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Abstract: Over the last two decades, experimental studies in humans and other vertebrates have
increasingly used muscle synergy analysis as a computational tool to examine the physiological basis
of motor control. The theoretical background of muscle synergies is based on the potential ability of
the motor system to coordinate muscles groups as a single unit, thus reducing high-dimensional data
to low-dimensional elements. Muscle synergy analysis may represent a new framework to examine
the pathophysiological basis of specific motor symptoms in Parkinson’s disease (PD), including
balance and gait disorders that are often unresponsive to treatment. The precise mechanisms
contributing to these motor symptoms in PD remain largely unknown. A better understanding of
the pathophysiology of balance and gait disorders in PD is necessary to develop new therapeutic
strategies. This narrative review discusses muscle synergies in the evaluation of motor symptoms
in PD. We first discuss the theoretical background and computational methods for muscle synergy
extraction from physiological data. We then critically examine studies assessing muscle synergies
in PD during different motor tasks including balance, gait and upper limb movements. Finally,
we speculate about the prospects and challenges of muscle synergy analysis in order to promote
future research protocols in PD.

Keywords: Parkinson’s disease; muscle synergies; motor modules; motor primitives;
electromyography; balance; locomotion; gait

1. Introduction

Parkinson’s disease (PD) globally affects 6.2 million people, representing the second most common
neurodegenerative disorder after Alzheimer’s disease [1]. By 2040, it is estimated that up to 17 million
people worldwide will suffer from PD, thus representing a “Parkinson pandemic” [2]. PD is a
neurological disorder characterized by dopaminergic neuron depletion in the midbrain structure called
the substantia nigra pars compacta and associated with intracellular and extracellular inclusions of
a misfolded protein, α-synuclein [3]. The hallmark motor symptoms of PD consist of bradykinesia
(i.e., movement slowness and reduction), rest tremor, and rigidity (i.e., increased muscle tone with
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“lead-pipe” resistance to passive movement), which are often associated with postural instability in
more advanced disease stages [4]. l-dopa and other drugs acting on dopaminergic transmission are the
most effective medical treatment for motor symptoms in PD patients [5,6]. Nevertheless, therapeutic
management of the advanced disease stages is rather challenging due to complications related to the
chronic intake of drugs, such as l-dopa-induced dyskinesia [5]. Accordingly, clinical strategies to
manage advanced disease stages include pharmacological treatments based on the continuous infusion
of l-dopa/carbidopa intestinal gel or apomorphine, and non-pharmacological approaches based on
deep brain stimulation (DBS) of the subthalamic nucleus and the globus pallidus pars interna [5,7].

A major challenge in the clinical management of PD patients concerns the occurrence of axial
motor symptoms, including balance and gait disorders [8]. Postural instability and gait disturbances,
such as the paroxysmal interruption of locomotion (i.e., freezing of gait) [9], severely affect patient
quality of life by reducing individual independency and increasing the risk of falls and injuries [8].
These symptoms are largely refractory to pharmacological and non-pharmacological treatment [5].
Furthermore, since axial symptoms strongly impact the natural history of PD, they are crucial to
clinically stage the disease, according to the Hoehn and Yahr scale (H&Y) [10]. Despite considerable
scientific efforts to clarify the mechanisms leading to these symptoms [11–13], the pathophysiology
underlying postural instability and gait disorders in PD remains largely unclear [11,14]. Accordingly,
new experimental approaches are required to investigate motor control in patients with PD during
balance maintenance and gait to implement current therapeutic strategies for these symptoms.

Over the last 30 years, innovative computational methods have led to the alternative approach
of analysing muscle synergies in order to study human motor control [15,16]. Muscle synergy is the
coordinated recruitment of a set of muscles, whose activation is strictly balanced in amplitude and
timing with several possible arrangements, to perform purposeful movements [16]. According to the
modular organization of motor control, muscle synergies have been proposed as a physiological model
adopted by the central nervous system (CNS) to flexibly perform movements by minimizing the neural
processing of motor output by producing various muscle patterns [16]. Muscles synergies have been
previously demonstrated in animals [16–22] and healthy humans [23,24]. Moreover, they have also
been examined in patients suffering from neurological disorders, including PD [23].

