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Abstract

Understanding how humans make competitive decisions in complex environments is a key goal of decision neuroscience.
Typical experimental paradigms constrain behavioral complexity (e.g. choices in discrete-play games), and thus, the
underlying neural mechanisms of dynamic social interactions remain incompletely understood. Here, we collected fMRI
data while humans played a competitive real-time video game against both human and computer opponents, and then, we
used Bayesian non-parametric methods to link behavior to neural mechanisms. Two key cognitive processes characterized
behavior in our task: (i) the coupling of one’s actions to another’s actions (i.e. opponent sensitivity) and (ii) the advantageous
timing of a given strategic action. We found that the dorsolateral prefrontal cortex displayed selective activation when the
subject’s actions were highly sensitive to the opponent’s actions, whereas activation in the dorsomedial prefrontal cortex
increased proportionally to the advantageous timing of actions to defeat one’s opponent. Moreover, the temporoparietal
junction tracked both of these behavioral quantities as well as opponent social identity, indicating a more general role in
monitoring other social agents. These results suggest that brain regions that are frequently implicated in social cognition
and value-based decision-making also contribute to the strategic tracking of the value of social actions in dynamic,
multi-agent contexts.
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Introduction
Strategically interacting with other agents requires inference
of their beliefs, goals and intentions in order to inform the
implementation of one’s own actions (Lee and Seo, 2016;
Wheatley et al., 2019). Social, strategic interactions are often
studied in laboratory experiments using paradigms and analysis
methods borrowed from game theory (Von Neumann and
Morgenstern, 1944; Nash, 1950; Kreps, 1990; Camerer, 2011).
Though such approaches illuminate cognitive processes such
as the psychological tradeoffs between competition and
cooperation (Rapoport et al., 1965; Axelrod and Hamilton, 1981;
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Rilling et al., 2002; Camerer, 2011; Poncela-Casasnovas et al.,
2016), they nevertheless miss key elements of naturalistic, social
interactions that occur in real time (Redcay and Schilbach, 2019).
Specifically, adaptive behavior in a dynamic, multi-agent context
requires the decision-maker to estimate two quantities not
present in typical discrete-play games: how strongly coupled are
my opponent’s actions to my actions, and when should I execute
my action to maximize my chance of success? For example,
driving an automobile requires not only creating mental models
of other drivers, each of whom might vary in how responsive
they are to one’s own actions, but also identifying an opportune
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time to implement a planned action (e.g. turning across a lane
during a gap in traffic). Understanding how these specifically
dynamic quantities are implemented within social decision-
making mechanisms remains a fundamental challenge for social
neuroscience (Ruff and Fehr, 2014).

The first of these quantities—the extent to which one’s
actions are affected by the actions of other agents, here
called opponent sensitivity—is endemic to real-world social
interactions. For example, haggling with a shopkeeper over
the price of an item requires real-time adjustments to your
offer based on the shopkeeper’s behavior; if that adjustment
process is accurate, your negotiating tactics will be more
effective. Opponent sensitivity can be estimated by adapting
the computational framework of reinforcement learning models
(Koster-Hale et al., 2017; Leibo et al., 2017; McDonald et al.,
2019) to determine a social policy function that characterizes
the likelihood of future actions given the actions of all task-
relevant agents and the environment’s current state. We propose
that the human brain estimates this quantity in real time
by recruiting brain regions that have been associated in the
literature with action inference. Previous physiology research
in rhesus macaques suggests that regions in the prefrontal
cortex, particularly the dorsolateral prefrontal cortex (dlPFC),
are involved in learning and adapting one’s actions in light of
an opponent’s actions (Barraclough et al., 2004). Social action
prediction error signals have also been found in the dlPFC,
as well as the dorsomedial prefrontal cortex (dmPFC) and the
temporoparietal junction (TPJ) (Suzuki et al., 2012). The dlPFC
has also been shown to play important roles in predicting social
decision-making outcomes according to information regarding
the likely behavior of others (Coricelli and Nagel, 2009; Yoshida
et al., 2010).

The second element of dynamic social decisions, advanta-
geous timing, reflects the estimated reward distribution given
the execution of an action at a particular time. For many social
interactions—whether driving or negotiating—the challenge of
the decision-maker may not be what action to take (e.g. turning
from one road to another) but when to take that action given the
likely actions of others (e.g. at a sufficiently large gap in traffic).
This element can be quantified by constructing a social value
function that maps a policy function onto expected rewards
(Kishida and Montague, 2012). Previous literature relating to the
neural basis for social value inference comes predominantly
from value-based decision-making studies. Self-referential
value-driven choice studies have implicated frontal regions such
as the ventromedial prefrontal cortex and the dmPFC in being
crucial for representing relative subjective value for oneself
(Kable and Glimcher, 2007; Levy et al., 2009; Kolling et al., 2016;
Piva et al., 2019) as well as during social decision-making (Amodio
and Frith, 2006; Rilling and Sanfey, 2011; Lee and Seo, 2016). The
dmPFC has been shown in computational neuroimaging studies
to be involved in estimating the value of rewards when making
choices in a social decision-making task (Apps and Ramnani,
2017). Prior work thus links the prefrontal cortex to both tracking
the actions of others and to optimizing one’s own actions, but
whether these processes are subsumed within a single region of
PFC or rely on different regions remains unknown.

