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Abstract

Genetically encodable fluorescent biosensors provide spatiotemporal information on their target 

analytes in a label-free manner, which has enabled the study of cell biology and signaling in living 

cells. Over the past three decades, fueled by the development of a wide palette of fluorescent 

proteins, protein-based fluorescent biosensors against a broad array of targets have been 

developed. Recently, with the development of fluorogenic RNA aptamer-dye pairs that function in 

live cells, RNA-based fluorescent (RBF) biosensors have emerged as a complementary class of 

biosensors. Here we review the current state-of-the-art for fluorogenic RNA aptamers and RBF 

biosensors for imaging small molecules and RNAs, and highlight some emerging opportunities.
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Introduction

To study cell signaling and other dynamic and spatiotemporally controlled processes in cells 

requires some method of molecular tracking. Whereas metabolic incorporation strategies 

and tagging strategies provide different means to label a molecule, a biosensor that binds to 

an endogenous molecule provides a means for label-free detection. Furthermore, genetically 

encodable biosensors that yield fluorescent or bioluminescent signals are amenable for live 

cell imaging experiments. In addition, the reversible nature of the binding event allows 

biosensors to capture dynamic and transitory processes, e.g. rise and fall of levels.

With the advent of natural and engineered fluorescent and bioluminescent proteins, protein-

based biosensors utilizing fluorescence turn-on, fluorescence resonance energy transfer 

(FRET), bioluminescence resonance energy transfer (BRET), and other mechanisms have 

been developed that exploit protein domains that undergo conformational change in response 

to target analytes. Protein-based biosensors have been applied for real-time imaging of small 

molecules, redox factors, ions, pH, voltage, proteins, and protein modifications in live cells 

[1]. However, one general limitation for genetically encodable biosensors is the availability 

of suitable binding domains. Not only do the target binding domains have to retain stability, 

affinity, and specificity in the context of the constructed biosensor, but importantly they have 

to undergo ligand-dependent conformational change in order to alter signal. This latter 

property is a key feature that often is difficult to engineer.

An alternative class of biomolecules that is capable of molecular recognition and genetically 

encodable is RNA. For example, riboswitches are natural well-structured RNA folds that 

undergo conformational change in response to specific analytes, including small molecules, 

redox factors, and ions [2], and natural and engineered RNA regulatory elements undergo 

structure switching in response to specific RNAs [3]. Thus, with the recent advent of 

fluorogenic RNA aptamer-dye pairs that are amenable for application in live cells, these two 

RNA classes have become a rich and novel source of binding domains for genetically 

encoded RNA-based fluorescent (RBF) biosensors. This review focuses on recent and 

exciting progress on RBF biosensor development by first giving an overview of fluorogenic 

RNA aptamer-dye pairs, presenting notable design approaches and applications for RBF 

biosensors for small molecules, ions, and RNAs, and concluding with some potential 

opportunities and challenges for this field.

Fluorogenic RNA aptamer-dye pairs for live cell imaging applications

To our knowledge, the first RBF biosensors were developed based on the malachite green 

fluorescent dye and its aptamer [4]. Detection of small molecules [5] and nucleic acids [6] 

was shown in vitro, but application of this system to live cell imaging was limited by the 

cytotoxicity and nonspecific binding of malachite green. In order to be useful for live cell 

imaging, a fluorogenic dye compound should be highly soluble in water, low in molecular 
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weight, cell permeable, and not toxic to cells. Another critical property is the dye should 

specifically bind to its RNA aptamer and not to other cellular components, especially other 

high abundant nucleic acids.

Current fluorogenic RNA aptamer-dye pairs can be divided into two design categories, 

single dyes (Figure 1A) and fluorophore-quencher conjugates (Figure 1B). Single dye 

systems employ fluorescent compounds that exhibit low fluorescence quantum yield in their 

free states in water, but become highly fluorescent when bound by the RNA aptamer. 

Fluorophore-quencher conjugate systems use fluorescent dyes that exhibit high fluorescence 

quantum yield in their free states in aqueous solution, but exhibit low fluorescence when 

conjugated to a quencher. Binding of the RNA aptamer to either the fluorophore or quencher 

moiety restores high fluorescence by interfering with the quenching mechanism.

