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Abstract

Genetic variants are often not predictive of the phenotypic outcome. Individuals carrying the same 

pathogenic variant, associated with Mendelian or complex disease, can manifest to different 

extents, from severe to mild to no disease. Improving the accuracy of predicted clinical 

manifestations of genetic variants has emerged as one of the biggest challenges in precision 

medicine, which can only be addressed by understanding the mechanisms underlying genotype-

phenotype relationships. Efforts to understand the molecular basis of these relationships have 

identified complex systems of interacting biomolecules that underlie cellular function. Here, we 

review recent advances in how modelling cellular systems as networks of interacting proteins has 

fueled identification of disease-associated processes, delineation of underlying molecular 

mechanisms, and prediction of the pathogenicity of variants. This review is intended to be 

inspiring for clinicians, geneticists and network biologists alike who aim to jointly advance our 

understanding of human disease and accelerate progress towards precision medicine.
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A network-based approach towards precision medicine

The cause of many diseases has been pinpointed to mutations in single genes, leading to 

apparent linear “one gene-one disease” relationships. However, the presence of a disease-

associated mutation does not always result in manifestation of the disease. This 

phenomenon, where only a subset of individuals carrying a pathogenic mutation develop 

disease, is called incomplete penetrance and is increasingly being observed even in arguably 

simplistic Mendelian disorders. One such example is cystic fibrosis, an autosomal recessive 

pulmonary disorder associated with mutations in CFTR. While almost all patients suffering 

from cystic fibrosis have mutations in both CFTR alleles, not all individuals with disease-

associated mutations in CFTR alleles manifest cystic fibrosis. The one gene-one disease 

paradigm is unable to explain why only ~ one-third males and one-twentieth females with 

mutations in both CFTR alleles develop the disease [1,2]. This example of incomplete 

penetrance is not the exception, but rather it appears to be the rule, even among well-studied 

“single gene” diseases [3]. Even in cases of very high penetrance, such as Huntington’s 

Disease, where a 40+ CAG triplet nucleotide repeat (encoding glutamine) in HTT leads to 

the disease in most probands [4], the age-of-onset and severity of the disease in an individual 

depend on variants in other modifier genes [5]. Surprisingly, even apparently healthy 

individuals carry 40 to 110 genetic mutations classified by the Human Gene Mutation 

Database (HGMD) as disease-associated, among which ~ 10–20% are found as homozygous 

[6], underscoring the ubiquity of incomplete penetrance. The observed widespread 

prevalence of incomplete penetrance strongly challenges a linear model of genotype-

phenotype relationships (Figure 1).

A growing body of scientific work suggests that at the root of these “non-linear” 

relationships is a complex interplay between genetic and epigenetic factors that is mediated 

by interactions between regulatory DNA sites, non-coding RNA, proteins and other 

molecules in the cell [7]. Together, these interactions constitute the cellular “interactome” 

which can be modelled as networks [7]. In order to accurately predict the phenotype from 

the genotype, it is important to be able to capture, model and manipulate these complex 

molecular relationships mediated by interactome networks.
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The genetic complexity behind most phenotypes also illustrates that the disease associated 

mechanisms in individuals with the same or similar phenotype can be very different, and 

thus require genetically informed diagnosis and adapted treatment for optimal therapeutic 

outcomes. This idea forms the basic motivation for Precision Medicine, i.e. prevention, 

diagnosis, and treatment strategies that take individual variability into account [8]. In this 

review, we will discuss recent advances in how network-based approaches have contributed 

towards addressing the two main challenges in precision medicine: 1) accurate diagnosis of 

the genetic basis of a disease, and 2) understanding of the molecular mechanisms that result 

in disease pathology. While networks that model different kinds of functional relationships 

between biomolecules, i.e. coexpression, genetic interaction profile, or co-localization 

networks, have been successfully used for this purpose [9], here, we focus on concepts and 

recent applications of protein-protein interaction (PPI) networks for the characterization of 

both genetic variation and disease mechanisms. While improved understanding of the 

biophysical and topological properties of PPIs furthered their prediction [10,11], the most 

significant advances in using PPIs to understand human disease have been achieved using 

experimentally derived PPIs, which will be the focus of this review.

In the light of a growing understanding of non-linearity of genotype-phenotype 

relationships, we propose that the term ‘disease-causing variant’ is potentially unfitting and 

inapt. Current methodologies to identify a ‘causal variant’ are probabilistic, rather than 

deterministic, relying upon pedigree and epidemiology data. Moreover, as described above, 

even truly causal variants can be incompletely penetrant and not always result in disease. 

