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Introduction
It is estimated that in 2020, 21,750 women will be diagnosed with epithelial ovarian cancer (EOC) 
and 13,940 will die of  ovarian cancer (1). While antiangiogenic therapy has offered improvement in 
progression-free survival (PFS), a significant overall survival (OS) advantage is unclear (2, 3). Simi-
larly, poly (ADP-ribose) polymerase inhibitors have demonstrated an impressive increase in PFS in 
BRCA mutation carriers, but OS data are not mature (4). Furthermore, these therapeutic approaches 
are extremely costly (5–9). Thus new, cost-effective approaches are needed to reduce relapse rates for 
patients with EOC and improve OS. Metformin, a low-cost modulator of  cellular metabolism, rep-
resents one potential approach.

BACKGROUND. Epidemiologic studies suggest that metformin has antitumor effects. Laboratory 
studies indicate metformin impacts cancer stem-like cells (CSCs). As part of a phase II trial, we 
evaluated the impact of metformin on CSC number and on carcinoma-associated mesenchymal stem 
cells (CA-MSCs) and clinical outcomes in nondiabetic patients with advanced-stage epithelial ovarian 
cancer (EOC).

METHODS. Thirty-eight patients with stage IIC (n = 1)/III (n = 25)/IV (n = 12) EOC were treated with 
either (a) neoadjuvant metformin, debulking surgery, and adjuvant chemotherapy plus metformin 
or (b) neoadjuvant chemotherapy and metformin, interval debulking surgery, and adjuvant 
chemotherapy plus metformin. Metformin-treated tumors, compared with historical controls, were 
evaluated for CSC number and chemotherapy response. Primary endpoints were (a) a 2-fold or 
greater reduction in aldehyde dehydrogenase–positive (ALDH+) CD133+ CSCs and (b) a relapse-free 
survival at 18 months of more than 50%.

RESULTS. Metformin was well tolerated. Median progression-free survival was 18.0 months (95% 
CI 14.0–21.6) with relapse-free survival at 18 months of 59.3% (95% CI 38.6–70.5). Median overall 
survival was 57.9 months (95% CI 28.0–not estimable). Tumors treated with metformin had a 
2.4-fold decrease in ALDH+CD133+ CSCs and increased sensitivity to cisplatin ex vivo. Furthermore, 
metformin altered the methylation signature in CA-MSCs, which prevented CA-MSC–driven 
chemoresistance in vitro.

CONCLUSION. Translational studies confirm an impact of metformin on EOC CSCs and suggest 
epigenetic change in the tumor stroma may drive the platinum sensitivity ex vivo. Consistent with 
this, metformin therapy was associated with better-than-expected overall survival, supporting the 
use of metformin in phase III studies.

TRIAL REGISTRATION. ClinicalTrials.gov NCT01579812.
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Preclinically, metformin has demonstrated antitumor effects in several cancers (10, 11). Epidemiologic 
studies, while not in complete agreement, have indicated that patients with ovarian cancer taking met-
formin compared with patients not taking metformin have a significantly longer OS (12–16).

Many mechanisms of  metformin’s anticancer activity have been proposed. Several studies have sug-
gested metformin modulates AMPK signaling, AKT activity, and the induction of  apoptosis (17, 18). Met-
abolic actions have been proposed related to gluconeogenesis, mitochondrial function, and cellular metab-
olism (19, 20). Metformin has been reported to inhibit epithelial-mesenchymal transition (EMT), inhibit 
IGF signaling, and selectively suppress cancer stem-like cell (CSC) growth (21–25). In ovarian cancer, 
metformin is reported to reverse chemotherapy resistance, reduce cancer cell migration and metastasis, 
and prevent EMT (17, 20, 26–28). We reported that metformin targets aldehyde dehydrogenase–positive 
(ALDH+) ovarian CSCs (29, 30) and enhances response to chemotherapy (31).

Currently, at least 55 clinical trials are evaluating metformin as a cancer treatment (32). Here, we pres-
ent results of  a nonrandomized phase II study of  metformin administered in combination with chemother-
apy for nondiabetic patients with advanced-stage EOC. The primary objective of  this study was a trans-
lation endpoint to evaluate the impact of  metformin on CSCs and 18-month relapse-free survival (RFS).