Importantly, the neural mechanisms of opponent sensitivity
and advantageous timing may be distinct from information
carried by the social or non-social identity of other agents
in the environment. Prior neuroscience research has revealed
that processing in brain systems that support social decision-
making does vary according to the characteristics of the
opponent (Carter et al., 2012; Schurz et al., 2014; Vickery et al.,

2015; Jenkins et al., 2018; Siegel et al., 2018). For example,
when human participants played static games against both
human and computer agents, regions of the social cognitive
network, such as the TPJ, were more active when playing against
a human than against a computer opponent (Rilling et al.,
2004). Similarly, application of machine learning techniques to
functional magnetic resonance imaging (fMRI) data collected in a
social poker paradigm showed that the TPJ encoded information
predictive of subsequent decisions only when competing with a
human opponent and not with a computer (Carter et al., 2012),
indicating that this region supports the creation of a social
context for decision-making (Carter and Huettel, 2013). Much
of the social cognition literature is interested in how the brain
differs when engaging with different agent types. However, we
posit that learning about these two dynamic quantities across
agent types will be critical for elucidating the computational
mechanisms that underlie social action and value inference,
independently of the identities of other agents.

Here, we investigated the brain mechanisms that support
decision-making in dynamic social contexts, using an incentive-
compatible game that distinguishes the processing of opponent
behavior from the processing of opponent identity. Human par-
ticipants attempted to direct a disk into a goal on a virtual
playing field while avoiding a goalie controlled either by another
human or by a realistic computer algorithm (cf. a ‘penalty shot’
in hockey) (Iqbal et al., 2019; McDonald et al., 2019). From the
relative movements of the two players and the resulting trial
outcomes, we estimated both a social policy function that pro-
vided a metric of opponent sensitivity and a social value function
that allows the calculation of advantageous (or disadvantageous)
timing, as shown in our prior work developing these computa-
tional models (McDonald et al., 2019). We connect these metrics
to trial-to-trial fluctuations in brain function across different
phases of our experimental task: recognizing the opponent iden-
tity, playing the game in real time and receiving a reward for
successful performance. We found that multiple regions within
the prefrontal cortex tracked dissociable features of behavior
specific to dynamic decision-making, whereas social cognitive
regions including the TPJ were differentially active according to
opponent identity.

Results
Penalty shot experimental design

Human participants (n = 75) played a competitive, dynamic game
(Figure 1) inspired by a penalty shot in hockey (Iqbal et al., 2019;
McDonald et al., 2019) while the measures of brain activation
were collected using fMRI. On each trial, the participant first
viewed text (for 2 s) indicating their opponent on that trial—
either a human who was incentivized to beat them in the game
or a computer algorithm developed to mimic typical human
behavior, although the strategic play style of the computer algo-
rithm was not disclosed to participants. Then, following an
interstimulus interval (ISI) of variable duration, the game screen
appeared, and the participant used a joystick to control the
vertical acceleration of a disk (i.e. the ‘puck’) that moved from left
to right at constant velocity. The opponent controlled the vertical
acceleration of a bar (the ‘goalie’) positioned on the right side of
the screen. The participant’s task was to move the puck past the
goalie without making contact; conversely, the opponent’s task
was to move the goalie to block the puck.

Each participant completed roughly 200 trials (median
N = 202) of the Penalty Shot Task: half against the human
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Fig. 1. Schematic of the Penalty Shot Task. (A) Each trial consisted of three phases with intervening variable-duration ISIs: (i) the Opponent phase (2 s) that indicated

the opponent for the upcoming trial, (ii) the Game Play phase, during which participants attempted to move the puck past the defending goalie (1.5 s), and (iii) the

Outcome phase that displayed the outcome of the trial (either Win or Loss; 1.5 s). (B) One example trial of game play with the trajectory of the puck shown in green

and the vertical movements of the goalie shown in red. Note that the goalie has a fixed horizontal position; here, we visualize the goalie as traveling along the x-axis

from right to left to illustrate its trajectory.

opponent and half against the computer opponent (in ran-
domized order). For consistency across fMRI sessions, we used
two highly practiced individuals as our human opponents; both
trained extensively in the task before their first session and
then played against many different participants throughout the
experiment (Human Goalie 1 = 45 participants, Human Goalie
2 = 30 participants). The human opponent received a monetary
bonus for each successful trial (i.e. stopping the puck with the
goalie) and was free to use any strategy they desired. The human
opponent met the fMRI participant before each session, and
both the consent form and task instructions indicated that
all human trials would be against this opponent; thus, there
was no deception in the experiment. The computer opponent
used a track-then-guess heuristic that attempted to match the
fMRI participant’s vertical movements and then dove upward or
downward (randomly) at a threshold point near the end of each
trial (McDonald et al., 2019). This behavior simulated equilibrium
human opponent behavior, in that human opponents tended to
adopt a similar strategy. Parameters of the computer algorithm
were customized to human reaction times based on pilot
experiments; for example the lag between the fMRI participant’s
actions and the computer opponent’s actions was matched to
the lag typical of human opponents.