Erroneous identification of the causal variant can mislead patients about the disease, or 

worse, start them on an inappropriate treatment path. Therefore, we have made a conscious 

choice to use the term ‘disease-associated variants’ to refer to pathogenic variants from here 

on.

Advances in mapping human protein interaction networks

An accurate network analysis depends on the availability of comprehensive, unbiased and 

high-quality protein interaction data. Notable efforts to generate human PPI resources can be 

distinguished into those that systematically map PPIs at proteome-scale and those that curate 

protein interactions from the scientific literature. Approaches to systematically map human 

protein interactions have been developed since the mid-1990s with two distinct and 

complementary methodologies that clearly stand out. The first method consists of 

systematically testing every possible pair of proteins for interaction by expressing both 

partners exogenously in a cell-heterologous system [12–14]. While determining PPIs out of 

their endogenous cellular context, this approach is not limited by the set of proteins 

expressed in a given human cell line. Using this technology, the largest such screening effort 

interrogated 17,500-by-17,500 human protein pairs, generating the first human reference 

interactome map (HuRI) with about 53,000 binary and mostly direct protein interactions 

(interactome-atlas.org) [15]. The second technique systematically and exogenously 

expresses each human protein in a cell line and then affinity-purifies the protein and its 

associated interaction partners to identify protein complex data. The largest such effort, 

known as BioPlex, has generated data from about 6,000 affinity purifications corresponding 
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to 56,000 protein associations (bioplex.hms.harvard.edu) [16,17]. These and other human 

protein interactome mapping efforts have been reviewed in more detail elsewhere [7,18].

Significant effort has gone into the development and application of curation standards [19] 

as well as workflows to capture PPI information from a rapidly growing body of scientific 

literature. Despite these achievements, applicability of literature-curated resources is 

impacted by the heterogeneity of experimental methods and protocols used to detect protein 

interactions, as well as variation in the reporting of such methodological information, 

including processing and quality control of raw data. Differences in quality might underlie 

significantly lower retest rates of PPIs with just one literature-curated piece of experimental 

evidence compared to PPIs with multiple pieces of evidence [14]. Furthermore, the protein 

interactome has been interrogated by the scientific community in a very uneven way, mostly 

focusing on a few genes of particularly high interest, which introduced an immense study 

bias [14].

When compared to literature-curated data, systematically generated maps produce high 

quality data at proteome-scale while reducing data heterogeneity and ascertainment bias 

(reviewed in [18]). For example, HuRI and BioPlex detect protein interactions just as well 

for highly versus poorly studied proteins, and thus connect disease-associated proteins much 

more uniformly, regardless of how well they or their interaction partners have been studied 

(Figure 2) [14–16]. This provides new opportunities to prioritize disease candidate proteins 

and to reveal molecular disease mechanisms. Of course, the screening platforms are not 

without technical biases of their own, such as increased detection of PPIs for more highly 

expressed proteins or depletion of transmembrane proteins [14–16]. Technical biases in 

systematic PPI maps and especially the aforementioned study bias in literature-curated 

datasets can significantly confound correlations between gene properties such as essentiality, 

intolerance to loss-of-function mutations, or age, and the number of protein interactions 

(degree) [15,20,21]. For example, do essential proteins appear to have a higher number of 

interactions in a PPI network because it reflects their importance for cellular function, or, 

because essential proteins are much better studied and more highly expressed, thus resulting 

in more curated and detected interactions [15,18,21,22]? Similar to other disciplines such as 

the social sciences, the network biology community must carefully control correlative 

analyses for possible confounders originating from biases in the underlying data.

The products of genes that are associated with a given disease often work together in the 

same or related biological processes that underlie the disease and these proteins tend to 

exhibit significantly higher connectivity among each other compared to randomized 

networks [23,24]. This observation paired with the fact that currently available protein 

interaction data are still highly incomplete [15,18], motivated more targeted protein 

interaction mapping efforts to increase the detection of PPIs between candidate disease 

genes. For example, protein interaction networks have been generated for ciliopathies [25], 

Parkinson’s Disease [26], and Autism Spectrum Disorder [27], expanding the molecular 

subnetworks for these diseases and enabling greater connectivity between implicated 

genomic elements. Various consortia have been proposed to more deeply map the protein 

interaction networks involving genes associated with cancer and psychiatric diseases 

[28,29].
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Networks to identify genes and biological processes involved in disease

Despite identification of hundreds, and in some cases thousands, of genetic loci, most of the 

genes and biological processes that underlie complex diseases remain unknown. A genetic 

locus identified by genome-wide association (GWA) studies can contain hundreds of genes. 