Results

Patient population
Ninety-one patients were enrolled in the study between October 28, 2011, and March 8, 2016. Study design 
was as indicated (Figure 1). Five patients withdrew consent before treatment initiation related to timing/
location of  surgery. Eighty-six patients were treated with metformin before surgery. Of  these patients, 
37 were excluded due to ineligible pathology (24 had benign disease or nonovarian carcinoma, and 13 
had stage I/IIA ovarian carcinoma). An additional 10 were nonevaluable due to withdrawn consent for 
intolerance of  metformin, personal issues (e.g., moving to other cities), or noncompliance (Figure 2).  
Target accrual was 50 evaluable patients; however — due to the unexpectedly high number of  patients 
with early-stage disease who were enrolled but ultimately not eligible, an unexpectedly high number of  
nonovarian malignancies, and limited financial support — the trial closed early.

Table 1 summarizes patient characteristics. Twenty-five (65.8%) had stage III disease, and 12 (31.6%) had 
stage IV disease. Twenty-three patients (60.5%) received neoadjuvant chemotherapy; 15 (39.5%) received adju-
vant therapy. Thirty (78.9%) achieved optimal debulking status (<1 cm residual disease). Twenty-seven (71.1%) 
had platinum-sensitive tumor. Two of the 23 (8.7%) patients receiving neoadjuvant chemotherapy and met-
formin achieved pathologic complete responses with no evidence of residual disease at interval debulking sur-
gery. Thirty-two patients (84.2%) completed at least 6 cycles of chemotherapy with metformin. Two patients 
chose to continue metformin therapy (off-label, provided by their internist) after completion of the study.

Safety
Table 2 and Table 3 detail toxicities potentially related to metformin. A severe dermatologic reaction was the 
only grade 4, nonhematologic toxicity. One patient had grade 3 diarrhea. The anticipated metformin-asso-
ciated diarrhea and nausea were the most common side effects. Five of 16 patients treated at 1000 mg BID 
withdrew from the trial due to metformin-related gastrointestinal (GI) side effects. Subsequently, patients were 
enrolled with target doses of 500 mg BID. Three patients were dose-reduced to 500 mg/daily secondary to GI 
side effects. All patients who experienced nausea were taking 1000 mg BID. Hepatologic adverse effects includ-
ed mild elevation in AST and ALT. Anticipated rates of hematologic and neurologic toxicity were observed.

Efficacy
The data cutoff  for primary analysis was January 22, 2018. With a median follow-up of  45 months, 
the median PFS for the entire population was 18.0 months (95% CI 14.0–21.6) (Figure 3A). For the 27 
patients with nonpersistent disease after therapy, RFS at 18 months was 59.3% (95% CI 38.6–70.5). Medi-
an OS was 57.9 months (95% CI 28.0–not estimable [NE]; Figure 3B), with a 3-year OS of  65.7% (95% CI 
48.3–78.4) (Figure 3B). Comparing by stage, those with stage IIC/III disease had a median PFS of  18.3 
months (95% CI 5.8–21.7), while patients with stage IV disease had a median PFS of  14.8 months (95% 
CI 7.6–23.4) (Figure 3C). Median OS by stage was 58.0 months (95% CI 44–NE) for patients with stage 
IIC/III disease and 22 months (95% CI 7–NE) for patients with stage IV disease (Figure 3D).
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Translational studies
Metformin treatment reduces CSCs. Prior studies suggest metformin can reduce cancer “stemness” (21, 25, 
31). We have shown that ALDH+CD133+ ovarian cancer cells are enriched for ovarian CSCs (29). Thus, a 
primary endpoint of  this study was to evaluate ALDH+CD133+ CSCs in the metformin-treated specimens 
and matched non–metformin-treated control patients. For homogeneity, we only evaluated samples from 
22 patients with stage III/IV high-grade serous cancer. Controls met the eligibility criteria set forth for the 
trial and were consented for tissue collection via an IRB-approved tumor banking protocol. Selecting from 
a bank of  more than 200 patient samples, 22 controls were matched to have identical stage, histology, and 
chemotherapy (including adjuvant vs. neoadjuvant). Average age of  controls at the time of  surgery was 
similar at 61.1 years (range 42–76). Among control patients, 75% underwent optimal debulking (15 of  
20; debulking status unavailable for 2). Flow cytometry revealed metformin-treated patients exhibited an 
average 2.4-fold reduction in percentage of  ALDH+CD133+ cells compared with non–metformin-treated 
ovarian cancer controls (P < 0.0001, Figure 4A).

