs. Bio-
chemical variability can include deamidation, phosphorylation, methyl-
ation, and acetylation [69], but glycosylation is the most common PTM
in biopharmaceuticals, and has a significant impact on their efficacy
and safety [70]. PTMs are still commonly analysed in biopharmaceutical
processing using MS [71], and more recently, NMR [72], but these
methods are respectively expensive to run and better suited to low con-
centration samples. One recent paper has successfully characterised gly-
cosylation in biotherapeutic monoclonal antibodies with ATR-FTIR
spectroscopy using 0.5 μl of dried IgG on a diamond IRE, and the multi-
variate tools, principal component analysis (PCA), and multivariate
analysis of variance (MANOVA). Here, the authors obtained valuable in-
formation from only the infrared spectrum of the glycoprotein, with no
labelling or separation required to determine an accurate fingerprint of
the glycosylation profile (Fig. 5) [2]. Previous reports have shown con-
trasting relationships between protein synthesis rates and glycosylation
of different proteins [73], however, glycosylation of the final product is
certainly influenced by the host cell line, the cell culture and the purifi-
cation process [70].

Goldsztein et al. have used FTIR spectroscopy for identifying phos-
phorylation of gastric ATPase. This research managed to observe the
binding of a single phosphate on ATPase using a combination of ATR-
FTIR spectroscopy with biospecific interaction analysis (BIA)-ATR bio-
sensors, which allows the surface of the IRE to adsorb to a biomembrane
[74]. ATR-FTIR spectroscopy has been used to investigate the secondary
Fig. 4. Spectra showing increase in concentration of Amide I and II bands of IgG protein at
two temperatures using ATR-FTIR spectroscopy. Red, orange and green spectra
demonstrate 20, 15 and 10 mg/ml IgG at 30 min of heating at 60 °C, and blue, purple
and pink spectra demonstrate 20, 15 and 10 mg/ml with heating of 60 min at 60 °C.
structure of denatured bovine serum albumin (BSA) alone and in amix-
ture with a native protein solid, which could be applied to investigate
the solid-state formulation development process more thoroughly
[75]. ATR-FTIR spectroscopy has also been used extensively to study
proteins, in particular biopharmaceuticals, and exciting research has
shown the potential applications of it to investigate and monitor
changes effectively in PTMs and secondary structures. Due to the exten-
sive applications of FTIR spectroscopy, it is surprising that it is still
underutilised in biopharmaceutical production, however the wealth of
data and robustness of this technique should ensure it is included in fu-
ture innovative analyses.
5. FTIR spectroscopy and biosimilars

A biosimilar can be defined as a biopharmaceutical which has no
clinically significant differences from the reference product in terms of
quality, safety, and efficacy [76]. The European Medicines Agency
(EMA) was the first to approve a biosimilar (Somatropin) in 2006, and
the first monoclonal antibody biosimilar (Infliximab) in 2013, whereas
the first biosimilar (Zarxio) was not approved by the FDA until 2015
[77]. Biosimilars are driving cost effective manufacture of
biopharmaceuticals as awhole, and as thepatents on high incomeyield-
ing original biopharmaceuticals come to an end, a number of whichwill
expire this year [78], there is increasing demand for the development
and manufacture of these biosimilars.

Although they are not expected to be identical, maximum similarity
between reference product and biosimilar is desired, and any differ-
ences must be justified to meet safety and efficacy requirements. The
lack of public information on reference biologics makes biosimilars
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difficult to produce. In contrast to small molecule drugs, when
biosimilars are reproduced there will be changes in the manufacturing
process due to their complex structure and lengthy processing parame-
ters whichmight affect the chemical properties, efficacy, and stability of
the product. Two of the most prominent causes for concern in the pro-
duction of biosimilars are their variable potency and immunogenicity
[79]. There is also conflicting research into the effects of switching pa-
tient prescription drugs fromoriginal biopharmaceuticals to biosimilars,
a potentially problematic practice [80,81]. However, one review paper
believes these concerns are unfounded, and that the possible costs out-
weigh the benefits [82], and another reviewed 90 studies and found lit-
tle differences reported between reference drugs and biosimilars [83].
This proposed interchangeability was thought to be problematic due
to the difficulties in ensuring the product does not invoke different im-
mune responses than the reference product. Recently, the FDA has ap-
proved the introduction of ‘interchangeable products’, which require
additional information outlined by the Biologics Price Competition and
Innovation Act. These interchangeable products are tested to ensure
they produce the same clinical result as the reference product, and
these drugs can therefore be dispensed by a pharmacy, evenwith a pre-
scription for the reference product, and without the need for a separate
prescription from the healthcare prescriber [84].