This narrative review aims to examine previous findings concerning the assessment of motor
symptoms in PD patients through the analysis of muscle synergies. Accordingly, we first discuss
the problem of motor control and the theoretical model of muscle synergies. We then summarise
computational methods currently used to estimate muscle synergies. We critically examine previous
studies addressing this topic in PD. Finally, we discuss technical and clinical challenges and speculate
about the prospects of muscle synergies assessment in PD patients.

2. Muscle Synergies: Theoretical Background

2.1. The Modularity of Movement and Muscle Synergies

The motor system of vertebrates presents countless degrees of freedom, intended as the number
of ways the system can independently vary, due to multiple anatomical (e.g., muscles and joints),
kinematic (e.g., trajectories, accelerations, and velocities) and neurophysiological (e.g., motoneurons
and neuromuscular junctions) variables that determine the execution of movements [25]. Thus, different
combinations of anatomical, kinematic and neurophysiological elements can be used to achieve a
specific and purposeful movement, resulting in many possible ways to perform the same motor task.
Accordingly, the redundancy of the motor system and the problem of motor equivalence (i.e., multiple
solutions to perform the same movement) leads to the question of how the CNS manages such
high-dimensional data and selects one solution from among others [25,26]. Despite the availability
of several equivalent motor solutions, movement execution commonly involves stereotyped motor
behaviours (e.g., locomotion) [26,27]. This suggests that the CNS may adopt predefined strategies
to solve the problem of redundant degrees of freedom and simplify motor control. Accordingly,
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experimental observations [17–20,28,29] support the hypothesis that motor control is based on a
modular structure, consisting of basic configurations of muscle activations (i.e., synergies) whose
variable combination is responsible for several muscle patterns and complex motor behaviours [30].
Hence, through the modularity of movement (i.e., a small number of shared muscle synergies for many
movements), the CNS could effectively reduce high-dimensional data to low-dimensional elements by
using a few combination coefficients [30].

Over the last decades, several theoretical models of modular control have been proposed
(e.g., neuromotor synergies, unit burst generators, spinal force fields) [15,29–31]. However,
new computational approaches and experimental evidence ultimately led to the current concept
of muscle synergies [16]. Depending on the specific motor task to be performed, the CNS manages the
activation levels (spatial domain) and synchrony (temporal domain) of all muscles included in each
synergy [32]. Concerning the temporal domain, in “time-invariant synergies” all muscles within the
synergy are synchronously activated (i.e., without muscle activation delays), while in “time-varying
synergies” each muscle shows a distinct temporal profile (i.e., reciprocal delay in muscle activation) [33].
By scaling amplitudes and muscle activation delays, the linear combination of a few muscle synergies
could allow the CNS to flexibly generate a large number of different muscle patterns [32]. Some muscle
synergies are task-specific, while others may be shared between different motor behaviours [34].
Moreover, sensory feedback helps to modulate the recruitment of muscle synergies and adapt motor
output to the external environment [22,35] (Figure 1).
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Figure 1. A representative example of the number of synergies, motor primitives and motor modules
in animals and humans while walking.

Experimental studies have supported synergistic movement in several motor conditions in
cats [19,20], frogs [16,17,36] and mice [22]. One of the most relevant models comes from the study of
motor control during postural tasks in cats [19]. Electromyographic (EMG) analysis of cat hindlimb
muscles has shown that just four synergies could account for more than 95% of automatic postural
responses during multidirectional postural perturbations [19]. These findings have demonstrated that
even motor behaviour as complex as dynamic balance control can be reconducted to a small number of
coordinative patterns [19]. Similarly, human studies extracted six or fewer muscle synergies during
multidirectional support-surface translations by recording 16 back and leg muscles [37]. Beyond
postural responses, studies in animals [20,22,38,39] and humans [40–42] have examined other motor
behaviours, including locomotion and arm movements, through muscle synergy analysis. Concerning
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locomotion in humans, a specific number of muscle synergies can explain each phase of the gait
cycle [43,44]. Four or five synergies are the minimum number required to sufficiently reconstruct the
measured EMG activity during human locomotion [43,44]. These synergies also contribute to reactive
balance control [45]. Moreover, previous authors have identified a small set of muscle synergies able to
reconstruct a large number of arm movements during multidirectional reaching tasks [42].