To further evaluate the stemness of  these tumors, tumor cells from 6 metformin-treated patients and 
7 controls were grown in hanging-drop suspensions in serum-free media and serially passaged. Spheroids 
were then analyzed for response to cisplatin therapy over time and expression of  ALDH or CD133. In 
line with a potential reduction in stemness, metformin-treated cells were more sensitive to platinum treat-
ment, unlike controls, and appeared not to develop therapeutic resistance with passaging (P < 0.001, Figure 
4B). Consistent with the initial analysis, spheroids from metformin-treated patients initially demonstrated 
reduced levels of  both ALDH and CD133 (Figure 4C). Furthermore, these levels stayed lower over time 
and, in the case of  ALDH, appeared to increase less over time.

Metformin affects DNA methylation of  cancer-associated MSCs in the tumor microenvironment. Metformin 
use has been associated with an immediate impact on blood cell DNA methylation (33). Metformin has 
also been reported to modify cancer cell DNA methylation (34–36). Given the reduction in CSC num-
bers and the persistence of  platinum response ex vivo, we hypothesized a potential epigenetic change in 
cancer cells and performed DNA methylation analysis on tumor cells from control and metformin-treat-
ed tumors using the Illumina Infinium MethylationEPIC DNA methylation array. To eliminate changes 
associated with chemotherapy, we only used tumors that were treated with metformin neoadjuvantly 
in the absence of  chemotherapy. Uniform manifold approximation and projection (UMAP), using all 
CpG sites, did not separate metformin-treated tumor cells and nontreated control tumors (Figure 5A). 
After correction for multiple comparisons, we were unable to identify statistically significant differen-
tially methylated loci, using either supervised or unsupervised hierarchical clustering with the top 5% 
most variable sites (Figure 5B).

Figure 1. Clinical study trial design. Patients were treated with metformin before debulking surgery either for 2 weeks or along with 3 cycles of neoadjuvant 
chemotherapy. Surgical specimens were used for later CSC studies. Metformin was continued along with adjuvant chemotherapy for a total of 6 cycles. 
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We previously demonstrated that mesenchymal stem cells (MSCs) are important members of  the 
ovarian tumor microenvironment (TME) (37, 38) that assume a unique protumorigenic cancer-as-
sociated MSC (CA-MSC) phenotype (39). One of  the protumorigenic aspects of  the CA-MSCs is 
to enhance stemness and chemoresistance. We therefore similarly analyzed the impact of  met-
formin on CA-MSC DNA methylation status. We profiled 3 groups of  MSC samples, including 
MSCs derived from normal omental adipose tissue, CA-MSCs derived from high-grade serous 
ovarian cancer (HGSOC) omental metastasis (control-CA-MSCs), and CA-MSCs derived from 
metformin-treated HGSOC omental metastasis (metformin-CA-MSCs). A similar UMAP anal-
ysis as done with the tumors demonstrated that normal MSCs and control-CA-MSCs segregated 
into 2 distinct groups. Metformin-CA-MSCs separated into 2 groups, one overlapping control-CA-
MSCs and the other creating an intermediate group between CA-MSCs and normal MSCs (Fig-
ure 6A). An unsupervised hierarchical clustering analysis on the top 5% CpG sites, selected based 
on variance, recapitulated the global UMAP comparison (Figure 6B). Five of  the 11 metformin- 
CA-MSCs (group II) clustered with the control-CA-MSCs, while 6 (group I) demonstrated a distinct 
methylation pattern. Even with multiple-comparison correction and small sample size, we were able 
to identify 14,791 differentially methylated CpG sites (within 4986 differentially methylated regions) 
(Figure 6C) at the 5% FDR level. Group I metformin-CA-MSCs segregated with normal MSCs.