Most single dye systems have been developed and used as fusion tags for intracellular 

imaging of RNAs (Figure 1A). A notable exception is the DIR2s aptamer, an in vitro 
selected aptamer that binds and activates either dimethylinodole red (DIR) or oxazole 

thiazole blue (OTB) dyes, giving two well-resolved emission colors [7]. This system was 

fused to an aptamer that binds the cell-surface EGF receptor protein and enabled live cell 

imaging of the surface protein, presenting an alternative application when the dye is not cell-

permeable. The key development goals for current fluorogenic RNA systems are to improve 

signal-to-background for reducing the number of copies of tag needed and imaging lower 

abundance transcripts, to enable multi-color imaging, and to enable advanced methods such 

as single-molecule and super-resolution fluorescence microscopy. These goals also are 

desirable for biosensing applications.

The first single dye system successfully developed for live cell imaging to our knowledge 

was the Spinach aptamer with 3,5-difluoro-4-hydroxybenzylidene imidazolinone (DFHBI), 

an analogue of the GFP chromophore [8]. This system has been improved with the 

development of DFHBI analogues with different spectral properties [9] and with next-

generation variants of Spinach (e.g. Spinach2 [10], Broccoli [11], iSpinach [12], baby 

Spinach [13]) with increased brightness, intracellular stability, and folding fidelity, lower salt 

dependence, and smaller tag size. The same group recently developed an aptamer-dye pair 

with yellow fluorescence and slower photobleaching, the Corn aptamer with 3,5-difluoro-4-

hydroxybenzylidene imidazolinone-2-oxime (DFHO), an analogue of the DsRed 

chromophore [14,15]. Spinach and Corn systems have been employed in both RNA imaging 

and biosensor applications [8,15–17•].

Another well-developed single dye system is the Mango aptamer with the thiazole orange 

(TO1)-biotin conjugate [18]. Several Mango aptamer variants (e.g. Mango-II to Mango-IV) 

with improved intracellular brightness have been engineered, and this system is 

distinguished by very high affinities to the dye-biotin conjugate (Kd ~ 1–11 nM) [19•]. Low 

concentrations of the dye-biotin conjugate can be used in live cell imaging experiments, 

which reduces background fluorescence from nonspecific nucleic acid interactions. Other 

biotin conjugates to related dyes, red-shifted thiazole orange (TO3) and oxazole yellow 

(YO3), also were found to bind the Mango aptamer [18,20•]. The former enables far-red 

Su and Hammond Page 3

Curr Opin Biotechnol. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



fluorescent RNA imaging and the latter was applied to develop a FRET biosensor 

incorporating both Spinach and Mango aptamers.

Other promising single dye systems recently have been advanced for RNA tagging and are 

briefly summarized because they have not yet been applied to RBF biosensors. The silicon 

rhodamine aptamer (SiRA) binds to silicon rhodamines (SiR) and activates fluorescence 

through potentially stabilizing the fluorescent zwitterionic state over the nonfluorescent 

spirolactone [21•]. This system exhibited exceptional brightness in the far-red to near-

infrared and enabled super-resolution imaging of mRNA in live Escherichia coli. The Pepper 

aptamer binds with high affinity to a novel family of fluorogenic dyes, (4-((2-hydroxyethyl)

(methyl)amino)-benzylidene)-cyanophenyl-acetonitrile (HBC), that yield a broad range of 

fluorescence from cyan to red [22••]. This impressively bright system was applied to live cell 

imaging of RNA polymerase II transcripts and is compatible with advanced microscopy 

techniques such as two-photon imaging and super-resolution imaging.

Since fluorescence activation of single dyes can be difficult to predict or to engineer, 

fluorophore-quencher conjugates present a promising alternative (Figure 1B). One general 

benefit of this strategy is that existing bright, fluorescent dyes can be used, such as 

fluoresceins, rhodamines, cyanines, and Atto dyes. In cases where the RNA aptamer binds to 

the quencher moiety, there is an added advantage that the fluorophore can be easily 

swapped. It has been shown that fluorescence unquenching and overall signal brightness in 

these systems can be improved by altering the spectral overlap between fluorophore and 

quencher, the linker length, and the fluorophore group [23•–26]. One potential issue for 

these systems is the necessarily larger size of fluorophore-quencher conjugates, which 

affects cell permeability and may require cellular delivery.

