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Abstract

Stroke is the second leading cause of death and a significant cause of disability worldwide. Recent advances in DNA

sequencing, proteomics, metabolomics, and computational tools are dramatically increasing access to the identification

of host–microbiota interactions in systemic diseases. In this review, we describe the accumulating evidence showing how

human microbiota plays an essential role in cerebrovascular diseases. We introduce the symbiotic relationships between

microbiota and the mucosal immune system, focusing on differences by anatomical sites. Microbiota directly or indirectly

contributes to the pathogenesis of traditional vascular risk factors including age, obesity, diabetes mellitus, dyslipidemia,

and hypertension. Moreover, recent studies proposed independent effects of the microbiome on the progression of

various subtypes of stroke through direct microbial invasion, exotoxins, functional amyloids, inflammation, and microbe-

derived metabolites. We propose the critical concept of gene-microbial interaction to elucidate the heterogeneity of

stroke and provide possible therapeutic avenues. We suggest ways to resolve the vast inter-individual diversity of

cerebrovascular disease and mechanisms for personalized prevention and treatment.
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Background

Stroke is one of the leading causes of death and a pri-

mary cause of disability worldwide. Traditional risk

factors contributing to the development of stroke

include age, obesity, diabetes mellitus, dyslipidemia,

hypertension, smoking, physical inactivity, diet, and

alcohol consumption.1 However, in most cases of

stroke, the trigger of the event remains unknown. In

fact, not all elderly patients with hypertension, diabetes

mellitus, or smoking have strokes. Furthermore, the

contribution of these traditional risk factors to stroke

differs among ethnicities,1 suggesting the need for

personalized prevention of stroke. Recently, rapid

advances in metagenomics, meta-transcriptomics, and

meta-proteogenomics have identified novel host–

microbiota interactions.2 Moreover, emerging evidence

has demonstrated the role of both infectious diseases

and dybiosis (imbalance in the microbiota) in the devel-

opment of stroke.3 Increased consideration of the

effects of the microbiota will provide us with crucial
benefits to deepen our understanding of the pathophys-
iology of stroke. Here, we comprehensively review the
influence of microbiota on risk factors, atherosclerosis,
the subtypes of stroke, and vascular cognitive impair-
ment (VCI), while also examining the underlying
molecular mechanisms.
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Tissue-specific immunity and microbiota

The difference in microbiota between the oral cavity

and gut

The human gut is home to several trillions of microbes
that form a bidirectional relationship with the human
host.4 Time-series metagenomic analyses using next-
generation sequencing5 and phylogeny-based metric6

revealed that the human microbiota begins to colonize
in early life.7 Exposure to microbes starts before birth
as some bacteria in the mother’s oral cavity can be
transmitted through the placenta.8 The route of deliv-
ery, breastfeeding, infant care-associated behavior,
diet, and gender altogether contribute to the establish-
ment of microbiota in different body sites, including
the skin, oral cavity, and gastrointestinal (GI) tract
during infancy.9 As a consequence of ecological pro-
cesses, in adults, the microbiota of the oral cavity is
distinct from that of the GI tract.10 A statistical
approach using Dirichlet multinomial mixture
models, which assigned samples to community sub-
types, demonstrated that changes of oral bacterial pop-
ulations may subsequently give rise to a bacterial
community shift in the gut, resulting in dysbiosis.11

The mucosal immune system of the oral cavity and
the gastrointestinal tract

The GI mucosal immune system consists of three sig-
nificant compartments, the epithelium, lamina propria,
and gut-associated lymphoid tissue. The mucosal
immune system in the oral cavity, as the gateway to
the GI tract, shares functions with the GI tract in the
following four points12:

1. Enterocytes and Paneth cells produce antimicrobial
peptides (immunoglobulins, defensins, lysozyme,
and cathelicidins), and goblet cells produce mucin
in the GI tract, which contributes to innate host
defense against gut microbiota.13 In the oral
cavity, oral epithelial cells, neutrophils, and salivary
glands secrete these antimicrobial peptides.14

2. Intraepithelial lymphocytes, especially regulatory T
cells, respond to antigens presented with major his-
tocompatibility complex molecules and express toll-
like receptors (TLRs); they also eliminate foreign
antigens and exhibit surveillance functions in both
the GI tract and oral cavity.12

3. Dendritic cells (DCs) in the GI tract and oral cavity
acquire luminal antigens via extension processes.
After taking up the antigen, DCs migrate into the
mucosa-associated lymphoid tissue and lymph
nodes, initiating the adaptive immune response by
inducing T cell proliferation and differentiation.15,16

4. In the GI tract, microfold cells (M cells) transport
luminal antigens to antigen presenting cells, stimu-
lating B cells in follicle to differentiate into plasma
cells in Peyer’s patches. Corresponding to M cells in
the GI tract, a group of M cell-like cells has been
identified in the epithelium of the palatine tonsil
crypt in the oral cavity.17