To determine whether CA-MSC methylation profiles correlated with outcome, we compared the OS of  
patients whose CA-MSCs sorted into groups I and II. All 5 patients in group II (CA-MSC profile more like 
non–metformin-treated controls) were deceased. In contrast, only 3 of  6 patients in group I (patients whose 
CA-MSCs sorted with normal MSCs) were deceased.

To determine whether the metformin response of  CA-MSCs could cause better patient outcomes, 
we performed in vitro chemosensitivity assays with CAOV3 ovarian cancer cell lines cocultured with 
control CA-MSCs (n = 3), group I metformin-CA-MSCs (n = 3), and group II metformin-CA-MSCs 
(n = 2). Consistent with prior studies (37), non–metformin-treated CA-MSCs significantly increased 
chemoresistance of  ovarian cancer cells (Figure 6D). However, ovarian cancer cells cultured with group 
I metformin-treated CA-MSCs demonstrated no increase in chemoresistance (Figure 6D). Group II 
metformin-CA-MSCs had an intermediate phenotype. Taken together these data suggest metformin’s 
impact on CA-MSCs may prevent CA-MSC–driven chemoresistance. Supporting the idea that met-
formin may help maintain platinum sensitivity, of  21 platinum-sensitive patients (patients who expe-
rience recurrence at least 6 months after completion of  adjuvant chemotherapy) for whom data on 

Figure 2. Enrollment and exclusion in the clinical trial. Of 91 patients enrolled, 38 were evaluable. Excluded patients included those who withdrew before 
trial initiation, were ineligible due to benign or lower stage pathology, or withdrew after treatment was initiated but before receiving chemotherapy due to 
intolerance of metformin, noncompliance, or other reasons, such as moving or choosing to receive adjuvant treatment at another institution.
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response to second-line therapy were available, 18 (82%) demonstrated a response to second-line ther-
apy (11 complete response, 7 partial response, 3 progressive disease). This compares favorably with 
historical controls, in which a response of  50%–65% has been observed (40, 41).

Discussion
This is the first prospective study to our knowledge to evaluate metformin as a treatment in nondiabetic 
patients with ovarian cancer. The trial met the primary endpoint of  ≥2-fold reduction of  ALDH+CD133+ 
CSC and ≥50% RFS at 18 months; however, the RFS endpoint has a wide CI. The median PFS of  18 
months and OS of  57.9 months compare favorably to other clinical trials with similar patient populations 
and historical expectations (2, 42).

The metformin dose of  500 mg BID was well tolerated. However, doses of  1000 mg BID were not tol-
erated because of  adverse GI effects. This may be unique to the ovarian cancer population because patients 
found the GI side effects mentally distressing; they were reminiscent of  patients’ presenting ovarian cancer 
symptoms and provoked anxiety. Consequently, many patients would not consider dose reduction of  the 
metformin, withdrawing from the trial.

Outcome results, while encouraging, are limited because this was a nonrandomized trial. While 
cross-trial comparisons are obviously problematic, median PFS and OS compare favorably to the out-
comes in recent landmark clinical trials with similar patient populations, such as GOG218 (the majority 

Table 2. Metformin-attributed adverse events

Adverse event Any grade Grade 3 or 4
Any adverse event 20 (52.3) 1 (2.6)
  Diarrhea 7 (18.4) 0
  Nausea 6 (15.8) 0
  Elevated ALT 5 (13.2) 0
  Abdominal pain 4 (10.6) 0
  Elevated AST 3 (7.9) 0
  Vomiting 3 (7.9) 0
  Skin rash 2 (5.3) 1 (2.6)
  Weight loss 2 (5.3) 0
  Alkalosis 1 (2.6) 0
  Dizziness 1 (2.6) 0
  Dyspnea 1 (2.6) 0
  Elevated creatinine 1 (2.6) 0
  Gagging 1 (2.6) 0
  Ileus 1 (2.6) 0

ALT, alanine transaminase; AST, aspartate transaminase.