Opponent sensitivity: social policy function

In keeping with our prior computational modeling approach for
this task (McDonald et al., 2019), we fit separate Gaussian Process
(GP) Policy Function models to behavioral data from each par-
ticipant. These models predicted the occurrence of a change in
vertical direction (i.e. a ‘change point’) at the next time step (t + 1,
measured in units of screen refresh cycle, 60 Hz) given the state
of the game at the current time step (t). The state of the game
included seven input variables: the x and y positions of the puck,
the y position of the bar, the vertical velocity of both the puck and
the bar, the time since the occurrence of the last change point,
and an opponent experience variable ranging from 0 (first trial)
to 1 (last trial) which reflected potential strategic adaptation
over the course of the experiment. Our model predicted binary
future action, at+1,(0 = no direction change, 1 = direction change)

from the current state of the environment at time, t, st, and a
binary opponent identity, ω (0 = computer opponent, 1 = human
opponent). That is we fit each subject’s policy, π,

π (st, ω) = p (at+1|st, ω). (1)

This model effectively assesses the probability that a partic-
ipant will change direction given the instantaneous state of the
game st against opponent ω.

As detailed in (Rasmussen and Williams, 2006; McDonald
et al., 2019), we chose to model behavior in our paradigm using
GPs. GPs are distributions over functions: in this case, the log
odds of switching directions as a function of state and opponent:
log π

1−π
= f (st, ω).Not only do GPs provide a Bayesian measure

of uncertainty for this inferred policy function (Rasmussen and
Williams, 2006), they are also differentiable, allowing us to derive
gradient-based sensitivity estimates that quantify the dynamic
coupling between agents. That is we can quantify the change
in each participant’s switch probability as a function of small
changes in the observed actions of the goalie. Formally, we
define an opponent sensitivity metric, σ, as a combination of
each subject’s GP gradient with respect to opponent position and
velocity

ς =
∥
∥
∥L−1∇∼

x
f(s, ω)2

∥
∥
∥, (2)

where
∼
x is a vector including the y-position and vertical velocity

of the opponent,
∼
x ≡ (yopponent, vopponent). In addition, we have

normalized these gradients by the inverse of the Cholesky factor
of the GP covariance: var(f (s, ω)) = L L�. This is equivalent to both
an orthogonalization and an equal weighting of each principal
component of the gradient and has the effect of down-weighting
each contribution by uncertainty in the GP.

The opponent sensitivity metric from the policy model repre-
sents an instantaneous estimate of how the participant’s likeli-
hood of changing vertical direction depends on small changes in
the opponent’s position and velocity. This metric characterizes
individual differences in strategic play (see Figure 2 and
McDonald et al., 2019). For the neuroimaging analyses, due
to the temporal resolution of fMRI, we log-transformed each
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Fig. 2. (A–D) Example trial trajectories and behavioral metrics for high/low opponent sensitivity and high/low advantageous timing. For each panel, the black line

at the bottom shows a trajectory of the puck’s horizontal and vertical position on a given trial, with the puck moving rightward as the trial progresses. The orange

line in the middle denotes that the same trial’s opponent sensitivity. The green line at top represents the expected value (i.e. probability of winning), conditional on

making the final direction change at that time point; optimal behavior involves moving when this metric is at its maximum. The solid gray line vertically spanning

all three subplots indicates the timing of the final change in direction actually taken by the participant, whereas the dotted gray line at the top subplot denotes when

the participant should have made the final change in direction. The shaded gray region provides a measure of advantageous timing or the difference in time between

when the participant should have switched vs when they actually switched. Low advantageous timing means there is a large difference between these times (i.e. the

final direction change for that trial was ill-timed; see right column) and high advantageous timing means there is a small difference (i.e. the final direction change for

the trial was well-timed; see left column).

time point’s opponent sensitivity measure (see Supplementary
Figure 6) and then calculated the average logged opponent
sensitivity for each trial. This allows us to characterize complex
trajectories generated during game play in terms of the overall
player coupling for a given trial.

Advantageous timing: social value function

We also estimated each subject’s social value function or the
momentary expected value given the action history of both play-
ers. By definition, given the dynamics of our task, all successful
participant strategies must involve a final change in direction
(e.g. attempting to direct the ball either above or below the goalie)
and continuation in that new direction until the end of the trial.
Making this movement too early would allow the opponent to
react and counter the action; making it too late would not allow
enough time to move the ball beyond the vertical extent of the
goalie bar. Accordingly, we applied a separate GP classification
model to estimate, for each time point, the expected value of
a final change in direction at that time (called hereafter the

Advantageous Timing model), Q(a|s, w), where a represents a
final vertical direction change.