Although the neural origin of muscle synergies is highly debated [34,46,47], strong evidence from
animal studies supports the existence of specific neural controllers along the CNS [34]. By using different
stimulation approaches (e.g., microstimulation, N-methyl-D-aspartate iontophoresis, and cutaneous
stimulation), several authors have demonstrated modular movement organization in the spinal cords
of frogs, rats, and cats [15,16,28,48,49]. The activation of spinal interneuronal networks leads to
stereotyped motor patterns of muscles groups, thus unveiling distinct spinal motor modules, including
the central pattern generators for locomotion [50]. Experiments that involved transecting the frog
neuraxis at different levels above the spinal cord have also identified neural circuits expressing
muscle synergies in the brainstem, mainly in the medulla [51]. These experiments have shown
that the brainstem and spinal cord express most of the muscle synergies for motor behaviours
in vertebrates [51]. Conversely, high-level motor structures, including the primary motor cortex
(M1) and other non-primary motor areas such as the supplementary motor cortex and premotor
cortex, likely contribute to the activation and coordination of low-level neural structures to properly
perform complex motor tasks, by selecting a subset of muscle synergies [34,51]. Accordingly, M1
activity relates to EMG patterns during the performance of different motor tasks in monkeys and
cats [38,52,53]. Moreover, an anatomic study in monkeys [54] has demonstrated that M1 includes a
rostral, phylogenetically older portion connected with spinal interneurons (“old M1”), which is likely
involved in synergy modulation [38,51]. Additionally, a rostral, phylogenetically more recent division
of M1 (“new M1”) directly innervates spinal motoneurons and likely activates individual muscles for
more agile movements in primates [51,54]. Furthermore, the study of patients suffering from CNS
lesions has contributed to the understanding of the neural substrate of muscle synergies in humans.
Consistent with animal findings, patients with stroke-related lesions in motor cortical areas have
shown a similar minimum number of muscle synergies to explain a specific amount of data variation
in EMG signals for voluntary movements of the affected and unaffected arms [55]. Also, the two
sets of synergies extracted in the affected and unaffected arms included similar muscle contributions,
suggesting the preservation of low-level neural structures in patients with lesions of motor cortical
areas [55]. Accordingly, the abnormal coordination of muscle synergies due to disrupted descending
motor commands could explain motor performance differences between the affected and unaffected
arms [51,55]. Further supporting this hypothesis, lesions of the spinal motor modules and the loss of
descending motor pathways may explain muscle synergy changes in patients affected by spinal cord
injuries [56,57].

2.2. Methods for Muscle Synergy Extraction

As stated above, muscle synergies are usually extracted from EMG signals [16]. The concept
behind traditional extraction approaches is to identify common EMG patterns recorded from multiple
muscles during any motor activity. A large number of muscle activities can be decomposed or
grouped into a lower number of common activation patterns and relevant weights. For instance,
during human locomotion, foot plantar flexors are used for propulsion in the second half of the stance
phase, when their weight (i.e., “importance”) is highest. However, they are not as important in the
early swing phase when their activity, and thus their weight for that pattern, is close to zero [44,58].
Several unsupervised machine learning methods are available that aim to identify which muscles work
synergistically by linear decomposition of EMG signals [59,60]. In general, these methods attempt to
build a model based on the linear combination of synergies following rules similar to:
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m(t) =
r∑

i=1

ci(t)wi + ε (1)

where m(t) is a vector containing time-dependent activations of the recorded muscles at a specific time
point (or time interval [33]) t, r is the number of synergies, wi is a time-independent vector of weights
(henceforth the motor modules), ci(t) is a time-dependent set of coefficients (henceforth the motor
primitives) and ε is an error [16]. Some of these techniques include principal component analysis (PCA),
independent component analysis (ICA, a special case of blind source separation), non-negative matrix
factorization (NMF), extreme learning machines (ELM) and the generalized tensor decomposition
techniques [16,23,30,59–82].