Characteristic n (%)
Median age
  Years (range) 59.5 (31–76)
Sex
  Female 38 (100)
Stage
  II 1 (2.6)
  III 25 (65.8)
  IV 12 (31.6)
Histology
  High grade, serous 29 (76.3)
  High grade, endometrioid 1 (2.6)
  Low grade, mucinous 0 (0)
  Low grade, serous 4 (10.5)
  Other 5 (13.2)
Optimal debulking status
  Yes 30 (78.9)
  No 7 (18.4)
  N/A (no surgery) 1 (2.6)
Metformin total daily dose
  500 mg 3 (7.9)
  1000 mg (500 mg BID) 19 (50.0)
  2000 mg (1000 mg BID) 16 (42.1)
Neoadjuvant chemotherapy
  Yes 23 (60.5)
  No 15 (39.5)
Platinum sensitive
  Yes 27 (71.1)
  No 11 (28.9)
ECOG performance status
  0 29 (76.3)
  1 8 (21.1)
  2 1 (2.6)
BID, twice daily; ECOG, Eastern Cooperative Oncology Group.

Table 3. Grade 3–4 hematologic toxicities (any attribution)

Adverse event Grade 3–4 hematologic toxicity
Anemia 12 (32)
Neutropenia 9 (24)
Thrombocytopenia 6 (16)
Thromboembolic event 2 (5)

Table 1. Clinical characteristics of enrolled patients

https://doi.org/10.1172/jci.insight.133247
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of  patients were stage III with optimally debulked disease) and GOG262 (2, 42–47). While our study had 
a higher rate of  optimal debulking than these 2 studies, this likely reflects the fact that 60% of  the patients 
in the current study received neoadjuvant chemotherapy, which increases optimal debulking rates but does 
not affect OS (48). Of  note, because bevacizumab was not approved for adjuvant therapy at the time of  this 
study, no patients were treated with bevacizumab.

Selective targeting of  CSCs is a proposed mechanism of  action of  metformin (27, 32, 49–51). We 
previously found metformin was associated with a ~2-fold reduction in ovarian CSCs in animal studies 
and increased in chemotherapy response (31). Exactly how metformin reduced CSC numbers was unclear. 
Translational studies completed as part of  this clinical trial showed a very similar 2.4-fold CSC reduction in 
metformin-treated patients. Consistent with reduced stemness, metformin-treated patient cells demonstrat-
ed an increased sensitivity to platinum ex vivo, and unlike controls, resistance to platinum did not increase 
with passage. Sensitivity to platinum maintained over time could explain the modest PFS yet excellent OS 
of  the metformin-treated population. Our study did not include metformin as a maintenance therapy for 
financial reasons; however, if  metformin works to reduce chemotherapy resistance, continued use may fur-
ther improve patient outcomes. This is being tested in an ongoing randomized phase II trial of  metformin 
as a chemotherapy adjuvant (ClinicalTrials.gov NCT02122185).

Metformin may also affect stemness indirectly via an impact on the TME. We observed strong met-
formin-related DNA methylation changes in CA-MSCs of  patients with good outcomes. Unlike non–met-
formin-treated CA-MSCs, CA-MSCs from metformin-treated tumors did not have the ability to drive che-
moresistance ex vivo. Because MSCs are well established as regulators of  CSCs (37, 52, 53), we speculate 
metformin may, in part, affect CSCs indirectly via its effect on MSCs. Because MSCs are known to be 
potent regulators of  the immune response, a metformin impact on MSCs would be consistent with its 
reported immunomodulatory effects (24, 54). Improved OS without significant impact on PFS could also 
be attributable to an improvement in antitumor immune response.