Similarly, the burden of potentially damaging, missense rare variants (with an allele 

frequency less than 1%) is distributed across hundreds of protein-coding genes. 

Identification of disease-associated genes from this pool of candidate genes is crucial to 

begin to understand disease mechanisms. Disease-associated genes from i.e. different loci 

jointly contribute to the dysfunction of specific biological processes in disease. A pathway 

enrichment analysis between candidate genes has the potential to identify such disease-

associated genes and the biological processes affected during disease. However, annotation 

of genes with their respective cellular functions is far from complete and biased towards 

well-characterized genes [30].

An alternative method to identify disease-associated genes from GWA loci, which does not 

depend on pre-existing functional annotations, consists of assessing the closeness of 

candidate genes in, ideally systematically generated, protein interaction networks. The 

potential of using network data to discover novel functional connections between disease-

associated genes is highlighted by a recent study of the Commander complex. This complex 

was hitherto unknown but was identified in systematically generated protein complex data 

[31,32]. Subunits of this complex are highly conserved across metazoa and have been 

implicated in several developmental disorders [33].

The concept of disease modules has been put forward to describe the observation that genes 

that are associated with the same disease tend to be closer to each other in the network 

[24,34]. Approaches to identifying disease modules using biophysical, coexpression, and 

gene regulatory networks have been reviewed in detail elsewhere [9,35,36]. The concept of 

disease modules can be used to identify new disease genes based on their closeness to 

known ‘core’ disease genes. For example, it has previously been shown that proteins 

encoded by core cancer genes interact with each other more frequently than expected by 

chance in a systematically generated human protein interactome map [14]. Similarly, 

candidate cancer genes from GWA studies were found to interact with the core cancer genes 

in the network more often than expected by chance, and this information was used to 

prioritize candidate cancer genes from GWA loci. A similar methodology was used to 

identify novel Type 1 Diabetes genes [37]. Search of proteins within GWA loci, which 

interacted with proteins encoded by known diabetes genes, led to the identification of 

Huntingtin Interacting protein, HIP14. Downstream experiments established HIP14 as an 

anti-apoptotic protein required for beta-cell survival and insulin secretion [37].

Interactions between proteins of genes in GWA loci or of genes containing variants detected 

in whole genome and exome sequencing studies can be used to identify disease-relevant 

functional relationships between genes and affected biological processes even without 

relying on interactions with known disease genes. For example, a study integrated type 1 

diabetes GWA data with protein interaction data to construct networks that might be relevant 

for the disease [38]. Some of the proteins in the networks harbored variants already known 
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to be associated with diabetes in other studies. Selected candidate genes from this network 

analysis were enriched among differentially expressed genes in response to cytokine 

stimulation in insulin-secreting INS-1 beta-cells [38].

Complex diseases can also be associated with rare coding variants [39–41], however, 

identification of the disease-associated rare variant(s) and thus, the corresponding gene(s) is 

highly challenging. One possible way to detect such genes relies on the assumption that 

many of the proteins harboring disease-associated rare variants would likely work together 

in the same biological process(es), and thus protein interactions between identified 

candidates can be explored to further prioritize genes and gain insights into the disease 

biology. Indeed, using this approach various studies have identified novel disease-associated 

mechanisms [42,43]. For example, network data was employed to study the genes and 

biological processes that are likely affected by inherited and de novo variants from 

individuals diagnosed with Autism Spectrum Disorder (ASD) [44]. Genes carrying inherited 

coding variants, expected to have smaller effect sizes and reduced penetrance compared to 

de novo variants, were found to be enriched for cellular processes related to ion transport, 

the cell cycle, and the microtubule cytoskeleton, whereas genes carrying de novo variants 

showed enrichment for transcriptional and chromatin regulation. Interestingly, despite 

different functional enrichments, genes from both types of genetic variation were connected 

with each other in a protein interaction network suggesting that the disease mechanisms 

associated with either inherited or de novo variants ultimately converge to affect similar 

cellular function. This further demonstrates the ability of network data to uncover the 

biological processes underlying the disease.

Despite these and other successes, we would also like to point out three areas that require 

further development and increased caution.

The first area is related to the implications of study bias. Literature-curated protein 

interaction networks have frequently been used to perform network-based analyses in the 

biomedical field. However, inclusion of data curated from numerous studies, which 

specifically tested proteins for interaction that are associated with the same biological 

process or disease, have generally resulted in very uneven coverage of the interactome in 

which certain groups of genes appear more densely and closely connected than they might 

actually be within the context of the full interactome. Thus, detection of significant 

connectivity between disease genes when based on curated protein interaction data might at 

least in some cases be driven by study bias in the underlying network data. Whereas great 

attention has been paid to batch effects in the genomics and transcriptomics field, we argue 

that more attention has to be paid to similar confounders in network data [15].