Advantageous timing is operationalized as the distance in
time between when subjects made their final change in vertical
direction in a given trial (tmove)and the time when they should
have made their final change in direction (topt

move) as determined
by the maximum of that trial’s expected value curve (formalized
as |tmove − topt

move|; see Figure 2). In McDonald et al., 2019, we
found not only that advantageous timing was correlated with
win rate, but also that high-scoring subjects placed their final
change in direction within periods of relatively high expected
value, whereas lower scoring subjects did not. This metric thus
captures individual player’s skill more cleanly than win rate,
since the latter reflects the players’ joint actions.

Behavioral results

We found that player’s behavior was well described by both
our opponent sensitivity and advantageous timing metrics
(see McDonald et al., 2019 for full description of behavior). For

https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsaa053#supplementary-data
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visualization, we plot four example trajectories (see Figure 2,
in black) that illustrate the interaction between high/low
opponent sensitivity and high/low advantageous timing. We
found no linear relationship between opponent sensitivity or
instantaneous probability of winning (Supplementary Figure 5).
Across all trials, we found that high-scoring subjects placed
their final change points during the periods of relatively high
expected value, according to their estimated value functions,
whereas low-scoring subjects placed their final change points
during the periods of relatively low expected value. Thus, the
differentiating behavior between high- and low-scoring subjects
in the Penalty Shot Task is recognizing the advantageous time
to make one’s final movement.

Opponent sensitivity: neural measures

We examined which brain regions were parametrically mod-
ulated by opponent sensitivity during the game play phase.
The dlPFC and left TPJ both exhibited activity patterns that
positively correlated with overall opponent sensitivity across
trials (see Figure 3A and B). Importantly, we orthogonalized
the opponent sensitivity regressor with respect to the self-
sensitivity regressor (see below) in order to capture specifically
other-regarding processes above and beyond cognitive factors
common to the performance of the task, such as high arousal
or attention during difficult trials. We observed an interaction
effect of opponent sensitivity with opponent identity, such that,
selectively, the right TPJ displayed greater activity that correlated
with opponent sensitivity during trials against the human
opponent compared with that of the computer opponent (see
Figure 3C and D).

As referenced above, we calculated a control metric called
self-sensitivity, which quantified the extent to which the par-
ticipant’s likelihood of switching is sensitive to changes in the
participant’s own position and velocity. Including self-sensitivity
as a regressor in the GLM analysis provided a test of whether the
dlPFC and/or TPJ activation was tracking one’s own past actions
and the changes in behavior that those actions presage. No brain
regions evinced a significant correlation with the self-sensitivity
regressor after cluster-correction was applied.

Next, we examined whether the dlPFC and TPJ were instead
tracking the motor demands of the task, as indexed by the
number of switch points; this analysis addressed the poten-
tial confounding factor that trials with high opponent sensi-
tivity could involve more tracking-related switches. This anal-
ysis revealed strong contralateral motor cortex activation that
positively correlated with the total number of switches made
by each participant (see Figure 3E and F), but no dlPFC or TPJ
activation—indicating that our effects of sensitivity cannot be
explained as consequences of the motor demands of the task.
Thus, we concluded that the dlPFC and TPJ tracked neither the
motor demands of the task nor one’s own behavior; rather,
these regions selectively tracked the extent to which the partic-
ipant’s likely future actions were quantitatively coupled to an
opponent’s actions.

We additionally examined the effects of opponent sensitivity
for the opponent phase (i.e. before game play). During the oppo-
nent phase, activation in dmPFC predicted the level of opponent
sensitivity on the upcoming trial’s game play (Supplementary
Figure S3). This effect did not interact with the social identity
of opponent (human or computer). Collectively, these results
provide evidence that the dlPFC and TPJ selectively tracked
the magnitude of social coupling between task-relevant agents

and that this pattern of activity cannot be attributed to motor
demands or tracking one’s own actions.

fMRI correlates of advantageous timing

We next investigated the effects of advantageous timing, specif-
ically seeking brain regions that could distinguish trials in which
the participant’s final change in direction was well-timed com-
pared with less well-timed trials. During the outcome phase of
the task, whole-brain analyses revealed activation in the dmPFC
and left TPJ whose activation increased for trials with highly
advantageous timing (Figure 4A and B). Unlike for opponent sen-
sitivity, activation in dlPFC was unpredictive of advantageous
timing (Figure 4B). No significant interaction effect of social vs
non-social opponent identity with advantageous timing was
found.