Although our translational findings are of  interest, they are limited in interpretation because this 
was not a randomized trial. However, control tumors were well-matched contemporaries, from the 
same institution. Our studies are consistent with a randomized phase II trial in lung cancer of  an EGFR 

Figure 3. Kaplan-Meier estimates of progression-free and overall survival. (A and B) Kaplan-Meier estimates of PFS and OS for the entire population. 
Median PFS was 18.0 months (14.0–21.6). Median OS was 57.9 months (28.0–not estimable). (C and D) Kaplan-Meier estimates of PFS and OS by stage.
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inhibitor with or without metformin, which demonstrated statistically significant PFS improvement 
with an impressive 14-month improvement in OS (1). In contrast, clinical trials of  metformin in pan-
creatic cancer did not show a survival benefit (55). If  metformin acts to prevent the development of  
chemoresistance, it is unlikely to have an impact on pancreatic cancer, which, unlike ovarian and lung 
cancer, is rather therapy resistant on primary presentation. Further, if  metformin acts via conversion of  
MSCs to CA-MSCs, studies of  metformin in pancreatic cancer, where the tumor stroma is well estab-
lished, are less likely to have positive results. Consistent with this, for patients with stage IV ovarian 
cancer, we observed OS consistent with historical controls whereas, for stage III patients, we observed 
a better-than-expected OS.

In conclusion, we demonstrated that metformin is well tolerated in nondiabetic patients. Metformin 
treatment resulted in a significant reduction in the CSC population and alteration of  DNA methylation 
of  CA-MSCs, which eliminated CA-MSC–driven increases in chemoresistance. This was associated 
with a better-than-expected median OS, particularly for patients with stage II–III disease. This study 
strongly supports the use of  metformin in phase III clinical trials for adjuvant treatment of  EOC.

Methods
Study design and eligibility criteria. This was a single-center, open-label phase II trial of  patients with a new 
diagnosis of  confirmed advanced-stage EOC. All patients gave written informed consent before participa-
tion in the study. Progression was defined using Gynecologic Cancer InterGroup–Response Evaluation Cri-
teria in Solid Tumors criteria (56). Primary endpoints were an 18-month median RFS and 2-fold reduction 
in CSCs versus non–metformin-treated historical control samples. PFS and OS were secondary endpoints.  

Figure 4. Tumors treated with metformin have decreased cancer stemness. (A) Summary of FACS analysis of ALDH+CD133+ CSCs in metformin-treated (n 
= 22) and matched control ovarian cancers (n = 22) demonstrating a 2.4-fold decrease in CSCs in metformin-treated tumors. (B) Cell viability of tumor cells 
from metformin-treated patients (n = 6) or control patients (n = 7) grown in suspension, passaged weekly, and treated with cisplatin (5 replicates each). 
Tumor cells from metformin-treated patients maintain platinum sensitivity with serial passage, while control tumor cells increase platinum resistance 
over time. (C) Evaluation of ALDH and CD133 expression in metformin-treated and control tumor cells grown in suspension and after serial passages. 
Metformin-treated samples start at a lower baseline and increase less over time relative to controls. Lines in boxes represent averages. The whiskers 
depict the minimum and maximum values, and the length of the box represents the interquartile range. Statistical significance between passages was 
assessed with 2-sided Student’s t tests and comparisons made between metformin and nonmetformin samples at each passage, using 1-/2-way ANOVA 
and Tukey’s post hoc analysis to determine specific significant differences (P < 0.05). All data are expressed as mean ± SEM.

https://doi.org/10.1172/jci.insight.133247
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Survival intervals were defined from the date of  diagnosis to the date of  first evidence of  progression or 
death from any cause.

Eligible patients had evidence of  malignancy consistent with stage IIC, III, or IV ovarian, fallopian, or 
primary peritoneal cancer (57); ECOG performance status 0–2; age 18–80 years; and intact renal (serum 
creatinine ≤ 1.4 mg/dL) and hepatic function (bilirubin ≤ 1.5 times the upper limit of  normal and AST and 
ALT ≤ 2.5 times the upper limit of  normal). Patients having a diagnosis of  diabetes mellitus, metformin use 
in the preceding 6 months, hypersensitivity to metformin, or history of  metabolic acidosis were excluded, 
as were those with a history of  other active malignancies.