On the other hand, the gingival crevice in the mouth
has unique anatomical and immunological features.
The junctional epithelium, where the mucosa meets
the tooth at the base of gingival tissue, has few layers
of thickness attached to the tooth via hemidesmo-
somes. The junctional epithelium connection to the
tooth is highly permeable, allowing the bidirectional
passage of oral microbiota, host-protective factors,
and inflammatory cells (Figure 1).18 Both histological
studies and flow cytometry analyses showed that neu-
trophils, resident terminally differentiated memory
subset of CD4þ and CD8þ cells, and Foxp3þ regula-
tory T cells are more abundant in the gingival crevice
than in the GI tract.19,20

The role of microbiota in the host immune system

The Human Microbiome Project showed that the oral
and gut microbiota play essential roles in the matura-
tion of the host immune systems (Figure 2)21:

1. The regulation of IgA secretion involves crosstalk
between innate immunity and commensal bacte-
ria. Recent approaches assessing the coating of
gut microbes with host-derived IgA suggested that
microbiota-reactive and polyreactive IgA antibodies
arise naturally in all naı̈ve B cell populations, signif-
icantly in IgA-secreting plasma cells.22 Nevertheless,
evidence from germ-free mice and fecal microbiota
transplantation (FMT) revealed that commensal
bacteria increased secretion of IgA and antimicrobi-
al peptides into the gut lumen,23 which indicates that
the orchestra of innate immunity and commensal
bacteria is necessary to maintain IgA synthesis in
the local mucosal environment. Commensal bacteria
induce IgA production through living bacteria and
bacterial products,24 as well as intestinal epithelial
cell-derived B-cell stimulating and activating
factors.25

2. Hematopoiesis and innate immunity. The micro-
biota can impact stem-cell-derived myeloid cell
development, and the size of the bone marrow mye-
loid cell pool correlates with the complexity of the
gut microbiota.26 Circulating TLR ligands and
short-chain fatty acids (SCFAs), which are gut
microbial metabolites derived from carbohydrates,
promote DC and monocyte trafficking into the
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bloodstream (reviewed in Thaiss et al.27). Moreover,
SCFAs play essential roles in the central nervous
system, critically mediating the maturation and
function of brain microglia and the blood–brain bar-
rier (BBB).28

3. Bridge between innate and adaptive immunity.
Interleukin (IL)-17-producing effector T helper
(Th17) cells are crucial for maintaining tissue phys-
iology. Th17 acts on epithelial cells to enhance anti-
microbial defense and epithelial barrier integrity via
IL-17 and IL-22.29 Th17 cells initially have a central
role in preventing infection by several species of
pathogenic bacteria; however, stimulation with IL-
2330 or high salt diet31 makes Th17 cells proinflam-
matory. Furthermore, it is now becoming clear that
specific microbes, including segmented filamentous
bacteria (SFB), Bifidobacterium adolescentis,
Escherichia coli, Citrobacter rodentium, and strains
of Clostridia, can induce Th17 through independent
mechanisms.32 While these microbes mediate host
defense, they can also cause pathological systemic
inflammation. Moreover, Benakis et al.33 proposed
that microbiota influence IL17-positive cd T cells,
which translocate form gut to meninges in experi-
mental stroke, and also effect the balance between
regulatory T cells and cd T cells, which modulate
neuroinflammation in ischemic stroke.

Traditional risk factors and microbiota

Aging

Aging is one of the most critical risk factors for all
subtypes of stroke.34 The proinflammatory status
accompanied by aging, which was termed “inflamm-
aging” in 2000 by Claudio Franceschi,35 is a risk
factor for cerebrovascular and neurodegenerative dis-
eases.36 Among the underlying mechanisms for
inflamm-aging, dysbiosis is central due to its crosstalk
with dysregulation of metabolism and immune
system,35 along with genomic instability and mitochon-
drial dysfunctions.37 In the elderly, the composition of
gut microbiota is different from that of younger adults,
with a higher proportion of Bacteroides spp, and a
reduction of Bifidobacteria.38 Moreover, loss of gut
microbiota diversity is associated with increased frail-
ty.39 Notably, reduced production of SCFAs acceler-
ates not only nuclear factor-jB-mediated inflammation
but also increases intestinal permeability, leading to
bacterial translocation and higher levels of IL-6 and
tumor necrosis factor-a.40 FMT promotes the recovery
from inflamm-aging, which was accompanied by an
improved SCFA production and decreased inflamma-
tory cytokines.41 Using elderly germ-free and conven-
tional mice, Thevaranjan et al.42 demonstrated that

age-related dysbiosis increases intestinal permeability

and inflammatory biomarkers.

Metabolic diseases

In randomized controlled trials, lean-donor FMT in

subjects with metabolic syndrome improved obesity

and insulin sensitivity, suggesting that the microbiota
can regulate host metabolism as an “organ.”43

Accumulating evidence illustrates more detailed mech-

anisms linking either the presence of specific bacteria or

the production of bacteria-derived metabolites with

metabolic disorders.44 Akkermansia muciniphila is

gaining attention as a possible “next-generation” pro-

biotic.45 A. muciniphila improves several metabolic

parameters in both model mice46 and even in a proof-

of-concept exploratory human study.47 Various studies

demonstrated the effect of microbiota-derived metabo-

lites of carbohydrates and proteins on host metabolism.