While they have been shown to have similar performance [59,70], factorization approaches
rely on different assumptions. For instance, PCA assumes that synergies, or the so-called principal
components, are orthogonal (i.e., perpendicular). This assumption produces a unique solution for
every decomposition [30,82]. If synergies are orthogonal, it follows that they are uncorrelated, allowing
for an accurate estimation of how much of the total variance is explained by each synergy. However,
for the orthogonality assumption to be satisfied, PCA must allow for negative motor modules [30].
This is a rather counterintuitive feature since muscle activations can be either positive (i.e., when a
muscle is active) or null (i.e., when a muscle is at rest), but never negative. A method that overcomes
this issue is NMF. As the name implies, NMF constrains the motor modules to be nonnegative,
i.e., either positive or null. This condition allows easier interpretation of the outcomes, especially
in settings such as clinical environments where qualitative interpretability may be of high value.
When considering the NMF method, the linear regression of the R2 vs. factorisation rank [62] and
the threshold on the reconstruction quality [80] are the main approaches to determine the minimum
number of synergies. Conversely, PCA commonly adopts a fixed number of muscle synergies based
on the Kaiser criterion [83].

Figure 2 shows typical NMF output, where non-negative motor modules are represented as
bars. A high bar translates to a high contribution (or importance) of that muscle for that specific
synergy, while a low bar implies the opposite. However, the advantage of being more physiologically
contextualized and understandable for lay readers come at a cost. NMF is obtained with a search
algorithm that starts with random values and iteratively separates the synergies via successive
iterations [84]. This process produces different, though extremely similar, solutions at every run.
Moreover, since the factorized elements are not orthogonal, they are not uncorrelated, notwithstanding
their linear independence (i.e., no synergy can be a linear combination of others) [30,82].

Another important consideration on factorization methods is that each of them can be applied in
many ways and outcomes can vary depending on the initial data conditions. For instance, several
NMF algorithms are based on different mathematical models [63] and an acceptable consistency
in results can only be obtained using different criteria, such as those required to stop the iteration
process once an adequate number of synergies is found [62,63]. The necessary process of filtering
EMG data before factorization is another factor that can influence outcomes. Studies have shown that
it is possible to find filtering configurations that reduce the variability of the obtained NMF when
calculations are done several times on the same data set [62,78,80]. Moreover, the way initial random
values are selected before starting NMF plays a role in the quality of the calculated synergies [64].
Additionally, the number and choice of recorded muscles and gait cycles have been shown to influence
factorization [74,75]. Indeed, the number of extracted synergies can change according to the number
and type of muscles recorded (e.g., upper and lower limb muscles alone or in combination) [62,74].
Choosing at least 10 superficial muscles and recording at least a few tenths of gait cycles may be
the best method to obtain consistent results [74,75]. Direct comparison of studies from different
research groups also suffer some difficulties because both motor modules and primitives can undergo
arbitrary normalisation procedures. Another important point is that approaches such as PCA, NMF,
and ICA only allow for the identification of dependencies between two factors: motor modules (spatial
factor) and motor primitives (temporal factor) [67]. When more than two factors are present in the
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analysis (e.g., when analysing synergy dependence on locomotion speed or motor task), a sophisticated
statistical analysis must be custom built due to the low consensus currently in literature [67]. To solve
this issue, a generalization of matrix decomposition, i.e., tensor decomposition, has been proposed
in recent years [66,67,81]. A matrix is a two-dimensional tensor, but tensors can accommodate more
than two dimensions, with the third being the locomotion speed and/or locomotor task, for example.
This allows for all factors to be included in the decomposition, thus basing the entire analysis on the
same statistics rather than on different approaches (e.g., NMF/PCA/ICA and then analysis of variance,
or ANOVA) [66,67,81].
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Figure 2. Muscle synergies for human walking. Exemplary motor modules and motor primitives of
the four fundamental synergies for human walking extracted via nonnegative matrix factorization
(NMF) on a unilateral muscle set. Motor modules are presented on a normalized y-axis base
in arbitrary units. For motor primitives, the x-axis full scale represents the averaged gait cycle
(with stance and swing normalized to the same amount of points and divided by a vertical
dotted line), while the y axis represents the normalized amplitude in arbitrary units. Muscle
abbreviations: ME = gluteus medius, MA = gluteus maximus, FL = tensor fasciæ latæ, RF = rectus femoris,
VM = vastus medialis, VL = vastus lateralis, ST = semitendinosus, BF = biceps femoris, TA = tibialis anterior,
PL = peroneus longus, GM = gastrocnemius medialis, GL = gastrocnemius lateralis, SO = soleus.