Procedures. Patients were initially treated with oral metformin 500 mg BID for 7 days and then increased 
to 1000 mg twice daily. However, after an initial high dropout rate (n = 5 of  the first 16) due to metformin-re-
lated GI side effects, the remaining patients were enrolled with target dose of  500 mg twice daily. Patients 
either received 7–10 days of  metformin before primary debulking surgery, followed by at least 6 cycles of  
adjuvant metformin and platinum/taxane chemotherapy or 3 cycles of  neoadjuvant metformin plus plat-
inum/taxane chemotherapy, followed by interval debulking and 3–6 cycles of  adjuvant platinum/taxane 
chemotherapy with metformin (Figure 1). Patients were consented and started metformin the same day they 
were evaluated for surgery to ensure receiving metformin neoadjuvantly did not delay patients undergoing 
surgery. Patients were treated with either standard Q3 week carboplatin (AUC = 6) and paclitaxel (175 mg/
m2) or Q3 week carboplatin (AUC = 6) and weekly taxol (80 mg/m2) per the physician’s preference. The 
decision to treat patients with initial surgery or neoadjuvant chemotherapy was up to the treating surgeon, 
based on perceived ability to perform optimal debulking. Pill counts and patient journals were assessed after 
every cycle to confirm treatment compliance. Metformin was discontinued after completion of  the study.

Safety and toxicity monitoring. Patients were evaluated for toxicity at enrollment and with each thera-
peutic cycle. Adverse events were graded according to Common Terminology Criteria for Adverse Events 
(version 4.0) (58). The number and proportion of  the highest graded toxicity for each category were report-
ed. Patients were withdrawn from the study for serious metformin-related nonhematologic adverse events 
(grade 3 or greater). Dose reduction was allowed for low-grade toxicity.

CSC studies. Tumor samples were processed into live single-cell suspensions (59) and frozen for batch analy-
sis. The proportion of ALDH1+CD133+ CSCs was evaluated via flow cytometry as previously described (60–63).

Hanging-drop spheroids. Tumor cell suspensions from 6 neoadjuvant metformin-treated patients and 7 
control patients were gown as previously described in 5 replicate plates (60). After 7 days, spheroids were 
harvested and disaggregated and single cells counted and replated on a new hanging-drop plate as drops 
of  100 cells, to form passage 1. This process was repeated weekly for 6 passages. Live-cell phase microsco-
py images of  the spheroids were collected (Olympus IX81 and CellSens software) on days 1, 3, and 7 of  
culture for each passage to monitor spheroid formation/proliferation (60–63). At the time of  disaggrega-
tion, a portion of  cells was used for flow cytometry analysis of  ALDH and CD133 as above. Seven-day-
old spheroids were treated with cisplatin at a concentration of  50 μM. The effect of  drug treatment was 
determined at 72 hours, using the Alamar blue assay as described (60–62).

DNA methylation profiling. Tumor cell suspensions were washed 3 times to eliminate dead cells, 
and DNA was collected using the DNeasy column-based purification kit (QIAGEN). Patient-derived 

Figure 5. Metformin does not affect DNA methylation 
of bulk cancer cells. (A) Primary 2-dimensional UMAP 
analysis showing intermixed metformin-treated tumor 
cells (mtTumor, red, n = 10) and nontreated control 
tumor cells (ctrlTumor, blue, n = 6). (B) Dendrogram of 
hierarchical clustering using the top 5% most variable 
CpGs in tumor cells from control and metformin-treat-
ed patients.
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CA-MSCs and normal omental MSCs were cultured as described (37–39), then FACS-sorted for the 
cell surface markers CD105, CD90, and CD73, with genomic DNA isolated as above. DNA methyl-
ation profiling was performed using the Infinium MethylationEPIC BeadChip Kit (Illumina). Raw 
IDAT files were processed using R package SeSAMe (64) with noob background correction (65), non-
linear dye bias correction, and nondetection masking. A beta value was calculated for each locus as the 
ratio of  methylated signal intensity to the sum of  unmethylated and methylated signal intensities, with 
a range from 0 to 1, corresponding to the fraction of  methylated allele in the assayed sample at this 
locus. We masked measurements from suboptimally designed probes due to overlapping with SNPs 