A second area, which warrants more attention, is related to reporting of network biology 

findings. Often, the description of the experimental and computational procedures in 

published network analyses lacks information to evaluate the soundness of the conclusions 

being made. For example, it is important to describe whether and how randomizations were 

performed to calculate significances of reported observations. Was the number of interaction 

partners of every protein held constant during the network randomization process, and were 
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proteins sampled while respecting the degree distribution in the original set of selected 

proteins?

Finally, a third area which has the most potential to advance the identification of disease 

mechanisms is to better utilize the information encoded in PPI datasets. Protein interaction 

network-based approaches inform on the actual biophysical relationships between the 

proteins and thus provide mechanistic insights. However, this potential is masked by 

nondiscriminatory aggregation of curated and predicted protein interaction data into second 

generation network databases [45] and analysis software without full transfer of information 

about the original experiment (e.g. co-elution profiling, affinity-purification, binary PPI 

assay) or other source (e.g. predicted based on orthologs or structural modelling) that 

reported the interaction. As a consequence, valuable data that can be used to generate 

testable hypotheses on the function of a reported interaction is lost. We suggest that 

aggregated PPI resources would benefit in their application if interactions were annotated 

with information on their likely biophysical and functional properties, i.e. whether an 

interaction is indirect or direct, conserved across species, involved in signaling, metabolism 

or other processes [46,47].

We are confident that all three points can relatively easily be addressed by the scientific 

community, thereby further increasing the impact of network-based discoveries in the area of 

precision medicine.

Networks to decipher disease mechanisms

Identification of disease-associated variants that confer higher risks for particular traits or 

phenotypes is a necessary, but far from sufficient step towards the dissection of disease 

mechanisms. Understanding the mechanism(s) of pathogenesis of such variants requires that 

we link them with perturbations of the functions of the corresponding gene products or non-

coding RNA function, the surrounding network of molecular interactions, cellular processes, 

and finally the organismal phenotype. Over 50,000 pathogenic coding mutations have been 

identified in approximately 4,000 Mendelian disease genes [48]. Yet, for most of these 

mutations, our understanding of their impact on gene product functions and the resulting 

disease associated mechanisms falls short at the very first step. In this section, we discuss 

examples of how experimental and computational network-based methodologies are starting 

to uncover the functional effects of disease-associated variants.

A network-based approach can help identify the interactions, and corresponding functions 

perturbed by mutations, and in doing so provide insights into the mechanisms underlying the 

disease. Contrary to common belief, missense and even some nonsense variants often result 

in incomplete loss-of-function even when they are associated with rare Mendelian diseases. 

One way to globally assess compromised or complete loss-of-function is to assay whether 

mutated proteins are bound by chaperones [49]. In a recent survey it was found that about 

70% of 2,200 mostly pathogenic variants remain free of any chaperone association, 

indicating that they encode fully folded and stable protein products [50]. Therefore, instead 

of complete loss-of-function, disease-associated variants likely impair a specific subset of 

the encoded protein’s functions and it is this impairment that underlies the disease. Such 
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variants, that affect only specific interactions, or edges, while leaving most other interactions 

unperturbed, are called “edgetic” [51]. Testing a few hundred disease-associated variants 

showed that while 25% of them perturbed all the tested interactions, another 30% were 

edgetic, i.e. they specifically perturbed just a subset of the interactions mediated by the wild 

type protein [50]. In comparison, naturally segregating variants hardly perturbed any protein 

interactions [50]. Accordingly, disease-associated missense mutations have been found to be 

enriched both in the core of proteins and on their interaction interfaces [51–54]. These 

observations provide strong evidence that both destabilization of proteins and edgetic 

perturbation of specific protein interactions can mediate disease physiology. Conceptually, 

all known interactions e.g. protein-protein or DNA-protein interactions, and/or those 

mediating biochemical activities such as kinase, deacetylase activities or others can be 

systematically profiled, or edgotyped, for both wild-type and mutated products to begin to 

dissect mechanisms underlying disease [51].