Opponent identity

Next, we investigated the effects of opponent identity (i.e. com-
puter vs human) on BOLD activation. During the opponent phase,
we observed increased activation in the right TPJ (rTPJ) and
dmPFC when the subjects were notified that they would play
the upcoming trial against the human opponent rather than
the computer opponent (Figure 5A). This effect held across the
range of variability observed in our subject sample, such that
nearly all participants individually evinced greater rTPJ acti-
vation when preparing to play against the human opponent
(Figure 5B). Furthermore, at the outcome screen, we observed
increased activation of the dmPFC during trials played against a
human opponent compared to trials against the computer oppo-
nent (see Supplementary Figure 2). Furthermore, we observed
heightened activation in the rTPJ and inferior frontal cortex
during game play against the human opponent compared to play
against the computer opponent. (see Supplementary Figure S3).
Finally, in order to evaluate whether the relationship between
the right TPJ and other brain regions varied as a function of oppo-
nent sensitivity, we conducted a psychophysiological interaction
analysis. This analysis revealed that the functional connectivity
between the right TPJ and the left TPJ (considered over the entire
trial period) increased with increasing opponent sensitivity (see
Supplementary Figure S1 and Note S1 for details).

Discussion
The current study derived the computational measures of adap-
tive behavior within a dynamic social game and linked those
measures to trial-to-trial fluctuations in activation in distinct
brain regions as measured by fMRI. There were three primary
results: first, a region within dlPFC tracked the ongoing cou-
pling of a participant’s behavior to their opponent (i.e. opponent
sensitivity), regardless of whether the opponent was another
human or a computer. Second, a region within dmPFC tracked
the optimality of the participant’s final movement (i.e. advan-
tageous timing), again independent of the identity of the oppo-
nent. And, third, activation within social cognitive regions—most
notably the TPJ—encoded the identity of the opponent across
different phases of the task, with multiple analyses demon-
strating heightened rTPJ activation during interaction with the
human opponent compared with interaction with the computer
opponent. Collectively, these results support the conclusion that
distinct brain regions track the information carried by another

https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsaa053#supplementary-data
https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsaa053#supplementary-data
https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsaa053#supplementary-data
https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsaa053#supplementary-data
https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsaa053#supplementary-data
https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsaa053#supplementary-data
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Fig. 3. Brain regions that tracked opponent sensitivity during game play. (A) We found regions within left dlPFC and left TPJ whose activation covaried with opponent

sensitivity (orthogonalized with respect to self-sensitivity) on a trial-by-trial basis (dlPFC MNI X,Y,Z = −40, 16, 54, max z-statistic = 4.83; left TPJ X, Y, Z = −58, −64, 34;

max z-statistic = 4.76). MNI coordinates in Supplementary Table S1. Brain images are presented in radiological convention (i.e. the right side of the image represents the

left side of the brain). (B) Activation within the dlPFC was significantly modulated by opponent sensitivity. Conversely, activation within the motor cortex was instead

negatively correlated with both sensitivity measures. Bar height shows subject-level mean z-score parameter estimate (see Materials and Methods); error bars denote

standard error of the mean. (C) The rTPJ was the only brain region that showed activation correlating with opponent sensitivity that interacted with opponent identity;

the rTPJ showed greater activation correlating with opponent sensitivity during trials played against the human opponent compared with that of the computer opponent

(rTPJ MNI X,Y,Z = 64, −42, 10, max z-statistic = 4.08). (D) rTPJ activation was greater during the opponent sensitivity × opponent identity contrast than activation from

the dlPFC. (E) Control analyses identified a region of the motor cortex whose activation correlated positively with the number of directional switches made in a given

trial (motor cortex MNI X,Y,Z =−36, −40, 68, max z-statistic = 7.86); no such effects of overall movement were observed in dlPFC, TPJ or other regions. (F) Within motor

cortex, there was a strong effect of the number of switches, indicating that this region was not tracking our social sensitivity metrics per se, but tracking the overall

motor behavior. See Materials and Methods for ROI definitions.

agent’s dynamic behavior separately from information about the
nature of that agent itself.

The recent explosion in research interest in social decision-
making has been aided by simple, yet sophisticated paradigms
from game theory, by computational models stemming from
reinforcement learning and by neuroimaging methodolo-
gies that probe the underlying neural mechanisms. Tightly

constrained game theory paradigms such as the Trust Game
and Prisoner’s Dilemma have provided insight into common
behaviors observed in dyads, including trust, fairness, social
punishment and social learning (Fehr and Gächter, 2000; Nowak
et al., 2000; Sanfey et al., 2003; Delgado et al., 2005; Behrens et al.,
2008; Rilling and Sanfey, 2011). The now common pairing of
fMRI methods with computational modeling has allowed for

https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsaa053#supplementary-data
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Fig. 4. (A) Activation in dmPFC and left TPJ was parametrically modulated by the advantageous timing regressor during the outcome screen (MNI coordinates in

Supplementary Table S2). Brain images are presented in radiological convention. (B) Each subject’s dmPFC, lTPJ and dlPFC contrast parameter estimate and variance

estimate were extracted and z-scored to enable activation comparison across subjects. We observed a dissociation in which positive activation in dmPFC correlated

with advantageous timing, whereas activation in dlPFC did not. This pattern is the reverse of that found for opponent sensitivity in which the dlPFC (and not the

dmPFC) was positively correlated with opponent sensitivity. The lTPJ was found to be correlated with both opponent sensitivity and advantageous timing. Bar height

shows subject-level mean z-score parameter estimate; error bars denote standard error of the mean. See Materials and Methods for ROI definitions.