Reduced production of SCFAs, including acetate and
propionate, has inconsistent effects on energy homeo-

stasis and glucose and lipid metabolism.48 Acetate, the

most abundant SCFA, induces glucagon-like peptide

(GLP)-1 production in enteroendocrine L cells through

G-protein-coupled receptor (GPR)-43, improving insu-

lin sensitivity.49 Additionally, rodent studies demon-

strated that acetate reaches the hypothalamus

through the BBB, which induces the production of

gamma-aminobutyric acid, resulting in suppression of

central appetite.50 On the other hand, propionate

causes peptide YY production through GPR41,

which inhibits intestinal motility and increases the

absorption rate of nutrients through the intestinal epi-
thelium.51 The advance of metabolomic analyses

enabled discovery of the molecular mechanisms

between bacteria-derived metabolites of amino-acids

and host glucose metabolism. Important examples are

the beneficial role of indole and its derivatives and the

harmful effect of imidazole propionate, a microbial

metabolites of histidine. Indole and its derivatives

increase the production of the incretin hormone

GLP-1 from intestinal enteroendocrine cells and mod-

ulate innate and adaptive immune response via the aryl

hydrocarbon receptor.52 Koh et al.53 identified that

imidazole propionate impairs insulin receptor activa-
tion via the p38c-p62-mammalian target of rapamycin

complex1 (mTORC1) pathway in peripheral tissues.

Furthermore, microbial-derived metabolites control

bile acid homeostasis via farnesoid X receptors,

which can also influence glucose metabolism.54

Hypertension

Hypertension is the leading cause of stroke and heart

diseases. Genetic and environmental factors influence
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the individual variation of increased blood pressure

(BP). Extensive populational genome-wide association

studies (GWAS) identified several genetic factors asso-

ciated with blood pressure control, including the renin-

angiotensin-aldosterone system, sympathetic nervous

system, atrial natriuretic peptide signaling, and dopa-

minergic system; however, these genetic factors con-

tribute to only 3% of hypertension in humans.55

Now, growing evidence supports different roles of the

GI tract in BP regulation, not only as an organ for salt

absorption, but also controlling autonomic and endo-

crine functions. The gut microbiome in patients with

hypertension is comprised by a higher percentage of

bacteria from the genus Prevotella, which includes peri-

odontal pathogens, such as Klebsiella, Porphyromonas,

and Actinomyces.56 Increasing evidence reveals that

microbial-derived metabolites also have key roles in

BP regulation, by regulating the gut–cardiorenal axis

(reviewed in Marques et al.57). Acetate and propionate

reduce BP via GPRs and transcriptome changes.

Although propionate can partially increase BP through

the release of renin in renal juxtaglomerular cells via

olfactory receptor 78, acetate and propionate have

stronger depressive effects through vasodilation via

GPR41.57 Hydrogen sulfide, which is produced

from cysteine by both epithelial cells and gut micro-

biota, exerts hypotensive effects due to peripheral vaso-

dilation and decreases heart rate in experimental

studies.58

Stroke and acute or chronic infectious

burden

As mentioned above, microbiota–host interactions are

associated with various vascular risk factors of stroke,

including aging, metabolic diseases, and hypertension.

Recent case-crossover studies suggested acute infection

as a possible trigger of stroke.59 Cumulative exposure

to chronic infectious diseases, or “infectious burden,”

has been measured using serological profiles against

several pathogens and inflammatory biomarkers.

Using an analyzed serological profile for Chlamydia

pneumoniae, Helicobacter pylori, cytomegalovirus, and

herpes simplex virus, a prospective cohort study

revealed that infectious burden is associated with

onset of ischemic stroke.60 Another prospective study

showed that higher value of serum procalcitonin, a sur-

rogate biomarker for chronic bacterial infection, is

linked to small vessel stroke.61 Inflammatory and coag-

ulation cascades are shared signaling pathways under-

lying both infectious diseases and stroke; however,

there are additional way in which the microbiota can

influence stroke (Figure 3).

Large artery atherosclerosis and microbiota

Intra- and extracranial large artery atherosclerosis
occurs concomitantly with systemic atherosclerosis.
Atherosclerosis occurs at sites in the arterial tree
where the laminar flow is disrupted and presents mul-
tiple pathological processes, including accumulation of
lipid and extracellular matrix, migration of inflamma-
tory cells, plaque rupture, and luminal thrombosis.62 A
meta-analysis assessing bacteria in atherosclerotic
plaque samples confirmed the abundance of oral com-
mensal bacteria, including Streptococcus mutans,
Porphyromonas gingivalis, and Aggregatibacter actino-
mycetemcomitans, which suggests that oral bacteria can
translocate into the bloodstream and subsequently
enter atherosclerotic plaques.63 Bacteremia and endo-
toxemia are mainly sensed by host cells via
microorganism-associated molecular patterns
(MAMPs)-host pattern reorganization receptors
(PRRs) signaling, including peptidoglycan-nucleotide
binding oligomerization domain-containing protein 1,
lipopeptide-heterodimeric TLR2 and TLR6, or lipo-
polysaccharide (LPS)-TLR4.64 These MAMP-PRR
pathways increase the production of inflammatory
cytokines and accelerate atherosclerosis.64 However,
another study showed no discernible difference in bac-
terial DNA amount and community between symp-
tomatic and asymptomatic carotid artery stenosis,
suggesting that other factors are critical in determining
plaque vulnerability.65 Jie et al.66 reported that the
abundance of Streptococcus spp. in gut microbiota
was associated with atherosclerosis, which introduces
another mechanism, whereby ectopic translocation of
oral microbe may cause gut dysbiosis and impact on
bacterial metabolisms. Several lines of research assess-
ing gut microbial-derived metabolites proposed other
underlying mechanisms of atherosclerosis.
Trimethylamine N-oxide (TMAO), a choline-derived
metabolite produced by gut microbiota and host hepat-
ic flavin monooxygenase, is associated with increased
risk of coronary heart diseases and large artery ische-
mic stroke in humans.67,68 In animal studies, TMAO
was shown to promote cholesterol accumulation and
subsequent foam cell formation,69 inflammation,70