One of the key strengths of the concept of network-biology to understand genotype-

phenotype relationships is its ability to provide insights into mechanisms underlying 

complex, non-linear phenomena such as pleiotropy. Pleiotropy describes the ability of a gene 

to mediate multiple functions [55]. A gene can exhibit pleiotropy by interacting with 

biomolecules involved in different biological processes [51]. Different mutations in a 

pleiotropic gene can result in physiologically distinct diseases by edgetically perturbing 

different subsets of interactions mediated by the encoded protein [51,56]. In one such case 

mutations in a pleiotropic gene encoding slow muscle alpha-tropomyosin, TPM3, can lead to 

two distinct diseases, fiber-type disproportion myopathy and nemaline myopathy, through 

hitherto unknown mechanisms. Mutations that are associated with fiber-type disproportion 

myopathy perturb five of ten interaction partners of the wild type protein [50]. One of the 

perturbed interactions is between TPM3 and troponin, which has been shown to be vital for 

transduction of calcium-induced signals required for muscle contraction. Other perturbed 

interaction partners i.e. heat shock transcription factor 2, HSF2, and coiled-coil alpha-helical 

rod protein1, CCHCR1, are important for myotube generation and cytoskeleton 

organization, respectively. In comparison, a mutation in TPM3 that results in nemaline 

myopathy does not perturb any of these edges, proposing a potential association between 

edgetic perturbation and physiological outcome.

Studying the effects of mutations on protein interactions has not only helped to understand 

the molecular mechanisms underlying monogenic diseases, it also provided mechanistic 

insights into diseases associated with multiple genes, mutations in which together contribute 

to the manifestation or severity of a disease in an individual [57]. For example, retinitis 

pigmentosa, a common ciliopathy in which dysfunction of cilia in retina results in severe 

inflammation, can be associated with mutations in USH2A, encoding a membrane protein, 

usherin. However, the severity of the disease depends on mutations in other genes. A study 

showed that two sisters, both carrying the same pathogenic mutation in USH2A, manifested 

retinitis to different degrees [58]. The sister with the more severe and early onset form of 

retinitis also carried a mutation in a protein interactor of USH2A called PDZD7. Unlike a 

single mutation in USH2A, mutations in both USH2A and PDZD7 perturbed the edge 

between the two proteins suggesting a critical role of the interaction in the severity of the 

disease [58]. Mutations in PDZD7 have been found to co-occur with mutations in USH2A in 
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patients suffering from Usher’s syndrome, another ciliopathy affecting the inner ear [58] 

suggesting a similar role of the protein interaction in the digenic mode of inheritance of the 

disease. In contrast, restoration of perturbed protein interactions by compensatory mutations 

in the same protein [59] or its interaction partner [60] has the potential to restore the disease 

phenotype or reduce its severity. This requirement for co-occurrence of mutations on genes 

encoding interacting proteins represents a molecular mechanism that might underlie 

incomplete penetrance of disease variants.

Although at lower frequency, pathogenic variants can also lead to a gain-of-interaction 

resulting in disease. GLUT1 deficiency syndrome, a disorder characterized by seizures and 

intellectual disability with onset in early infancy, is associated with mutations in a major 

glucose transporter in brain, GLUT1. A disease-associated mutation, P485L, creates a 

dileucine motif that leads to a gain-of-interaction of GLUT1 with clathrin adaptor protein 

AP-2, culminating in GLUT1 mislocalization and loss of glucose transport [61]. Another 

such example is in the gene encoding p110 alpha, the catalytic subunit of 

phosphatidylinositol 3-kinase alpha, PIK3CA, which is frequently mutated in human 

cancers. One of the hot-spot mutations in PIK3CA, encoding E545K, leads to its gain-of-

interaction with insulin receptor substrate 1, IRS1 [62]. The gained interaction stabilizes the 

mutant PIK3CA leading to its constitutive activation and tumor growth. Abrogation of the 

interaction in both GLUT1 and PIK3CA reverted the disease phenotype in model systems. 

We want to point out that such gain-of-interactions involving disease proteins are an 

attractive target for therapeutic intervention.

These examples also highlight the diversity in which pathogenic variants can alter protein 

function. Capturing this diversity more systematically and at higher throughput requires 

assessment of that variant not only for its potential to perturb or gain PPIs but also for its 

impact on protein stability and expression levels, protein localization, binding to other 

molecules, such as DNA, RNA, and metabolites, etc. Availability of wild type Open Reading 

Frames (ORFs) and generation of resources of mutant ORFs in multipurpose vectors is 

essential for efficient profiling of variants across these many molecular and functional assays 

[50,63,64].