The SRB-2 aptamer binds several structurally related fluorophores, including 

Sulforhodamine B (SR) and 5-carboxytetramethylrhodamine (TMR). Binding to the RNA 

was shown to disrupt quenching by the dinitroaniline (DN) or mononitroaniline (MN) group, 

resulting in fluorescence turn-on [25,26]. The black hole quencher (BHQ) aptamer and DN-

binding aptamer bind to the respective quenchers, permitting potentially any fluorophore to 

be conjugated, although with variable turn-on efficiency. Each of these aptamers have been 

applied in dual-color imaging and to make different RBF biosensors [27•, 28, 29•, 30•].

Whereas development of all fluorogenic systems described above involved in vitro selection 

of the aptamer, the Riboglow system was engineered from a natural bacterial cobalamin 

(Cbl) riboswitch aptamer that binds to Cbl as the quencher [23•]. Cbl is shown to be an 

effective quencher of a wide variety of fluorophores, including the extremely bright Atto and 

cyanine class dyes. The fluorophore-quencher compounds are delivered via bead loading for 

live-cell imaging of mRNA translocation.

The expanded palette of fluorogenic RNA-dye pairs means that novel RBF biosensors can 

be made with different designs (e.g. FRET-based), tailored spectral properties, and 

multiplexed applications in mind. Some orthogonality has been demonstrated in live-cell 

imaging experiments for Spinach-Mango [20•], Spinach-DNB [30•], DNB-SRB-2 [25] and 

DNB-BHQ [29•] aptamer pairs. With the general biosensor design strategies discussed in the 
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following sections, we expect that most of the novel RNA-dye pairs can be engineered into 

functional biosensors for molecular and RNA imaging.

RNA-based fluorescent biosensors for molecular imaging

To date, almost all published examples utilize the Spinach-DFHBI family of dye-binding 

aptamers, which were the first developed and employ commercially available dyes. The first 

RBF biosensors were designed in analogous fashion to the (1) split-GFP approach, and this 

remains the most common and generalizable strategy (Figure 2A) [16,31]. The biosensor 

comprises a contiguous RNA sequence with the dye-binding aptamer “split” by the ligand 

binding domain, which acts through a transducer stem to reconstitute the dye-binding 

domain in the presence of target analyte. However, unlike split-GFP systems, which often 

remain reconstituted, it was shown that depletion of the analyte leads to loss of fluorescence, 

which enables dynamic monitoring of the small molecule target [16,31]. This type of 

biosensor also has been shown to accommodate circular permutations of the ligand-binding 

domain, which permits alternative stems to be used as the transducer [32].

Alternative strategies for designing RBF biosensors exploit the unique ease of designing 

RNA secondary structures and expand the ligand-binding domain structures that can be 

adapted into RBFs (Figure 2B–E): (2) Split-binding domain approach: the biosensor 

comprises a contiguous RNA sequence with the ligand binding domain “split” by a dye-

binding aptamer, which inverts the classic strategy. In general, this approach enables 

biosensors to be developed using binding domains where the 5’ and 3’ ends are far apart, 

and requires using a circularly permuted dye-binding aptamer. The SAH biosensor was 

developed using this method with cpSpinach2 [33•]. (3) Fluorogenic riboswitch approach: 

the structure-switching mechanism of riboswitches can be exploited by replacing the gene 

regulatory expression platform in the natural riboswitch with a dye-binding aptamer. The 

TPP biosensor was developed using detailed mechanistic information about the riboswitch 

[34]. (4) RNA origami approach: The first FRET-based RBF biosensor (apta-FRET) was 

developed by integrating a SAM-III riboswitch aptamer domain to control the orientation of 

Spinach and Mango aptamers positioned on each arm of a single-stranded RNA origami 

called 2H-AE. Upon binding to SAM, the Mango-SAM-III arm is proposed to switch to a 

rigid conformation, leading to higher FRET efficiency between Spinach-DFHBI-1T and 

Mango-YO3-biotin [20•]. (5) Allosteric ribozyme approach: allosteric ribozymes are 

developed by fusing ligand-sensing aptamers to a ribozyme and have been applied to control 

expression of fluorescent proteins [35]. A recent report applied this principle to develop a 

cyclic di-GMP biosensor that controls expression of fluorogenic RNA aptamers as alternate 

reporters [36].