and enhanced platelet hyperactivity in the vessel
wall.71 Among SCFAs, butyrate may have a protective
role against atherosclerosis. In animal models, oral
administration of butyrate and butyrate-producing
bacterial genus was inversely correlated with athero-
sclerotic lesions.72 In humans, butyrate-producing bac-
teria and butyrate concentration in the gut were lower
among subjects with multiple vascular risk factors.73

The precise etiologies are unproven, but increase of
intestinal epithelium integrity, regulatory T cell induc-
tion, and histone deacetylase (HDAC) inhibition,
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which results in decreased the amount of bacterial

translocation, inflammation, and reduced epigenetic

modulation, are possible mechanisms.74

Cardioembolic stroke

Atrial fibrillation (Af) is one of the most important

causes of cardioembolic stroke. Cardiac autonomic

ganglionated plexuses facilitate electrophysiological

modulation of the atrium and arrhythmogenesis.75 A

few studies have revealed the association between Af

and microbiota in humans.76 In a recent cohort study,

a higher level of plasma TMAO was a significant inde-

pendent risk factor of Af.77 In a canine model of Af,

TMAO increased the instability of atrial electrophysi-

ology and aggravated acute atrial remodeling.78

Cerebral small vessel disease

Cerebral small vessel disease (CSVD), including lacu-

nar infarction, cerebral microbleeds (CMBs), enlarged

perivascular spaces, leukoaraiosis, and cortical atro-

phy, is commonly observed in neuroimaging among

elderly persons. CSVD contains two major pathologi-

cal classifications, hypertensive vasculopathy and cere-

bral amyloid angiopathy (CAA), and is clinically

relevant to stroke, including recent subcortical

small infarction and intracerebral hemorrhage.

Furthermore, the CSVD burden is highly relevant to

cognitive decline.79,80 In a multiethnic cohort study,

procalcitonin was associated with subclinical CSVD.81

Additionally, LPS administration induces CMBs in

wild-type mice.82 Hereafter, we review the specific

role of microbiota in the development of each subtype

of CSVD.

Hypertensive vasculopathy. Pathological features of

hypertensive vasculopathy include lipohyalinosis and

fibrinoid necrosis. BBB disruption and inflammation

are two crucial etiologies of hypertensive vasculopathy.

Nakano et al.,83 using vessel occlusion model mice,

reported that S. mutans expressing the collagen-

binding protein Cnm (Cnm-positive S. mutans) is asso-

ciated with intracerebral hemorrhage (ICH).83 Another

in vivo study showed that Cnm as the major virulence

factor for adherence and invasion of human coronary

artery endothelial cells.84 Approximately 15% of S.

mutans have cnm gene among Japanease population.85

We have reported that Cnm-positive S. mutans in the

oral cavity is associated with both hypertensive ICH

and deep CMBs in a hospital cohort study,86 and cog-

nitive decline accompanied by increased burden of

CMBs in a populational cohort study.87 We hypothe-

sized that Cnm-positive S. mutans translocates from

the oral cavity into the bloodstream, adheres to and

invades cerebral small vessels, and evokes local inflam-
mation.79,86 However, to elucidate this brain-oral-
microbial axis, a more detailed molecular assessment
in vitro and in animal models, and more extensive
cohort studies in multiethnic populations are necessary.

Cerebral amyloid angiopathy. Even though there is little
human data investigating the role of the microbiome
in patients with cerebral amyloid angiopathy (CAA),
there is accumulating evidence about Alzheimer’s dis-
ease (AD), which has shared pathophysiology with
CAA. The amyloid cascade hypothesis suggests that
vascular amyloid-b (Ab) accumulation plays a central
role in elucidating the pathogenesis of AD.88 However,
repeated failures of anti-amyloidogenic trials prompted
us to explore the brain–microbiota axis as an alterna-
tive to the amyloid cascade hypothesis, from initiation
to aggravation of AD and CAA. We have proposed
that functional bacterial amyloid proteins in the gut
may cause cross-seeding of Ab via a prion-like mecha-
nism. In studies of aged rats, we showed that exposure
to bacterial amyloid initiates cross-seeding of cerebral
alpha synuclein aggregation and neuroinflammation.89