In parallel to advances on the experimental side, there have been computational efforts that 

use protein interaction data to predict disease mechanisms. Predicting the perturbation of 

specific protein interactions by a variant requires structural information on the interaction 

interfaces that mediate the protein interactions under consideration. Several resources have 

been created in which protein interaction data have been annotated with structural 

information on interaction interfaces [65–67]. Genetic variants have been mapped onto these 

structurally resolved protein interactions to predict edgetic perturbation of interactions. For 

example, colorectal cancer is associated with mutations in several members of the mismatch 

repair machinery including MLH1 and PMS2. The mismatch repair activity of MLH1 

depends on its interaction with PMS2. Three cancer associated mutations in MLH1 mapped 

onto a predicted interaction interface and instead of affecting the stability of MLH1, 

edgetically perturbed the interaction between MLH1 and PMS2 [66]. Another example is 

Rapp Hodgkin Syndrome, an ectodermal dysplasia associated with mutations in a member 

of the p53 family of transcription factors, TP63. Most pathogenic mutations in TP63 tend to 
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cluster on an interface that has been predicted to mediate interaction with another p53 like 

protein, TP73 [66], indicating a role of this interaction in pathogenesis of the disease. In 

another case, known mutations associated with neurodevelopmental disorders tend to cluster 

on the interaction interface between guanine nucleotide exchange factor TRIO and GTPase 

RAC1 strongly suggesting a role of the interaction in the disease [68].

Similar to experimental interaction profiling described above, predicting edgetic 

perturbation by mutations can also sometimes provide insights into mechanisms underlying 

disease pleiotropy. For example, mutations in a protein involved in transducing signals from 

cell surface receptors to the actin cytoskeleton, WASP, can lead to three different disorders, 

Wiskott-Aldrich syndrome (WAS), X-linked thrombocytopenia (XLT), or clinically more 

distinct X-linked neutropenia (XLN) [69]. While mutations associated with WAS and XLT 

are enriched on one interface of WASP and were predicted to perturb an interaction between 

WASP and vasodilator-stimulated phosphoprotein, VASP, mutations that are associated with 

XLN are enriched on another interface and were shown to perturb an interaction between 

WASP and a cell cycle GTPase, CDC42 [66].

Despite progress in computationally predicting the effect of protein variants based on protein 

structure information, the subset of human protein interactions with structurally resolved or 

predicted interaction interfaces remains extremely small (far less than 10,000) and very 

likely highly biased both towards the set of well characterized disease genes and the protein 

interactions that are mediated by domain-domain interaction interfaces [65]. More 

computational and experimental efforts are needed that incorporate protein interactions 

mediated by disordered regions in proteins [70,71] and that characterize novel types of 

protein interaction interfaces.

Networks to characterize genetic variation

Concepts

One of the core ideas of precision medicine is that identification of the pathogenic variant 

within a patient would allow for selection of the most effective clinical intervention. For 

example, if pathogenic mutations are detected in breast cancer-associated genes such as 

BRCA1/2 or in cardiomyopathy-associated genes such as LMNA or TNNT2, then highly 

effective disease-preventing or disease-mitigating interventions can be implemented [72]. 

However, identification of the pathogenic mutation in an individual, even in cases where we 

know most of the genes that underlie a disease, remains a highly challenging task because 

even known disease-associated genes can harbor variants that are entirely benign. 

Discriminating pathogenic from benign variants is especially difficult as over 95% of the 

variants detected in human populations are rare and over 50% of all variants have so far been 

found only once in the human population [73]. The rarity of these variants renders a standard 

association or enrichment analysis with a control group of healthy individuals virtually 

infeasible. An average human being, independently of whether they are healthy or not, 

carries 300–500 coding variants predicted to be highly damaging, with 40–85 in 

homozygous state distributed throughout their protein-coding genome [6,74]. Moreover, 

some common coding variants might not be completely benign, as they can increase disease 

risk or exhibit incomplete penetrance. Identifying truly pathogenic variants among the many 
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rare and common variants in a diseased individual, then, is akin to identifying a needle in a 

haystack. For most of the variants, sufficient statistical power does not exist to conclusively 

classify them as pathogenic or benign and ironically, attempts to increase this statistical 

power by sequencing more individuals has resulted in the identification of even more rare 

variants [75]. Variants that are rare, appear damaging, but lack sufficient epidemiological or 

functional evidence, are termed Variants of Uncertain Significance (VUSs) [76]. ClinVar 

currently reports around 200,000 coding VUSs, four times the number of catalogued 

pathogenic variants [48].