Fig. 5. (A) rTPJ and dmPFC activation was stronger when preparing to play a trial (during the opponent screen phase) against the human opponent, compared with trials

against the computer opponent. Brain images are presented in radiological convention. (B) Scatter plot showing each subject’s z-scored rTPJ beta coefficient during

the opponent screen phase preparing to play against the human opponent (x-axis) vs playing against the computer opponent (y-axis). The shaded region indicates

numerically greater TPJ response to a human component compared with a computer opponent; a substantial majority of subjects exhibited that pattern in their data,

consistent with a social bias toward the human opponent.

more nuanced hypotheses regarding possible latent variables
that play a key role in social decision-making, such as trust,
influence of one’s actions on an opponent and learning rates
of both self and other (Behrens et al., 2008; Hampton et al.,
2008; Kwak et al., 2014). Furthermore, across multiple studies
investigating social decision-making, a core network of brain
regions has been frequently implicated in social information
processing, including the dmPFC, dlPFC and the TPJ. Despite the
progress in this vein of research, there still exist many open
questions.

One such question is to what extent these neuroscientific
findings extend to dynamic social interactions like those
observed in naturalistic settings (Zaki and Ochsner, 2009; Iqbal
et al., 2019; McDonald et al., 2019)—answers to which will be
critical for advancing the field. Indeed, the participant does
not in fact need to know which opponent (human/social
or computer/nonsocial) they are playing against in order to
win. We thus interpret this aspect of our paradigm as a
feature that strengthens the conclusions we can draw: brain
regions associated with social cognition become engaged even
under highly abstracted conditions with minimal social cues
(Carter et al., 2012; Lee and Harris, 2013). Current research

using even more naturalistic social stimuli, such as virtual
reality interactions with other agents in an environment, could
contribute additional insights about how more complex social
conditions (e.g. seeing an opponent’s face or hearing their voice)
influence the mechanisms of choice (Zaki and Ochsner, 2009;
Vodrahalli et al., 2018).

Our paradigm allowed us to infer how different brain regions
distinctly contributed to the computational process of making a
complex competitive decision against an opponent. Our research
thus builds on an important vein of game theory literature that
examines human behavior in dynamic contexts, such as study-
ing sequential decisions in which people aim to establish a good
reputation for future interactions (Weigelt and Camerer, 1988;
Milinski et al., 2002; Brandt et al., 2003). Multi-round interactions
with the same individuals allow for computational claims to
be made about how people signal a group-beneficial play style
in games such as Prisoner’s Dilemma (Brandt et al., 2003), how
past behavior can lead to inference on an agent’s reputation
(Weigelt and Camerer, 1988) and under what conditions do the
goal of establishing a pro-social reputation affect varying levels
of public good contributions (Milinski et al., 2002). We integrated
this idea of reputation by including an opponent experience

https://academic.oup.com/scan/article-lookup/doi/10.1093/scan/nsaa053#supplementary-data
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variable ranging from 0 (first trial) to 1 (last trial) which reflected
potential strategic adaptation over the course of the experiment
between participant-goalie pairs.

Our finding that activation in dlPFC tracked opponent
sensitivity during game play is consistent with findings from the
social cognition literature suggesting that the dlPFC is involved
in adapting one’s actions after observing the actions of an
opponent (Barraclough et al., 2004), as well as generating social
action prediction errors (Burke et al., 2010; Suzuki et al., 2012).
In addition, the dlPFC is commonly active in tasks involving
cognitive control and complex decision-making (Dunne and
O’Doherty, 2013; Leong et al., 2017; Frings et al., 2018). Importantly,
control analyses ruled out alternative explanations for these
effects. Neither overall motor demands (e.g. number of direction
switches in a trial) nor self-sensitivity (e.g. influences of
one’s own prior actions upon behavior) modulated activation
in dlPFC, indicating that this action reflected information
specific to the dyadic interaction between players. This provides
support for the view that dlPFC activation does not reflect
motor planning demands but, instead, tracks a task-relevant
opponent whose current and future goals and actions must be
inferred.

We also found that the dmPFC tracked different behavioral
quantities before and after game play. In advance of the
task, activation in dmPFC predicted opponent sensitivity on
the upcoming trial; during game play, however, it tracked
the advantageous timing of the participant’s final change in
direction. Considered together, these results point to a higher
level role for the dmPFC in the control of dynamic behavior,
such that it prepares behavior for the current task context—
setting up a strategy in advance of the trial and optimizing the
execution of that strategy during the trial as play evolves. This
corroborates other findings that the dmPFC plays an important
role in representing self-referential outcome in a goal-directed
task (Skerry and Saxe, 2014) and predicting outcomes in social,
strategic contexts (Frith and Frith, 2006; Behrens et al., 2008;
Burke et al., 2010; Lee and Seo, 2016).