3. Literature Search Strategies and Criteria

Two independent researchers (I.M., A.Z.) used Medline, Scopus, PubMed, Web of Science,
EMBASE, and the Cochrane Library databases to perform a literature search of studies investigating
muscle synergies in PD. The following keywords were used: “Parkinson’s disease” OR “parkinsonian”
OR “parkinsonism” AND “electromyography” OR “EMG” OR “factorization” AND “muscle synergies”
OR “muscle coordination” OR “motor control” OR “motor module” OR “muscle modes” OR “motor



Sensors 2020, 20, 3209 7 of 21

primitives” AND “bradykinesia” OR “rigidity” OR “tremor” OR “balance” OR “postural responses” OR
“gait” OR “locomotion” OR “movements”. Hyphens and inverted commas were used to consider all
possible keyword combinations. Experimental studies based on EMG recordings that were published
from January 2000 to April 2020 were considered for eligibility. Also, references of each matched
article were carefully examined so as not to exclude related articles that were not identified in the
electronic databases. To avoid terminology confusion, we only included findings from previous studies
investigating muscle synergies intended as coordinated groups of muscle activation that are strictly
balanced in amplitude and timing with several possible arrangements [32], also called muscle modes
by some authors [71]. We did not address the topic of synergies as a pathological pattern of muscle
activation [85] or as a neural organization of elements for the maintenance of motor stability through
the concept of variables “abundance” [86]. Reviews, reports, and articles in languages other than
English were also excluded from the literature search. Eligible studies were first collected based on the
title and abstract. Afterwards, full texts were evaluated according to the inclusion and exclusion criteria.
Extracted data included the demographic and clinical features of PD patients (e.g., sex, age, weight,
height, disease duration, clinical phenotype, disease staging and severity, therapy), experimental
protocols (e.g., recorded muscles, tasks, synergy extraction) and outcome measures (e.g., muscle
synergies and related parameters).

4. Muscle Synergies in Parkinson’s Disease

Ten research articles investigated muscle synergies in PD patients [71,83,87–94]. According
to the aim of the study, the research articles could be divided into three main groups: (i) six
articles investigating muscle synergies during postural tasks with and without external perturbations
(balance) [71,83,89–91,93], (ii) three articles investigating muscle synergies during walking tasks
(locomotion) [87,88,93], and (iii) two articles investigating muscle synergies during upper limb
movements (resting tremor and reaching) [92,94]. Three out of the six articles investigating
muscle synergies during postural tasks in PD were reported by a single research group [71,83,90].
A different team of researchers conducted two out of three studies examining muscle synergies
during walking [87,88]. Lastly, two articles [89,94] re-analysed data already discussed in other
manuscripts [71,83,92].