When properly utilised, FTIR spectroscopy can replace some other,
more traditional methods [85]. Although circular dichroism (CD) can
be used to estimate secondary structure, it is unsuitable for highly con-
centrated samples, or samples containing other highly absorbing
Upstream Processing

Downstream Processing

Inoculum

Filtra�on Refolding/ Storage Purifica�on Filtra�on

Shaker Bioreactor A Bioreactor B

Fig. 7. Schematic of upstream and downstream processes commonly used in
molecules such as excipients [63]. In contrast, FTIR spectroscopy, partic-
ularly ATR-FTIR spectroscopy, caters to these requirements. For exam-
ple, ATR-FTIR spectroscopy was used to assure that the secondary
structure of the biosimilar Ristova®was similar to that of the original bi-
ologic [86]. In addition, using FTIR spectroscopy, quality control to a high
standard has been carried out on Humalog®, an approved biosimilar, to
investigate stability at varying temperatures [67].

It is common to use FTIR spectroscopy for secondary structure eluci-
dation, however tertiary structureswhich are frequently explored using
either fluorescence spectroscopy [87] or NMR [88], can also be
characterised, and more quickly, by using FTIR spectroscopy. It is well
documented that FTIR spectroscopy has been frequently used to clarify
higher order, tertiary, structures of biosimilars [19,57,89]. However one
conflicting study compared a reference biopharmaceutical with its re-
spective biosimilar using FTIR spectroscopy, and did not observe differ-
ences between the original drug and the biosimilar. Though they simply
compared the Amide I and Amide II band shapewith no further spectral
analysis, which could have conclusively identified any differences [90].
Methionine oxidation is a significant degradation pathway in
biopharmaceuticals, and has an important impact on biosimilar stability
and efficacy. This is exacerbated by the presence of phosphate buffer
[91], and is typically investigated using liquid chromatography with
mass spectrometry (LC-MS), although this is time consuming. FTIR
spectroscopy has been used to successfully quantify oxidation [92],
and measure subtle spectral changes. This study demonstrated the
power of FTIR spectroscopy to provide detailed analysis of biosimilars,
Formula�on

Purifica�on Sterile Filtra�on

Product
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biopharmaceutical production, specifically for the production of mAbs.



Fig. 8. (A) Absorbance of Amide I and II band of stressed mAb after heating to 90 degrees
compared with an unheated control at room temperature (B) Respective second
derivative spectra for each spectrum [1].
(Reprintedwith permission from Lin, J. C.; Glover, Z. K.; Sreedhara, A., Assessing theUtility
of Circular Dichroism and FTIR Spectroscopy in Monoclonal-Antibody Comparability
Studies. J Pharm Sci 2015, 104 (12), 4459–4466).
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and other interchangeable products compared to the original licensed
biotherapeutic.

6. FTIR spectroscopy in biopharmaceutical production

Process analytical technology (PAT), has been used since 2004 to en-
hance the understanding and control of processes throughout product
development andmanufacturing [93], and has been previously outlined
in a comprehensive review [94]. In biopharmaceutical production, pro-
cesses are largely based on historical data, it is therefore important that
analytical methods such as ATR-FTIR spectroscopy are employed in-line
to ensure rapid responses to processing requirements. Research has
shown that a reduction in the costs of products available tomarket, pos-
sibly through the use of efficient, expedited processes, would result in
increased investment in R&D [95]. Previouslymost sampling techniques
were off-line, meaning samples were extracted and measured with a
time-delay, resulting in inefficiencies. FTIR spectroscopy offers non-
invasive, in-line, and instantaneousmeasuring of numerous critical pro-
cessing parameters (CPPs). For example, Grosshans et al. used in-line
FTIR spectroscopy, along with partial least squares (PLS) analysis, as
an effective process analytical tool (PAT) for preparative protein chro-
matography, they found it to be useful to distinguish and selectively
identify proteins based on their secondary structure [96].

Traditional manufacturing of biopharmaceuticals is typically divided
into two sections: upstream processing (USP), which includes cell cul-
ture and harvesting, and downstream processing (DSP), consisting of
multiple steps of chromatography,filtration anddiafiltration, andfinally
product formulation (Fig. 7). Upstream techniques in processing of
biopharmaceuticals experience high levels of monitoring and feedback
when compared to downstream techniques [97–99]. For example, in-
line applications of ATR-FTIR spectroscopy include upstream process
monitoring of glucose and ethanol in different cell lines, observing
changes inα-glucose spectra with time, and the possibility of simplified
calibration techniques using a spectral library [100,101]. FTIR spectros-
copy is also commonly combined with a flow through ATR capability to
monitor ethanol fermentation [102].