While the above prefrontal regions tracked distinct quantities
associated with behavior, activation in the TPJ tracked not only
both of these quantities but also the identity of the opponent,
with evidence for a hemispheric dissociation between these
roles. The right TPJ was preferentially more active for the human
opponent than the computer opponent both during game play
and the pre-trial period in which subjects learned the identity of
the opponent. The right TPJ was also found to be preferentially
more correlated with opponent sensitivity during game play
against the human opponent than during game play against the
computer opponent. This social bias has been found in many
other studies linking the rTPJ to social cognition and theory
of mind processes (Gallagher and Frith, 2003; Saxe and Kan-
wisher, 2003; Carter et al., 2012; Lee and Seo, 2016)—including the
hypothesis that TPJ constructs a task-relevant social context for
adaptive decision-making (Carter et al., 2012; Carter and Huettel,
2013; Hill et al., 2017). In comparison, the lTPJ activation corre-
lated with each of the behavioral measures examined during
game play, suggesting that these quantities computed during
dynamic game play rely on a brain region that support processes
related to inferring the mental states of others (Samson et al.,
2004; Saxe, 2006; Lewis et al., 2011).

One valuable future direction for this work could come
through the use of parallel recording methodologies such as
hyper-scanning, in which the neural activity of both interacting
humans in a given social interaction is compared (Montague
et al., 2002; King-Casas et al., 2005). We have shown that applying

our established computational modeling framework to human
neuroimaging data yields neural activity that overlaps with
many brain regions frequently implicated in social cognition
and value-based decision-making. Thus, it would be particularly
interesting to study the correlated dynamics of both players in
such a setup.

Cognitive neuroscience has revealed neural mechanisms that
underlie strategizing, mentalizing and value-based decision-
making by using simple, constrained paradigms borrowed from
game theory in neuroimaging studies (Sanfey et al., 2003; King–
Casas et al., 2005; Hampton et al., 2008; Yoshida et al., 2010). Mov-
ing forward, combining dynamic paradigms with computational
modeling of behavior will benefit our collective understanding
of how humans interact with each other in social contexts.

Materials and Methods
Subjects

All analyses report data from 75 participants (41 female; mean
age 25.9 years; s.d.= 6.8 years; age range 18–48 years) who played
the Penalty Shot Task against both a human opponent and a
computer opponent while scanned using fMRI. A total of 82
participants were collected; 7 participants were excluded prior
to data analyses due to excessive head motion (3 mm crite-
rion) within the scanner, leaving a total of 75 participants. All
participants were right-handed and free of neurological and
psychiatric disorders, by self-report. All participants provided
written informed consent approved by the Institutional Review
Board of Duke University Medical Center and were informed that
no deception would be used throughout the experiment. Two
additional participants (not included in n = 75) played the role of
the human opponent in the task; each of our fMRI participants
met one of these individuals before the scanning session and
played against the same opponent throughout their session. The
human opponents were not members of the study team and had
no stake in the outcome of the study aside from maximizing
their own compensation.

Experimental design: penalty shot task

The experiment began with a 4 min practice run followed by
three experimental runs of game play, each approximately
12 min long, with short breaks between runs. Participants
played as many trials as they could within each 12 min block;
each participant engaged in roughly 200 trials in total (i.e.
approximately 100 trials per opponent).

Each trial began with a prompt instructing the subject to cen-
ter the joystick, followed by a fixation cross which was presented
for a jittered time interval of 1.0–7.5 s. When the fixation cross
disappeared, the Opponent Screen displayed (for 2 s) the identity
of the opponent on the upcoming trial (either ‘Computer’ or the
name of the human opponent). After a second fixation cross, the
Game Play period started; the participant’s task was to move the
puck across the goal line near the right side of the screen before
the opponent can block them. Each trial lasted roughly 1.5 s.
Following the end of a trial, an Outcome Screen displayed either
‘Win’ or ‘Loss’ to indicate the trial’s outcome. After the experi-
ment, participants completed a post-task survey, were debriefed
and compensated. For full details of the experimental paradigm
including the physical dynamics of both players, see McDonald
et al., 2019. Stimuli were projected onto a screen located in the
scanner bore. The Penalty Shot Task was programmed using the
Psychophysics Toolbox in MATLAB (Brainard and Vision, 1997).
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The task was incentive compatible, in that each trial the
experimental subject won went toward a task bonus that was
paid in addition to the baseline participation rate; similarly,
the long-term participant was paid a separate task bonus for
each trial the participant lost. Thus, both participants were
incentivized to win as many trials as possible.