Previous studies enrolled PD patients according to different inclusion criteria, including
(i) diagnosis of idiopathic PD [71,83,87–94], (ii) absence of clinically overt postural instability [71],
(iii) absence of other neurological disorders [89,90] or any other comorbidity possibly affecting motor
control, including polyneuropathies or significant visual, vestibular, or musculoskeletal disorders [91],
(iv) absence of cognitive impairment [91,92], and (v) ability to independently perform the experimental
motor tasks in any state of therapy, including active and inactive deep brain stimulation (respectively
DBS-ON and DBS-OFF) [90]. Demographic and anthropometric data considered in most of the studies
included: (i) age, (ii) body mass, (iii) height, (iv) sex, (v) disease onset side, and (vi) disease duration.
One study also reported the number of years under therapy with DBS [90]. Each study investigating
muscle synergies in PD enrolled a mean of 10 patients.

Most studies used the Unified Parkinson’s Disease Rating Scale (UPDRS) part III [71,83,88–93] and
the H&Y [83,91–93] to assess motor symptoms in PD patients. Two studies provided information about
patients’ clinical phenotype (i.e., tremor dominant or postural instability/gait difficulty dominant) [92,93].
Only half of the studies [83,91–93] specified the disease stage by including patients with early (i.e., H&Y
I-II) and mid (i.e., H&Y III) disease stages. Only one study [91] also used the Berg balance scale to
examine postural control in PD patients. Some authors evaluated cognitive function through the
Mini-Mental State Examination [91,92]. Four studies reported the L-Dopa equivalent daily dose to
calculate the total amount of drug intake [71,83,90,92].

The experimental tasks used to assess muscle synergy in healthy subjects (HS) and PD patients
included several setups based on the motor behaviour to be studied. Balance evaluation employed
various motor tasks such as quiet standing [71,83,90], self-triggered postural perturbations [71,83,90],
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and multidirectional external perturbations [91]. Furthermore, locomotion was analysed by measuring
muscle synergies during overground walking [88,93] and walking on a treadmill [87,88]. Only one
study [92] investigated muscle synergies in upper limb movements of PD patients during resting
tremor and reaching tasks.

All studies investigated muscle synergies in PD patients under dopaminergic therapy (ON
therapy), whereas only three studies [83,88,91] examined patients who were not under dopaminergic
therapy (OFF therapy). ON therapy referred to 1–3 h after the last drug intake [83,88,91,92] or a
self-determined best medical condition [93], whereas OFF therapy required at least 12 h of drug
withdrawal [83,88,91].

All studies recorded EMG signals from a set of 22 muscles of the upper limb, upper body, or lower
limb by using surface electrodes. Figure 3 summarises the recorded muscles according to the motor
tasks. Six studies extracted muscle synergies by applying the NMF approach combined with the
variability accounted for (VAF) (i.e., the correlation coefficient between measured EMG signals and
reconstructed EMG signals) [87,88,91–94], whereas the rest used PCA with factor extraction after
Varimax rotation [71,83,89,90]. Major metrics used in the statistical analysis were: (i) number of muscle
synergies at the 95% VAF [87,88,91,93]; (ii) amplitude of the individual contribution of each muscle to
the muscle-weighting vectors [87,88]; (iii) amplitude and timing of the activation profile [87,88,92];
(iv) %VAF for the individual muscle [87,88]; (v) total %VAF [88,91]; and (vi) total variance of the first
four muscle modes [71,83,89,90].
 

 

Figure 3. Muscles recorded by surface EMG to analyse muscle synergies in Parkinson’s disease patients during postural, walking and reaching tasks. 
Figure 3. Muscles recorded by surface EMG to analyse muscle synergies in Parkinson’s disease patients
during postural, walking and reaching tasks.