Current RBF biosensors have been developed that respond to cofactors (e.g. SAM, TPP, 

ATP, etc.) [16,34], metabolites (e.g. SAH, ADP, adenine, guanine, etc.) [16,34], signaling 

molecules (e.g. cyclic dinucleotides, neurotransmitters) [31,36–37,38•,39–41•], drugs (e.g. 

tetracycline) [30•], and ions (e.g. Ag+) [42]. The majority of these biosensors use natural 

riboswitch binding domains, because of their extraordinary affinity and specificity, robust 

folding in the intracellular environment, and structure-switching properties. In vitro selected 

aptamers could be utilized, as exemplified by the biosensors for adenosine, ADP, and 
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tetracycline [16,30•]. However, most in vitro selected aptamers may not be suitable as 

binding domains for the same reason that antibodies are not used in protein-based 

biosensors: they are selected for binding, not conformational change.

To expand the scope of ligands while retaining the advantageous properties of natural 

riboswitches, novel ligand sensing domains have been engineered via either structure-based 

design [31,33•] or structure-based selection of riboswitch scaffolds [41•]. The former 

strategy was employed to develop an RBF biosensor capable of detecting an innate immune 

signal in mammalian cell lysates. The latter strategy was employed to develop RBF 

biosensors for 5-hydroxy-L-tryptophan (5HTP) and 3,4-dihydroxy-Lphenylalanine (L-

DOPA), the precursors of neurotransmitter serotonin and dopamine.

RBF biosensors have enabled the detection of many small molecules for which no other 

biosensor tool exists to target, and the ease of producing them through in vitro transcription 

empowers both in vitro and in vivo applications. In vitro applications that have been 

demonstrated include: (1) Discovery and characterization of riboswitch-ligand interactions: 

RBF biosensors provide a convenient way to screen for ligands that bind to the riboswitch 

and to determine relative binding affinities. We discovered the 3’,3’-cGAMP riboswitch 

using biosensors [37]. We also have characterized riboswitch mutants [43] and shown that 

42 out of 53 (79%) bioinformatically predicted riboswitch sequences function in the same 

biosensor context [39]. (2) High-throughput enzyme activity assays: RBF biosensors serve 

as robust reagents for screening enzyme activity, exhibiting better sensitivity and selectivity 

than antibody-based assays in some cases. We showed that the SAH biosensor can be used 

to identify methyltransferase inhibitors [33•] and the 2’,3’-cGAMP biosensor can be used to 

identify modulators of the human cGAS enzyme [40].

In vivo applications that have been demonstrate include: (1) Discovery of novel enzyme 
activities: RBF biosensors provide a way to implement cell-based screens for enzyme 

activity. This approach has been particularly effective to study overexpressed signaling 

enzymes, including membrane-bound ones. For example, we discovered enzyme classes that 

produce and degrade the cyclic dinucleotide signal 3’,3’-cGAMP using biosensors [44,45•]. 

(2) Validation of enzyme agonists or antagonists: We also have shown that RBF biosensors 

can detect the modulation of endogenous enzyme activities in live cells. We have visualized 

chemical inhibition of quorum signal production and activation of cyclic di-GMP signal 

production [33,46••]. (3) Biosensing under anaerobic conditions: RBF biosensors bind 

synthetic dyes so do not require chromophore maturation like the majority of fluorescent 

protein-based biosensors. We have shown that the cyclic di-GMP biosensor works in cells 

grown under anaerobic conditions [39]. (4) Evaluation of the efficacy of therapeutic agents: 
Silver is a widely used disinfection reagent and an RBF biosensor for silver ion has been 

applied to measure the cellular flux and silver ion release of silver nanoparticles [42].