FTIR spectroscopy can also be utilised in awide range of downstream
applications in biopharmaceutical production such as purification,
where the sample is placed under high stress levels due to fluctuations
in shear and pH. FTIR spectroscopy has been successfully used for an in-
line estimation of the degree of PEGlycation of eluting sample from a
chromatography column in near real-time [103]. FTIR spectroscopy
was applied in-line to the bioreactor cell culture process, and correlated
with offline measurements, for real time monitoring of bioreactor mAb
IgG3 cell culture process dynamics. The concentration profiles of four
key cell culture metabolites (glucose, glutamine, lactate and ammonia)
were predicted using multivariate calibration models [18].

MAb binding propensity during the protein A capture step has been
monitored using FTIR spectroscopy [3]. When mAbs are in the purifica-
tion step ofmanufacture, protein A resin experiences a decrease in bind-
ing capacity and product recovery. FTIR spectroscopy can therefore be
used tomonitor changes in resin composition via a continuous feedback
loop to eventually make purification more effective. Some recent re-
search argues that fluorescence is better for this downstream applica-
tion, due to its ability to monitor changes in situ [104]. However
others have already shown this is not only possible, but easier, with
ATR-FTIR spectroscopy [105].

Lin et al. suggests that FTIR spectroscopy can be used effectively for
monoclonal antibody comparability studies, but for higher order struc-
ture identification only, such as secondary or tertiary structure, or for
product characterisation. They came to this conclusion through the
comparison of size exclusion and ion exchange chromatographies
(SEC and IEC) with CD and FTIR using mAbs samples of varying pHs
and concentrations [1], and by carrying out second derivative analysis
of proteins (Fig. 8). Another paper used FTIR spectroscopy for secondary
structure classification of mAbs subjected to environmental stresses
[19]. Here, FTIR spectroscopywas interestingly used to prove the appar-
ently negligible effect small alterations in tertiary structure had on over-
all long-term stability and bioactivity [106]. Despite this research
indicating the use of FTIR spectroscopy solely for higher order structure
identification, it has been shown conclusively that FTIR spectroscopy
could be applied to investigating the primary structure of
biopharmaceuticals, such as PTM changes [74].

MAbs are the most common class of biopharmaceuticals, and are
mostly favoured due to their reduced immunogenicity owing to the
humanisation ofmurinemAbs, which greatly improves their in vivo tol-
erability [107]. Immunogenicity can also be affected by genetics, im-
paired immunity of a patient, and administration of and impurities
within a drug [108]. Typically mAbs are produced using the upstream
processes of cell culture; centrifugation, and depth and membrane fil-
tration, and the downstream processes of protein A chromatography;
low pH viral activation, cation exchange chromatography, anion ex-
change chromatography, viral filtration, and ultrafiltration/diafiltration
[109]. MAb production supported by the in-line capabilities of ATR-
FTIR spectroscopy complement the trend of moving from batch to con-
tinuous processes for biopharmaceutical processing in order to reduce
costs, and improve quality of drug and flexibility of processes [110].

Aside from detecting protein presence, FTIR spectroscopy can also
detect impurities in solution, such as detergents, buffer residues, and
protein contaminants in manufacturing (Fig. 9), not detectable by re-
versed phase HPLC electrospray ionisation MS (RP-HPLC-ESI-MS) or
SDS-PAGE. In fact it is predicted Triton X-100, the detergent seen in
Fig. 9(B), could not be seen by any other method [8,111], a significant
advantage when compared to CD. This detection of impurities is possi-
ble through the comparison of sample FTIR spectra with standard FTIR
spectra.