For instance, curli, a functional amyloid protein
expressed by E. coli and other bacteria, can accelerate
cross-seeding of amyloid formation in vivo and in
vitro.90 Of particular interest are the findings of
Venegas et al.,91 who noted cross-seeding of aggrega-
tion of Ab in the brain caused by neuroinflammation
through NLR family pyrin domain containing 3
(NLPR3)-apoptosis-associated speck-like protein con-
taining a caspase recruitment domain (ASC-SPECK)-
inflammasome in microglia. Another possible
hypothesis supported by mounting evidence is the
role of Ab as a broad-spectrum antibiotic against bac-
teria, fungi, and enveloped viruses.92 Eimer et al.93

showed that Ab oligomers inhibit microbe adhesion
to host cells, and Ab fibrils entrap microbes using 3D
human neural cell cultures. Metabolomics on post-
mortem brain showed that human herpesvirus 7 was
associated with increased Ab metabolism in late-onset
AD.94 Collectively, these studies suggest that the
microbiota, which is intimately connected with innate
immune system activation, is a critical initiating factor
and novel therapeutic target for AD and CAA.95

Future directions

Gene–microbial interaction

The single nucleotide polymorphisms (SNPs) of
microbial-derived metabolite receptors and PRRs can
contribute to the susceptibility of metabolic diseases
and atherosclerosis. Among microbial-derived metabo-
lites, SNPs of GPR modulate the effects of SCFAs on

1372 Journal of Cerebral Blood Flow & Metabolism 40(7)



hypertension and type 2 diabetes mellitus,96 and SNPs

of farnesoid X receptors affect lipid and glucose metab-

olism.97 Among PRRs, TLR-4 SNPs are associated not

only with the differences in LPS responsiveness but
also with progression of atherosclerosis or ischemic

stroke.98 Some studies report the association between

oligomerization domain-containing protein 1 geno-

types and susceptibility to cerebrovascular diseases.99

However, these links between SNPs and cerebrovascu-
lar diseases are controversial for different ethnicities,

implying that combination of microbiome and

genome-wide association studies, called “mGWAS,”

is essential to unravel the complexity of cerebrovascu-

lar diseases.100

Gene–microbial interaction also gives us the novel

insight that human genetics and microbiota have

shared mechanisms in the development of each subtype

of stroke, including modulation of HDAC in large

artery atherosclerosis, modulation of type IV collagen
in hypertensive vasculopathy, and modulation of Ab-
NLPR3-ASC-SPECK signaling in CAA via apolipo-

protein E (APOE) and triggering receptor expressed

on myeloid cells (TREM2). HDAC is a pivotal epige-

netic factor modulating chromatin topology and regu-
lating gene expression. HDAC9 polymorphisms are

associated with large artery atherosclerosis and

stroke, which is inhibited by butyrate, as previously

mentioned.101 Additionally, COL4A1 and COL4A2

polymorphisms are associated with hemorrhagic

stroke, disrupting type IV collagen of the vascular

basement protein,102 where Cnm-positive S. mutans

adhere.87,103 APOE and TREM2 are the most influen-

tial genetic risk factors for AD and CAA. Recent stud-

ies found that both APOE and TREM2 are included in

the Ab-NLPR3-ASC-SPECK signaling pathway in

microglia.104 These findings indicate that gene–micro-

bial interactions will be valuable in revealing the

unknown etiologies of stroke. These studies will also

be critical in finding intervention strategies depending

on genotype.

Prevention perspectives

The antibiotic eradication of Helicobacter pylori has

been useful as a treatment of peptic ulceration, fulfilling

Koch’s postulates. As described in this review, the

microbiota–oral–brain and microbiota–gut–brain axis

suggest therapeutic avenues to prevent or treat stroke.

However, the clinical efficacy of prophylactic antibiot-

ics for stroke prevention is conflicting,105 which sug-

gests that unfavorable effects of antibiotics might

outweigh the potential benefits. Accumulating evidence

from basic and translational researches provide deeper

insights into the applicable strategies beyond antibiot-

ics: bacterial cell-to-cell communication, microbiome,

Figure 1. The mucosal immune system of the oral cavity and GI tract. The oral and GI immune systems share similar anatomical
compartments, epithelium, LP, and MALT. IELs reside within the epithelial layer. LP-resident DCs directly uptake luminal antigens via
extension process and migrate to MALTs, tonsillar MALTs in the oral cavity, and GALTs in the GI tract. M-cells in the epithelium of
Peyer’s patches and M-cell-like cells in the epithelium of tonsil crypts pass the antigens to DCs or macrophages. Instead, the
immunological interactions in the gingiva are specific to the oral cavity. The gingival crevice, the inner base of the gingiva, is lined with a
few layers of non-keratinized highly permeable thin epithelium. In the gingival crevice, neutrophils and oral microbiome constantly
transmigrate through JE and mediate inflammation even in steady state. DC: dendritic cell; GALT: gut-associated lymphoid tissue;
GI: gastrointestinal; IEL: intraepithelial lymphocyte; JE: junctional epithelium; LP: lamina propria; MALT: mucosa-associated lymphoid
tissue; M-cell: microfold cell.