Computational methods based on protein conservation and structure can be used to predict 

the functional effects of a large number of variants [77]. However, these programs were 

found to be inaccurate 30% of the time [78]. On the other hand, functional assays that 

experimentally assess the effects of variants on the function of a gene products [79] have 

only been developed for a few disease genes. As reviewed earlier, a growing body of 

scientific work demonstrates the physiological relevance of protein interactions and how 

pathogenic but not benign variants perturb interactions that are critical for normal cellular 

function [50,68]. This observation can be used in a scalable and systematic way to assess the 

pathogenic potential of the growing number of VUSs. By first mapping the effect of known 

pathogenic variants on protein interactions or any other types of interactions, we can identify 

interactions that are perturbed by the majority of the pathogenic variants and hence have a 

higher likelihood of being relevant for the disease. A VUS, if indeed disease associated, 

would then tend to perturb the same “likely pathogenic” interactions. On the other hand, a 

VUS that is actually benign should not perturb any of these “likely pathogenic” interactions 

(Figure 3). For example, a mutation in the retinoic acid receptor alpha, RARA, found in an 

Autism proband, was predicted and experimentally confirmed to disrupt interaction with 

retinoic acid receptor beta, RARB, whereas another mutation found in an unaffected sibling 

did not [68]. Of note, PolyPhen 2 predicted both mutations to be probably damaging [68]. In 

another case, edgetic profile similarity was used to correctly predict the effect of a rare 

variant in the GTPase SEPT12 on sperm motility [80]. Such edgotyping does not rely on 

pre-existing knowledge of the variant, as required by some computational predictors, or 

prior understanding of disease mechanisms as required by some functional assays, and is 

applicable to other types of molecular interactions. Yet, its broad feasibility remains to be 

demonstrated and, as outlined here, represents only one possible scenario of disease-

associated versus benign PPI perturbation.

Software developed to predict the potential of genetic variants to perturb interactions, can 

likewise be used to predict the pathogenicity of VUSs [67,81–83]. For example, primary 

hyperoxaluria, a rare condition characterized by recurrent kidney and bladder stones, is 

associated with mutations in a glyoxylate and hydroxypyruvate reductase, GRHPR. The 

enzymatic activity of GRHPR requires dimerization [84]. Two known pathogenic mutations 

in GRHPR, R302H and E113K, were predicted to affect the binding stability of the 

homodimer [83]. It is therefore plausible that a VUS, R171H, found in hyperoxaluria 

patients and predicted to impact the binding affinity of the homodimer, could be potentially 

pathogenic. However, the biological and clinical validity of the prediction remains to be 

demonstrated. Literature curated datasets of experimentally derived effects of mutation on 
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protein interaction perturbation [85] can serve as benchmarking tools for such variant effect 

prediction tools.

Challenges

Using edgotyping to predict the pathogenicity of variants is a promising concept, yet 

multiple challenges aimed towards increasing the accuracy of these predictions remain to be 

solved.

Firstly, although being an incredibly rich source of mechanistic information, protein 

interaction networks are still far from complete, i.e. probably less than 20% of all direct PPIs 

are known to-date [15]. Therefore, it is likely that a considerable number of disease-relevant 

interactions remain to be discovered.

Secondly, the vast majority of PPIs have been detected out of their natural context, i.e. either 

by expressing and testing both interacting proteins in an in vitro or cell-heterologous system 

or by exogenously expressing and affinity-purifying a bait protein with its partners from a 

cell line. Consequently, for most protein interactions we lack information on the relevant 

cellular context, i.e. tissue, cell type, and developmental stage, at which a given PPI is 

functional. Some of the identified protein interactions, even though biophysically real, might 

not exist under any physiological context. These ‘pseudointeractions’ [86] might correspond 

in some cases to ancient interactions that have lost physiological relevance, or, like hidden 

genetic variation that serves as a reservoir for evolution, may act as a pool of interactions 

that might become relevant in certain disease or stress conditions where gene expression and 

protein localization are altered. Rapidly growing but still highly incomplete understanding of 

physiological states of cell-types and tissues make it challenging to conclusively 

differentiate between biologically real PPIs and pseudointeractions. Given these limitations, 

comparing edgetic profiles of benign with pathogenic variants might not always be sufficient 

to identify disease-associated PPI perturbations. Integration of PPI perturbation data with 

contextual information, such as gene and protein expression data as well as protein 

localization data, can be used to further identify disease-associated PPI perturbations as has 

been attempted in the context of tissue-specific diseases [15]. In fact, for 80% of the 1,000 

known tissue-specific diseases, the disease-associated genes seem uniformly expressed 

across tissues [15]. Yet, mutations in these uniformly expressed genes manifest in only 

specific tissues. Perturbation of PPIs between a uniformly expressed disease-associated 

protein and tissue-specific interaction partners can mediate the tissue-specific manifestation 

of the disease [87]. We recently tested the effects of mutations in ten uniformly expressed 

genes that are associated with tissue-specific diseases and found that in seven cases the 

mutations perturbed PPIs with proteins that were significantly preferentially expressed in the 

disease-associated tissue [15]. Even though these results do not establish a definite disease-

associated relationship, the method likely represents an efficient way to identify potentially 

disease-associated PPIs for further experimental follow-up.