Another recent study has developed a reusable immuno-infrared
sensor, which uses a functionalised germanium ATR crystal to analyse
human blood and CSF fluid, and subsequently detect biomarkers for
Alzheimer's disease (AD). This technique reduces time and cost of iden-
tification, and could be applied to identify impurities in biopharmaceu-
tical processing [112]. Some reviews have proposed other techniques
such as size exclusion chromatography (SEC) and mass spectrometry
(MS) for this application [113], however, these alternative techniques
are more time consuming and costly. One paper limited the application
of FTIR spectroscopy in biopharmaceutical production to only identify-
ing higher order structural changes such as aggregate levels in purifica-
tion steps [114]. In this review paper we have presented the full



Fig. 9. (A) FTIR spectrum of ONCOHIST® after small changes in the production process led
to significant deviations from baseline difference spectrum (B) FTIR spectrum showing
unexpected and unwanted adsorption of Triton X-100, a detergent [8].
(Reprinted with permission from Gross, P. C.; Zeppezauer, M., Infrared spectroscopy for
biopharmaceutical protein analysis. J Pharm Biomed Anal 2010, 53 (1), 29–36).
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potential of FTIR spectroscopy to identify changes of
biopharmaceuticals under a range of conditions, and at primary, sec-
ondary, and tertiary structural levels.

7. ATR-FTIR spectroscopic imaging applied to biopharmaceuticals

FTIR spectroscopic imaging is especially useful for studying complex
andheterogeneous samples, as it produces a chemical image of the sam-
ple or system being investigated, and offers the opportunity to collect
dynamic images. Macro ATR-FTIR spectroscopic imaging consists of a
large sample compartment containing an ATR accessory attached to a
spectrometer, whilst micro ATR-FTIR spectroscopic imaging involves
the use of an infrared microscope with an ATR objective. The first
paper to study aggregation of IgG by macro ATR-FTIR imaging investi-
gated secondary structural changes of 1 mg/ml IgG4 solution under
thermal stress and found IgG4 is more stable at high pH or at low or
high salt concentrations [115]. The use ofmacro ATR-FTIR spectroscopic
imaging and depth profiling is particularly interesting as it could be
used to visualise biopharmaceutical therapeutic release systems.
Macro ATR-FTIR spectroscopic imaging of biomaterials has increased
in popularity in recent years. Research using this technique has demon-
strated the ability of a germanium ATR IRE crystal to monitor distribu-
tion within materials, and the presence and states of live cells [116],
and it has also been used to investigate cancerous tissue samples and
bio fluids [117]. As previously seen, macro ATR-FTIR spectroscopic im-
aging can be applied to depth profiling studies (Fig. 10) [6].

Micro ATR-FTIR spectroscopic imaging has previously been used to
investigate protein crystallisation [118], and aggregates in live cells
[119], as well as to probe protein hydration in living cells [120].
Terahertz time-domain spectroscopy (THz-TDS) in the far IR region
was used to investigate BSA protein solution at pHs ranging from
2.5–10, this paper found different conformations of BSA have varying
impact on the dynamics of surrounding water molecules [121]. Micro
ATR-FTIR imaging has recently been used for depth profiling of prostate
cancer tissue in the z-direction, at varying angles of incidence, to study
embedded components using a created 3D model [122]. Micro FTIR
spectroscopic imaging has also been applied to determine the structure
of protein-based silk fibroin/polyethylene oxide (SF/PEO) polymer
blends [7], where conformation transitions of random coil and/or α-
helical conformation were shown in the SF-rich domains, to β-sheet
conformation in PEO-rich matrix (Fig. 11). This research used FTIR and
X-ray microscopy spectroscopic imaging (STXM) as complementary
techniques, and found they are useful to study phase behaviour andmo-
lecular conformationof protein based polymers. This could be applied to
the biopharmaceutical industry through the use of therapeutic delivery
systems [123].

Macro ATR-FTIR spectroscopic imaging has been used tomonitor af-
finity chromatography purification of monoclonal antibodies [3], a
particularly useful investigatory method which looks at the binding ca-
pacity of resin. This is important due to the high financial cost of replac-
ing protein A resin [124]. Macro ATR-FTIR spectroscopic imaging has
been successfully applied to cleaning procedures of a fouling layer on
membranes such as polypropylene (PP), and polytetrafluoroethylene
(PTFE) [125], the small penetration depth of ATR is well suited to this
application due to the thin nature of membranes. It is predicted that
the membrane filtration market will be worth $8.6 billion USD by
2024 [126], therefore the identification of FTIR as a valid monitoring
technique of membranes could have significant positive impacts on
the acceleration of this market due to the ease of data collection.