Figure 6. Metformin impacts DNA methylation of host CA-MSCs and prevents CA-MSC–induced chemoresistance. (A) Primary 2-dimensional 
UMAP analysis for the MSC groups, including metformin-CA-MSCs (mtCAMSC, red, n = 11), control-CA-MSCs (CA-MSC, blue, n = 9), and normal adi-
pose MSCs (MSC, green, n = 6). (B) Dendrogram from hierarchical clustering using the top 5% most variable CpGs for the MSCs. Metformin-CA-MSC 
samples were split into 2 groups as indicated. (C) DNA methylation heatmap of 14,791 probes differentially methylated between group I and group 
II. MIR200C promoter DNA methylation level (unmethylated in epithelial cells and methylated in mesenchymal cells) is included as a measure of 
CA-MSC purity. Group I metformin-CA-MSCs segregate with normal MSCs, distinct from control-CA-MSCs. (D) Viable cancer cell number following 
coculture with the indicated MSC types and the indicated doses of cisplatin. A Student’s 2-tailed t test was used for comparison.
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and mapping issues (66). Dimensionality reduction for visualizing sample similarities was achieved 
by UMAP, arXiv: 1802.03426, using all CpG sites assayed. Hierarchical clustering was done with the 
R function hclust (67), based on the top 5% most variable CpG probes, and performed alongside the 
UMAPs. Differential methylation analysis was conducted using R package DMRcate (68), version 
1.8.6, with default significance cutoff  settings (FDR controlled at 5% with the Benjamini-Hochberg 
procedure for multiple corrections).

MSC–cancer cell coculture chemosensitivity assay. Assays were performed as previously described (37). 
Briefly, GFP-labeled CAOV3 cells (ATCC) were cocultured with patient-derived MSCs, 1:1 ratio for 24 
hours (10,000 cancer cells:10,000 MSCs), in a 1:1 mixture of  DMEM–10% FBS and complete MSC 
media, then treated with 1 μg or 2 μg of  cisplatin for 48 hours. Cells were harvested and viable (DAPI–) 
CAOV3-GFP cells were counted, using flow cytometry with constant time and volume across samples.

Statistics. The study was powered for 2 objectives, CSC number and PFS at 18 months. Based on 
prior analysis, we assumed an average CSC number of  3% and hypothesized, from preliminary data, 
that metformin would reduce CSC number to 1.5%. To calculate power, the scale of  the measurements 
was transformed to angular equivalents, using an adaptation of  the arcsine transformation of  the 
square root of  the proportion, in order to normalize the otherwise skewed distribution. Assuming mild 
variability, an assumption formalized by setting the standard deviation equal to half  the mean for each 
group, with 50 treated and 50 control cases, using a 2-sample, 2-sided Student’s t test would yield over 
90% power to detect the hypothesized difference significantly, with at most 5% type I error.

PFS at 18 months was powered using a 1-sided, 1-sample exact binomial test (DSTPLAN, Version 4.2). 
Allowing at most 2.5% type I error, 49 patients were needed to achieve 80% power to detect 20% change 
in PFS. OS was a secondary endpoint. Time-to-event endpoints, OS and PFS, were estimated using the 
product-limit method of  Kaplan and Meier, with overall median study-wide follow-up time estimated using 
reverse censoring for survival.

Translational studies statistics. Spheroid studies were repeated 5 times, with at least 40 spheroids (tech-
nical replicates) interrogated for each analysis at each time point and at least 6 patient samples. Spheroid 
proliferation at day 7 was normalized to day 1 for each specimen. Normalized viability is expressed as 
percentage of  untreated controls. Statistical significance between passages was assessed with 2-sided 
Student’s t tests and comparisons made between metformin and nonmetformin samples at each passage, 
using 1-/2-way ANOVA and Tukey’s post hoc analysis to determine specific significant differences (P < 
0.05). Three independent flow cytometry analyses were performed to identify an average percentage of  
ALDH+ or CD133+ populations. All data are expressed as mean ± SEM. Statistical analyses were per-
formed using Prism 7 (GraphPad) and SAS version 9.4.

Study approval. The study (protocol HUM00047900, ClinicalTrials.gov identifier NCT01579812) 
received the approval of  the University of  Michigan Rogel Comprehensive Cancer Center IRB. All patients 
gave written informed consent before participation in the study.
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