Lastly, perturbation of PPIs is often assumed to result in severe phenotypic outcomes, 

possibly because of the following observations that have been made: (a) protein interactions 

appear to be highly conserved, (b) comparatively few coding mutations have been identified 

in complex diseases, (c) Mendelian disease mutations were found to be enriched both in the 
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core and on interaction interfaces of proteins, and, (d) only a small number of common 

variants seemed to be able to perturb PPIs. It has therefore been suggested that mutations 

that perturb PPIs are likely damaging [80], and alternatively, that PPIs perturbed by benign 

or common variants, are irrelevant and dispensable [88]. However, recent studies show that 

coding variants display a range of phenotypic effects [39–41] from truly benign to having a 

small effect on increasing disease risk to being the primary cause of disease. It is thus highly 

possible that molecular interactions, and their perturbation, will similarly exhibit a 

continuum of how strongly they impact cellular function. While perturbation of certain PPIs 

will be the primary cause of a disease, others might “only” increase the disease risk or 

contribute to inter-individual differences in non-pathogenic phenotypic traits (Figure 4). 

Variant classification using edgotyping would, therefore, need to account for a continuum of 

both genetic effects and the functional relevance of PPIs. Annotation of biophysical 

networks, i.e. via integration with other functional genomic and proteomic data, will help 

determine the physiological relevance of PPIs and thus, potentially allow for a more accurate 

prediction of the phenotypic effects of genetic variation.

Conclusion

A non-linear, network-based understanding of genotype-phenotype relationships, as 

described in this review, cautions against recently suggested, ill-informed applications of 

genome-editing. No gene functions in isolation or mediates a single function. An incomplete 

understanding of the complex cellular system is bound to result in misguided and potentially 

harmful therapeutic interventions. Interrogating this system from a network perspective is 

essential to better understand disease mechanisms and address long standing questions in 

incomplete penetrance and missing heritability. Important concepts have been developed and 

significant achievements are being made by employing a network-based approach to 

precision medicine. However, the way towards reaching more accurate diagnosis and 

treatment is long and will benefit from improved physiological models of molecular 

interaction networks, better tools to interrogate the function of molecular interactions in 
vivo, and closer collaboration between the network and translational sciences.
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Highlights

• One gene-one disease paradigm rarely explains incomplete penetrance.

• Cellular systems of interacting molecules mediate genotype-to-phenotype 

relationships.

• Protein-protein interactions are being systematically mapped at proteome-

scale.

• Protein-protein interaction networks help identify molecular disease 

mechanisms.

• Edgotyping emerges as a tool to characterize variants of uncertain 

significance.
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Figure 1. 
Comparison of a gene-centric versus network-centric approach to precision medicine. Red 

stars indicate mutations, either in non-coding (white DNA) or coding regions (colored 

DNA). Proteins with coding mutations or non-coding mutations, that affect their expression, 

in networks are shown as red nodes and their interaction partners as blue nodes. Solid lines 

indicate protein-protein interactions, dotted lines perturbed ones.
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Figure 2. 
Coverage of the human protein-coding genes in different network maps. Coverage of all 

human protein-coding genes and disease genes (source OMIM) with protein-protein 

interaction data from different resources, as a function of how well genes have been studied. 

Literature-curated PPIs have been obtained from Mentha [89], BioPlex2.0 and HuRI from 

their respective websites (see text). Color ranges were set from 0 to maximum number of 

PPIs observed in a pair of gene bins for each respective heatmap.
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Figure 3. 
Illustration of an edgotyping approach to predict the pathogenicity of VUSs. Networks are 

drawn as in Figure 1. Red edges indicate predicted disease-relevant protein interactions.
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Figure 4. 
Illustration of an integrative approach to predict the physiological relevance of protein 

interactions.

Reference networks of high quality biophysical protein interactions can be integrated with 

various sources of information to infer which PPIs likely exist under which physiological 

context and how impactful their function might be. Networks are drawn as in Figure 1. Red 

edges indicate PPIs of physiological relevance for the cellular context under study and 

thickness of the edge indicates the extent of physiological relevance. Red nodes indicate 

mutated proteins.
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