RNA-based fluorescent biosensors for RNA imaging

While fluorogenic aptamer-dye pairs are highly useful as fusion tags for tracking mRNAs in 

live cells, there are shorter RNA species whose function, processing, and translocation may 

be affected by tagging approaches. For example, microRNAs (miRNAs) are 21–24 
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nucleotides in size and play key roles in regulating development, epigenetics and immune 

response in both plants and metazoans [47]. Thus, for imaging native RNAs in a label-free 

manner, especially small RNAs such as miRNAs, there is a demand for trans-acting sensors.

RBF biosensors that target specific RNAs present a similar strategy to classic molecular 

beacon and RNA-FISH (fluorescence in situ hybridization) methods. However, a major 

difference is that RBF biosensors are genetically encodable, with an exogenously added dye 

or dye-quencher. This is advantageous for live cell imaging experiments, as cellular delivery 

of small molecule fluorophores is easier than for dye-conjugated RNA probes. CRISPR 

protein-based sensors also have been developed that permit imaging of native RNAs [48,49]. 

These systems are analogous to the MS2-fusion tagging strategy, except with guide RNA 

specified targeting of the CRISPR complex. In order to visualize cytoplasmic mRNA 

transcripts, background fluorescence must be reduced by confining unbound fluorescent 

proteins in the nucleus or keeping fluorescent protein expression low via negative feedback.

Again, one strategy to design RBF biosensors for imaging RNAs is analogous to the split-

binding domain approach (Figure 3A). Rather than a ligand-binding aptamer, the sensing 

domain in this case is a complementary sequence to the target RNA of interest. The critical 

aspect for this design strategy is that there must be a structural change when the RNA-

sensing domain binds its target to reconstitute the dye-binding domain. Secondary structure 

prediction is required but remains particularly challenging for structure-switching RNAs 

[50•].

An early example of a miRNA biosensor was called Pandan and based on stem-loop 

insertion into a circularly permuted Spinach aptamer [51]. Although Pandan functions in 
vitro, the in vivo performance was not reported. The FASTmiR sensors employed a similar 

design and were developed to target human miR122 and Arabidopsis thaliana miR171 [52•]. 

The miR122 sensor was multiplexed and applied to report miR122 expression level in 

mammalian cells. The miR171 sensor was applied as an in vitro assay for directly 

quantifying miR171 levels in A. thaliana total leaf and flower RNA extract. To achieve 

ratiometric imaging, a miRNA biosensor based on the SRB-2 aptamer was co-expressed 

with GFP encoded on the same transfected plasmid [27•]. Levels of miR-21 could be 

reliably quantified in different mammalian cell lines.

A simpler design was developed for imaging mRNAs (Figure 3A). The fluorogenic aptamer 

first is destabilized to achieve low background, so that target RNA binding to two 

complementary regions flanking the domain is required to reconstitute the dye-binding 

domain. A family of RNA targeting aptamers (RT-aptamers) was developed by flanking the 

BHQ aptamer with two targeting sequences of 9 nt each, and were applied to image mRNAs 

such as β-actin, ARFIP2, CTTN and CYFIP2 [28]. Using a similar design but based on the 

Spinach aptamer, biosensors for imaging mRNAs in E. coli have been developed against 

targets such as mreB, dnaJ, dnaK and rpoH [53].

More recently, a splitting sensor strategy was implemented and shown to lower fluorescence 

background and thus increase sensitivity of detection. The biosensor was designed by 

flanking the Broccoli aptamer with two targeting sequences and then splitting the biosensor 
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into separate RNA halves. Thus, target mRNA binding is required to reconstitute the dye-

binding domain. mRNAs such as β-actin, CFL1 and GAPDH were visualized in live HeLa 

and HuMSC cells [54•]. Alternatively, a hairpin assembly circuit for detection of target RNA 

was developed that catalyzes the reconstitution of split Broccoli (Figure 3C), and was 

applied to detect changes in endogenous small RNA SgrS in live E. coli [55].