For detailed descriptions of the algorithm used by the com-
puter opponent and the Penalty Shot Task itself, including videos
of game play, please see McDonald et al., 2019.

fMRI acquisition and preprocessing

Imaging acquisition. Functional MRI data were collected using
a General Electric MR750 3.0 tesla scanner. Images sensitive
to BOLD contrast were acquired using an echo-planar imaging
sequence: [repetition time (TR), 2000 ms; echo time (TE) 28 ms;
matrix, 64 × 64; field of view (FOV), 192 × 192 mm2; flip angle, 90◦;
voxel size 3.0 × 3.0 × 3.8 mm]. Before preprocessing the func-
tional data, we discarded the first four volumes of each run to
allow for magnetic stabilization. We also acquired whole-brain,
high-resolution anatomical scans to facilitate coregistration and
normalization of the functional data (T1-weighted, TR, 8.16 ms;
TE, 3.18 ms; matrix, 256 × 256; FOV, 256 mm; flip angle, 12◦; voxel
size 1.0 × 1.0 × 1.0 mm).

Imaging analysis

Preprocessing was conducted using the FMRIB Software Library
(FSL version 5.0.1, https://fsl.fmrib.ox.ac.uk/fsl/). Motion correc-
tion was conducted using MCFLIRT (Jenkinson et al., 2002). We
removed non-brain material using the brain extraction tool,
BET (Smith, 2002). Intravolume slice-timing correction was con-
ducted using Fourier-space time-series phase-shifting (Sladky
et al., 2011). Images were spatially smoothed using a 5 mm
full-width at half-maximum Gaussian kernel. We then applied a
high-pass temporal filter with a 50 s cutoff (Gaussian-weighted
least-squares straight line fitting, with σ = 50s). Finally, each
run was grand-mean intensity normalized using a single mul-
tiplicative factor. Before group analyses, functional data were
spatially normalized to the standard MNI avg152 T1-weighted
template (2 mm isotropic resolution) using a 12-parameter affine
transform implemented in FLIRT (Jenkinson and Smith, 2001).

Neuroimaging analyses were conducted using FEAT (fMRI
Expert Analysis Tool) version 6.00 (Smith et al., 2004; Woolrich
et al., 2009). The first-level analyses (within-run) used a gen-
eral linear model with local autocorrelation correction (Wool-
rich et al., 2001) consisting of regressors modeling each phase’s
(Opponent pre-trial screen, Game Play screen, Outcome post-
trial screen) time of onset and duration, as well as opponent
identity (human or computer) and trial outcome. In addition, we
included four parametric regressors describing trial-level behav-
ior: (i) mean opponent sensitivity on that trial (orthogonalized
with respect to self-sensitivity), (ii) mean self-sensitivity on that
trial, (iii) the advantageous timing metric on that trial and (iv)
the total number of vertical direction changes made on that trial.
Both main and interaction effects of opponent identity (human
or computer opponent) were included in the first-level models.
We also included nuisance regressors to account for motion.
Aside from the head motion nuisance regressors, all regressors
were convolved with a canonical hemodynamic response func-
tion. To verify that our conclusions about opponent sensitiv-
ity were not biased by the complexity of the model, we ran
a separate, smaller GLM which only included two regressors:
self-sensitivity and opponent sensitivity (orthogonalized with

respect to self-sensitivity). Our key results were all observed in
this simplified model (see Supplementary Figure S3 and Supple-
mentary Table S3).

Data across runs (second-level, within-participant) as well
as data across participants (third-level) were combined hier-
archically using a mixed-effects model (Beckmann et al., 2003;
Woolrich et al., 2004). Statistical significance was assessed using
cluster-thresholding, implemented in FEAT. Z-statistic images
were thresholded using clusters determined by Z > 2.3 and a
corrected cluster significance threshold of P = 0.05 (Worsley).
Statistical overlay images were created using FSLeyes (https://fsl.
fmrib.ox.ac.uk/fsl/fslwiki/FSLeyes). All coordinates are reported
in MNI space.

Neuroimaging subject-level contrast parameter estimates
from bar graphs were conducted by extracting the mean and
variance contrast parameter estimates for each within-subject
region of interest (ROI). ROIs were defined as 8 mm radius
spheres around centroids of the activation regions observed
within dlPFC (MNI −48, 20, 34), left TPJ (MNI −46, −68, 36) and
right TPJ (54, −50, 24). For the control analyses of the left motor
cortex ROI, we extracted the left post-central gurus (PoGy_016)
from the Harvard-Oxford anatomical atlas. Parameter estimates
were converted to percent (%) activation before z-scoring to
enable comparison across subjects in common units. Z-scores
were determined by dividing the ROI’s mean contrast estimate by
the ROI’s variance contrast estimate, to allow for across-subject
comparison. Given that we used functionally defined ROIs to
illustrate the pattern of activation—and to avoid circularity
in our analyses—we do not report significance testing on the
column graphs in Figures 3 and 4.

Supplementary data
Supplementary data are available at SCAN online.
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