Microfluidics and FTIR spectroscopic imaging have previously been
combined to investigate pharmaceuticals (or small molecule drugs)
such as ibuprofen [127]. In this study ibuprofen was studied at neutral
and acidic conditions, and the structural change from compacted pow-
der to crystalline form was characterised. Macro ATR-FTIR imaging
allowed the phase change of different areas in the tablets to be observed
simultaneously. Another application for macro ATR-FTIR spectroscopic
imaging is the monitoring and quantification of lysozyme within
water droplets studied under dynamic flow [128]. Building on this re-
search, protein solutions under flow and ATR-FTIR spectroscopic imag-
ing could be applied to biopharmaceutical processing. One review has
found that microfluidics, in tandemwith chromatography andMS is ef-
fective in characterising the stability of therapeutic proteins [129].
These experiments could be adapted to work with macro ATR-FTIR
spectroscopic imaging, and provide an alternative low cost, fast acquisi-
tion time, and high throughput tool.

8. Future perspectives

This reviewhas highlighted the use of ATR-FTIR spectroscopy for the
investigation of efficient production of biopharmaceuticals. Although
ATR-FTIR spectroscopy is already in situ at a number of points in the
production pathway, there is real potential for it to be utilised more ef-
fectively. ATR-FTIR spectroscopy will shorten measurement times [6]
(compared to other analytical techniques such as HPLC), and increase
the effectiveness of measurements through improved signal to noise
ratio, and the increased number of parameters and characteristics of
the biopharmaceuticals which can be observed from a single spectral
measurement. Macro ATR-FTIR spectroscopic imaging has yet to fulfil
its potential in biopharmaceutical analysis. In the future it could be
used to study biopharmaceuticals under flowing conditions, in a scaled
down approach. An example of this would be the study of live cells in
the first stages of USP, and the study of PTMs, along with higher order
structures, in a single measurement. Macro ATR-FTIR spectroscopic im-
aging could also be applied to investigate the level and distribution of
aggregation inDSP,whichwould be ideal as an in-line technique, reduc-
ing the margin of error that comes with off-line measurements.

The true power of biopharmaceuticals, andmonoclonal antibodies in
particular, is being realised in theworldwide battle against SARS-CoV-2.
Some companies are using single cell sequencing to structure the library
of antibodies from SARS-CoV-2 patients, and then using polyclonal ther-
apies for treatment [130]. Another company is harnessing the power of
monoclonal antibodies to develop a therapy for treatment, and is con-
sidering various mAbs which could be repurposed for Covid-19 treat-
ment, such as those which treat rheumatoid arthritis or some cancers
[131]. Indeed some researchers think they have already found an effec-
tive treatment using monoclonal antibodies [132]. The fast develop-
ment of monoclonal antibody therapies has previously been effective,
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Fig. 10. (A) Integrated absorbance of Amide I (1600–1700 cm−1) plotted as images,where I=5mg/ml, II=emptywell, III=buffer, IV=10mg/ml, V=15mg/ml, andVI=20mg/ml. All
protein has been heated to 60 °C for 0.5 h. The unit of the scale bar is integrated absorbance in cm−1 (B) Spectra before (red) and after (green)water vapour subtraction at 45° set angle of
incidence. Spatial resolution of these images is 44 μm [6].
(Reprinted with permission from Tiernan, H.; Byrne, B.; Kazarian, S. G., Insight into Heterogeneous Distribution of Protein Aggregates at the Surface Layer Using Attenuated Total
Reflection-Fourier Transform Infrared Spectroscopic Imaging. Anal Chem 2020, 92 (7), 4760–4764).

Fig. 11. FTIR spectra and FTIR images of the SF/PEO blend. (a) FTIR spectra of SF film as a cast, SF film treated with 70% ethanol solution, pristine PEO film, and SF/PEO blend film; (b) SF-
specific FTIR image of the SF/PEO blend; (c) PEO-specific image of the SF/PEO blend; (d) ASF/APEO image of the SF/PEO blend. The scale bar in (b), (c), and (d) is the same [7].
(Reprinted with permission from Ling, S.; Qi, Z.; Watts, B.; Shao, Z.; Chen, X., Structural determination of protein-based polymer blends with a promising tool: combination of FTIR and
STXM spectroscopic imaging. Phys Chem Chem Phys 2014, 16 (17), 7741–8).
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for example in the Ebola epidemic inWest Africa. Despite the disadvan-
tages of monoclonal antibodies, such as transport and delivery difficul-
ties, they offer a promising solution in the weeks, months, and years to
come [133]. If these proposed monoclonal antibodies therapies are
taken to production, ATR-FTIR spectroscopy will almost certainly have
a role to play in stability testing, but the capabilities of ATR-FTIR
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spectroscopy and spectroscopic imaging reachmuch further. It is hoped
that future research will utilise these techniques to the limit of their ca-
pabilities, to improve efficiency and sample yield.
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