Conclusions

The emerging field of RNA-based fluorescent biosensors has seen rapid progress and 

creative contributions by many research groups in the development of fluorogenic aptamers 

and biosensor designs. Going forward, we consider that the greatest opportunity in the next 

stage of the field lies in establishing and disseminating these tools to address important 

questions in cell biology. Towards this goal of visualizing spatiotemporal dynamics of 

molecular targets, the field will have to tackle general issues such as increasing signal-to-

noise, accounting for expression variability, and improving biosensor kinetics. Approaches 

to date include optimizing intracellular RNA stability through circularization [56••] and 

ratiometric systems employing two dye compounds [20•], but we look forward to many 

more advancements to come.

We consider that one of the grand challenges for the field is to enable other researchers to 

design their own biosensors. A practical aspect is that while RNA aptamer or biosensor 

constructs are readily shared by request and often made publicly available through Addgene, 

one limitation to non-chemists is the availability of synthetic dyes and dye-quencher 

compounds. RNA aptamer paired with degron-tagged fluorescent proteins could provide an 

“all encoded” solution [57•], but the potential of this system for biosensor engineering has 

yet to be explored. Another important aspect for enabling growth of the field is to explain 

the general design strategies, which we have presented in this review. In our opinion, it also 

is important to consider whether increasing the complexity of a given biosensor design is 

warranted and would improve utility for cell biology studies. Finally, we anticipate that there 

will be advances in the computational design of RNA targeting biosensors that will reduce 

experimental trial-and-error, and that the scope of binding domains will be greatly expanded 

through natural discovery and exciting advances to the in vitro / in vivo / in silico evolution 

of riboswitches [41,50,58,59••].
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Figure 1. 
Fluorogenic RNA aptamers-dye pairs. Above, schematic representations of two types of 

fluorogenic RNA aptamers based on their paired dyes: single dyes (A) and fluorophore-

quencher conjugates (B). Yellow star, fluorophore; Gray rounded rectangle, quencher. 

Below, chemical structures of representative dyes. DFHBI, 3,5-difluoro-4-

hydroxybenzylidene imidazolinone [8]; DFHBI-1T, DFHBI with a 1,1,1-trifluoroethyl 

substituent [9]; DFHO, 3,5-difluoro-4-hydroxybenzylidene imidazolinone-2-oxime [15]; 

TO, thiazole orange [18]; YO, oxazole yellow [20]; DIR, dimethylindole red [7]; OTB, 

oxazole thiazole blue [7]; SiR, silicon rhodamine [21]; HBC, (4-((2-hydroxyethyl)

(methyl)amino)-benzylidene)-cyanophenyl-acetonitrile [22]; SR, Sulforhodamine B; DN, 

dinitroaniline; TMR, 5-carboxytetramethylrhodamine; MN, mononitroaniline [25,26]; BHQ, 

black hole quencher; Cbl, cobalamin [23].
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Figure 2. 
Design strategies of RNA-based fluorescent biosensors for molecular sensing. Functional 

RBF biosensors can be generated either by (A) splitting the dye-binding aptamer [16] or (B) 

splitting the ligand-sensing aptamer [33•]. (C) Fluorogenic riboswitches can be generated by 

replacing the regulatory expression platform in natural riboswitches with a dye-binding 

aptamer [34]. (D) Ligand-sensing aptamer can be inserted into an established RNA origami 

scaffold for ligand-dependent FRET signal change [20•]. (E) Allosteric ribozymes can be 

fused to a dye-binding aptamer for ligand-dependent release of the fluorogenic aptamer [36]. 
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Red circle, target ligand; dashed square, fusion section between the ligand-sensing domain 

and the signal reporter domain. Brown triangle, self-cleavage site of ribozyme.
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Figure 3. 
Examples of RBF biosensors for RNA sensing. (A) Split-binding domain strategy was 

applied on Spinach and SRB-2 aptamer to generate biosensors for miRNA [52•,27•]. (B) 

Destabilizing the fluorogenic aptamer by shortening a stem or splitting led to functional 

biosensors for mRNA [28,53]. (C) For sensitive RNA detection, the catalytic hairpin 

assembly was used to amplify the signal triggered by target RNA [55].
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