Tonomura et al. 1373



F
ig
u
re

2
.
T
h
e
in
te
ra
ct
io
n
s
o
f
th
e
m
ic
ro
b
io
ta

w
it
h
th
e
h
o
st

im
m
u
n
e
sy
st
e
m
.
B
id
ir
e
ct
io
n
al
in
te
ra
ct
io
n
s
b
e
tw

e
e
n
th
e
m
u
co
sa
l
im
m
u
n
e
sy
st
e
m

an
d
th
e
m
ic
ro
b
io
ta
.
T
h
e
se

in
cl
u
d
e
(1
)

th
e
m
u
cu
s
la
ye
r,
(2
)
e
p
it
h
e
lia
l
ce
lls

(i
n
te
rc
e
llu
la
r
ti
gh
t
ju
n
ct
io
n
,
an
ti
m
ic
ro
b
ia
l
p
e
p
ti
d
e
se
cr
e
ti
o
n
,
re
co
gn
it
io
n
s
o
f
M
A
M
P
s)
,
(3
)
in
n
at
e
im
m
u
n
it
y
(h
e
m
at
o
p
o
ie
si
s,
Ig
A
se
cr
e
ti
o
n
in

L
P,

In
fla
m
m
as
o
m
e
),
an
d
(4
)
ac
q
u
ir
e
d
im
m
u
n
it
y
(T
h
1
7
ce
ll
ac
ti
va
ti
o
n
,
D
C
s
in

L
P,
M
-c
e
lls

an
d
A
P
C
ce
lls

in
P
ey
e
r’
s
p
at
ch
e
s,
re
gi
o
n
al
ly
m
p
h
n
o
d
e
s)
.
A
s
a
re
co
gn
it
io
n
o
f
M
A
M
P
s
in

e
p
it
h
e
lia
l

ce
lls
,
fo
r
in
st
an
ce
,
T
L
R
4
－
M
D
2
co
m
p
le
x
b
in
d
in
g
to

L
P
S
ac
ti
va
te
s
N
F-
j
B
an
d
M
A
P
K
vi
a
th
e
M
yD

8
8
-d
e
p
e
n
d
e
n
t
si
gn
al
in
g
p
at
h
w
ay
.
M
ic
ro
b
e
s
co
n
tr
o
l
in
fla
m
m
at
o
ry

re
ac
ti
o
n
in
e
p
it
h
e
lia
l

ce
lls

ac
ti
va
ti
n
g
o
r
in
h
ib
it
in
g
th
e
se

p
at
h
w
ay
s
(G

A
S6
-T
A
M
R
ax
is
,
M
D
2
,
M
yD

8
8
,
SI
G
IR
R
,
P
PA

R
c)
.
M
e
ta
b
o
lit
e
s
o
r
M
A
M
P
s
o
f
m
ic
ro
b
io
ta

h
av
e
a
ro
le
in
e
d
u
ca
ti
n
g
th
e
h
o
st
in
n
at
e
sy
st
e
m
.

In
b
o
n
e
m
ar
ro
w
,
SC

FA
s
p
ro
m
o
te

D
C

m
at
u
ra
ti
o
n
an
d
PA

M
P
s
in
d
u
ce

M
C
P
1
p
ro
d
u
ct
io
n
in

M
SC

,
re
su
lt
in
g
in

m
o
n
o
cy
te

m
ig
ra
ti
o
n
.
E
p
it
h
e
lia
l
ce
ll-
d
e
ri
ve
d
cy
to
k
in
e
s
T
SL
P
an
d
A
P
R
IL

p
ro
m
o
te

cl
as
s-
sw

it
ch

re
co
m
b
in
at
io
n
an
d
th
e
p
ro
d
u
ct
io
n
o
f
Ig
A
b
y
B
ce
lls

in
in
te
st
in
al
L
P,
tr
an
sm

it
te
d
in
to

m
u
co
sa
l
la
ye
r.
N
o
t
o
n
ly
m
ic
ro
b
io
ta
,
b
u
t
al
so

FU
B
A
o
r
SC

FA
s
in
flu
e
n
ce

th
e

in
fla
m
m
as
o
m
e
in
vo
lv
in
g
ca
sp
as
e
1
an
d
p
ro
in
fla
m
m
at
o
ry

cy
to
k
in
e
s.
T
h
1
7
ce
ll
d
iff
e
re
n
ti
at
io
n
in
d
u
ce
d
b
y
co
m
m
e
n
sa
l
m
ic
ro
b
io
ta
,
in
cl
u
d
in
g
SB

F,
p
ro
d
u
ce

IL
-1
7
an
d
IL
-2
2
,
w
h
ic
h
p
la
y
a

h
o
m
e
o
st
at
ic
ro
le
in
m
ic
ro
b
io
ta
–
h
o
st
in
te
ra
ct
io
n
s.
T
h
e
M
-c
e
ll
o
f
P
ey
e
r’
s
p
at
ch
e
s
tr
an
sf
e
rs

th
e
lu
m
in
al
an
ti
ge
n
to

D
C
s
an
d
A
P
C
s,
w
h
ic
h
is
d
ra
in
e
d
an
d
in
d
u
ce
s
T
ce
ll-
d
e
p
e
n
d
e
n
t
B
ce
ll

m
at
u
ra
ti
o
n
in

M
L
N
s.
A
P
C
:
an
ti
ge
n
-p
re
se
n
ti
n
g
ce
ll;
A
P
R
IL
:
ap
ro
lif
e
ra
ti
o
n
-i
n
d
u
ci
n
g
lig
an
d
;
D
C
s:

d
e
n
d
ri
ti
c
ce
lls
;
FU

B
A
:
fu
n
ct
io
n
al
b
ac
te
ri
al
am

yl
o
id
;
G
A
S6
:
gr
o
w
th
-a
rr
e
st

sp
e
ci
fic

ge
n
e
6
;
G
-C

SF
:
gr
an
u
lo
cy
te
-c
o
lo
n
y
st
im
u
la
ti
n
g
fa
ct
o
r;
G
P
R
4
3
:
G
-p
ro
te
in
co
u
p
le
d
re
ce
p
to
r
4
3
;
Ig
A
:
im
m
u
n
o
gl
o
b
u
lin

A
;
IL
:
in
te
rl
e
u
k
in
;
L
P
:
la
m
in
a
p
ro
p
ri
a;
L
P
S:

lip
o
p
o
ly
sa
cc
h
ar
id
e
;

M
ce
ll:

m
ic
ro
fo
ld

ce
ll;
M
A
M
P
s:

m
ic
ro
o
rg
an
is
m
-a
ss
o
ci
at
e
d
m
o
le
cu
la
r
p
at
te
rn
s;
M
A
P
K
:
m
it
o
ge
n
-a
ct
iv
at
e
d
p
ro
te
in

k
in
as
e
;
M
C
P
1
:
m
o
n
o
cy
te

ch
e
m
o
at
tr
ac
ta
n
t
p
ro
te
in

1
;
M
D
2
:

m
ye
lo
id

d
iff
e
re
n
ti
at
io
n
fa
ct
o
r
2
;
M
L
N
:
m
e
se
n
te
ri
c
ly
m
p
h
n
o
d
e
;
M
SC

:
m
e
se
n
ch
ym

al
st
e
m

ce
ll;
M
yD

8
8
:
m
ye
lo
id

d
iff
e
re
n
ti
at
io
n
fa
ct
o
r
8
8
;
N
F-
jB

:
n
u
cl
e
ar

fa
ct
o
r-
jB

;
P
PA

R
c:

p
e
ro
x
is
o
m
e
p
ro
lif
e
ra
to
r
ac
ti
va
te
d
re
ce
p
to
r
c;

SB
F:

se
gm

e
n
te
d
fil
am

e
n
to
u
s
b
ac
te
ri
u
m
;
SC

FA
s:

sh
o
rt
-c
h
ai
n
fa
tt
y
ac
id
s;
SI
G
IR
R
:
si
n
gl
e
im
m
u
n
o
gl
o
b
u
lin

in
te
rl
e
u
k
in
-1

re
ce
p
to
r-
re
la
te
d

m
o
le
cu
le
;
T
A
M
R
:
ty
ro
3
ax
l
m
e
r
re
ce
p
to
r;
T
L
R
:
To

ll-
lik
e
re
ce
p
to
r;
T
SL
P
:
th
ym

ic
st
ro
m
al
ly
m
p
h
o
p
o
ie
ti
n
.

1374 Journal of Cerebral Blood Flow & Metabolism 40(7)



microbial-derived metabolites, and immune

modulation.

Bacterial cell-to-cell communication. The quorum-sensing

(QS) system of bacterial cell-to-cell communication is

a novel therapeutic target. Microbial QS systems regu-

late the expression of many virulence factors, biofilm

synthases, and even clustered regularly interspaced

short palindromic repeat (CRISPR)-associated defense

system.106 QS-interfering agents that potentially reduce

bacterial virulence and prevent biofilm formation of

infectious pathogens are expected to influence metabol-

ic disorders affecting the microbiome.107 However,

most QS-interfering agents are still in preclinical

trials. Further research is necessary to assess the side

effects toward non-target bacteria and the possibility of

resistance development in humans.

Microbiome. Prebiotics are compounds that are digested

by bacteria which may be beneficial to the host,

depending on the nature of the host’s microbiome.

Probiotics, the direct administration of beneficial

microbes, and FMT are attractive therapies to shape

a healthy microbiome and modify immune and meta-

bolic balance. However, these microbiome-modifying

therapies bear many unsolved questions.108,109

Personalized nutrition in combination with beneficial

microbes might be an integrated approach to

microbiome-modifying therapies.110 Furthermore, as

the proof-of-concept study with A. muciniphila impli-

cated, increasing translational studies on next-

generation probiotics demonstrated that core species

are possible new therapeutic tools for metabolic dis-

eases, atherosclerosis, and cerebrovascular diseases.111

Microbial-derived metabolites. Roberts et al.112 proposed

that small molecules inhibiting microbial production

of TMA in the gut lumen suppress thrombosis forma-

tion and prevent atherosclerosis. Chambers et al.113

showed that oral administration of inulin-propionate

ester can deliver propionate to colon and ameliorate

obesity and glucose homeostasis. This indicates the

beneficial role of SCFAs and GPR modulators as

novel preventive interventions for metabolic disorders

Figure 3. Overview of the interplay between microbiota and stroke or vascular cognitive impairment. Beside the traditional risk
factors, including HT, DM, DL, physical activity, and aging, mounting evidence has shown the role of gut microbiota in the development
of stroke. Delivery, breastfeeding, aging, diet, and physical activity are bidirectionally related to dysbiosis. There are several possible
mechanisms between oral and gut microbiota and the development of stroke and VCI. Microbes in the oral cavity can act directly on
the cerebrovascular system via bacteremia. PRRs recognize MAMPs, for example TLRs and LPS, lipoteichoic acid, or peptidoglycan,
which subsequently stimulate immune cells and induce the production of inflammatory cytokines. Among bacterial metabolites, TMA
and TMAO interact with coagulation and inflammatory cascades in atherosclerotic plaque. SCFAs and indoles affect the absorption
rate of nutrients and have hormonal activity in metabolic homeostasis via various types of GPRs. Bacteria-derived functional amyloid
induces Ab aggregation in CAA through inflammasome secretion or the ASC-SPECK system. Ab: Amyloid b; ASC-SPECK: adaptor
protein apoptosis-associated speck-like protein containing a caspase recruitment domain; CAA: cerebral amyloid angiopathy; GPRs:
G-protein-coupled receptors; DL dyslipidemia; DM: diabetes mellitus; HT: hypertension; LPS: lipopolysaccharide; MAMPs:
microorganism-associated molecular patterns; SCFAs: short-chain fatty acids; SVD: small vessel disease; TLRs: toll-like receptors;
TMA: trimethylamine; TMAO: Trimethylamine N-oxide; VCI: vascular cognitive impairment; PRRs: pattern recognition receptors
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and atherosclerosis. This work illustrates that the new
strategies of leveraging the host–microbiota interac-
tions as druggable molecular targets show promise

Immunomodulation. The microbiota interacts with the
host immune system through immune cell polarization,
stimulating MAMP-PRR signals, Ab-NLPR3-ASC-
SPECK signals, and inducing anti- or pro-
inflammatory cytokines. Several studies attempted to
investigate new therapeutics modulating these chemical
mediators.114,115 Fingolimod, a sphingosine-1-
phosphate receptor modulator, salvaged penumbra tis-
sues in patients with acute internal carotid artery or
middle cerebral artery occlusion in a clinical pilot
trial.116 Subcutaneous administration of anakinra, an
IL-1 receptor antagonist, significantly decreased IL-6
and C-reactive protein, which are associated with
worse clinical outcomes after stroke, in a randomized
phase 2 clinical trial.117 mTORC1 is another possible
therapeutic target associated with the host immune–
microbiota interaction. Recent evidence suggests that
rapamycin, mTORC1 inhibitor, induces neuroprotec-
tive autophagy and pleiotropic effects on BBB and
inflammation.118 Microbiota and microbial metabolites
control mTORC1 expression.119 Finally, the collagen-
binding microbial surface components recognize adhe-
sive matrix molecules, which are common invasive and
adhesive factors for various types of virulent Gram-
positive cocci,120 might become possible targets for
vaccine design to prevent infectious endocarditis and
specific subtypes of CSVDs.

Conclusions

Firstly, it must be emphasized that the microbiota is
our most substantial environmental exposure. They
represent an enormous potential threat to survival, a
threat to which the evolution of both the host and the
microbes has adapted over the past several million
years. Thus, it is critical that the host tolerates benefi-
cial organisms, and that pathogens do not acquire
immune tolerance. It is similarly vital for the microbes
that we tolerate them. These inter-relationships are the
foundation for the influences of the microbiota on
immune systems. We propose several interactions by
which the microbiota may impact stroke and VCI in
humans. Mechanisms involved in these interactions
include innate and adaptive immunity, epigenetic alter-
ation of protein expression, proteostasis, hematopoie-
sis, coagulation, hormone secretion, autonomic nerve
system, and metabolism.

Secondly, in particular, we have shown the differ-
ences in the microbiota and host defense systems
between the GI tract and oral cavity, suggesting the
concept of “Microbiota–Oral–Brain Axis,” which is

distinct from the “Microbiota–Gut–Brain Axis.” The
role of the “Microbiota–Gut–Brain Axis” in human
health is receiving increasing scientific and public atten-
tion. However, the influence of “Microbiota–Oral–
Brain Axis” has not yet been properly recognized for
its importance. According to the U.S. National Library
of Medicine, PubMed database, there were 22,349 cita-
tions for “microbiota” and “gut,” while there were only
4743 citations for “microbiota” and “oral” (4 February
2020). Bidirectional gut–brain interactions involve sev-
eral signaling molecules, immune mediators, and gut
hormones by the microbiota. Conversely, considering
that the nasal and oral cavities are anatomically close
to the brain, microbiota and their metabolites can have
direct influences through the blood, the cranial nerves
and the central nervous system.

Despite promising data in both animal and human
studies, it is challenging to integrate these findings into
personalized prevention and treatment for stroke. As
described above, the microbiota is influenced by genet-
ics, nutrition, and other lifestyle factors. Thus, epide-
miological research requires careful consideration of
ethnicity, genetics, and lifestyle factors.
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