4.1. Balance

Concerning balance, Falaki et al. [71] used the PCA technique to assess muscle pattern during
self-triggered postural perturbations (i.e., upright voluntary sway, fast sway, and a load release
task), showing that in PD patients the first four muscle synergies accounted for a lower variance
in muscle activation than in HS. In a further study in PD patients, the same authors [83] also
demonstrated that the first four muscle synergies accounted for a higher amount of variance in
patients ON as compared to OFF therapy. Conversely, a third study from the same authors found
that DBS leaves these measures unchanged in patients with PD [90]. By adopting the NMF approach,
Allen et al. [93] demonstrated post-rehabilitative improvement of within- and between-synergy
structures (i.e., consistency, distinctness, and generalizability) without changes in the number
of synergies during multidirectional translations of the support surface in PD patients. Lastly,
Mileti et al. [91] demonstrated that PD patients without clinically overt postural instability use a lower
number of synergies than HS to maintain upright stance in response to external postural perturbations
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around the vertical axis. These measures were unresponsive to L-Dopa and correlated with cognitive
and motor function, as reflected by mini-mental state examination scores and the “body bradykinesia”
subitem of the UPDRS-III.

4.2. Locomotion

Concerning locomotion, Rodriguez et al. [87] measured EMG activity from eight leg muscles
bilaterally during a 10-min walking task on a treadmill, demonstrating that PD patients require fewer
synergies for the reconstruction of muscle activation patterns than HS. Moreover, PD patients showed
abnormal motor primitives (or activation profiles) both in amplitude and timing as compared with
HS, but similar motor modules (or muscle weights). The same authors [88] also demonstrated that
dopaminergic therapy does not affect the number, structure, or timing of muscle synergies while
walking. Muscle synergies correlated with walking speed during ON therapy, but not with stride time
or length [87,88]. Similar to balance evaluation findings, Allen at al. [93] reported a post-rehabilitative
improvement in consistency, distinctness, and generalizability in muscle synergies during locomotion,
whereas the number of muscle synergies remained unchanged.

4.3. Upper Limb Movements

Regarding upper limb movements, Hu et al. [92] analysed the effects of transcutaneous electrical
stimulation of the radial nerve on resting tremor and reaching movements in PD patients. The authors
found that this experimental intervention modulates the time profile amplitude of muscle synergies
differently during resting tremor and reaching tasks, but does not influence the number of synergies.

The demographic and clinical features of the PD patients included in these studies investigating
muscle synergies are summarised in Table 1. Moreover, a detailed description of the methods and
findings from these studies is reported in Table 2, excluding the two manuscripts [89,94] that re-analysed
data already discussed in other research articles [71,83,92].
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Table 1. Demographic and clinical features of Parkinson’s disease patients in studies investigating muscle synergies.

Sex
(F/M)

Age
(years)

Body
Weight

(kg)

Height
(m)

Disease
Duration
(years)

Onset
Side

(L/R/B)

Clinical
Phenotype
(TD/PIGD)

H&Y
UPDRS-III

BBS MMSE
LEDD
(mg)

DBS
(years)ON OFF

[87] - 67 ± 8 80 ± 14 1.7 ± 0.1 - - - - - - - - -

[88] 2 F
66 ± 7 77 ± 9 1.7 ± 0.1 4 ± 2 - - 37 ± 7 41 ± 10 - - - -

7 M

[71] 6 F
4 M

69 ± 6 - - 3.5 ± 1.9
3 L

- 14 ± 10 - - - 412 ± 191 -6 R
2 B

[83] 4 F
6 M 69 ± 6 80 ± 15 1.7 ± 0.1 6 ± 4

3 L
5 R
2 B

II-III 18 ± 10 27 ± 11 - - 578 ± 144 -

[90] 10 M 61 ± 10 - - 11 ± 5
3 L
6 R
1 B

- 27 ± 12 *
37 ± 22 ** - - - 715 ± 444 1.57 ± 1.2

[91] 10 M 61 ± 4 - - - - I-II 21 ± 8 32 ± 11 53 ± 5 29 ± 2 - -

[92] 2 F
64 ± 10 - - 7 ± 4 - 10 TD II-III 19 ± 4 - - 30 ± 1 423 ± 213 -

8 M

[93] 1 F
5 M 64 ± 17 72 ± 13 1.8 ± 0.1 7 ± 5 -

1 TD
4 PIGD

1 Undet.
I-III 30 ± 5 - - - - -

* refers to active Deep Brain Stimulation (DBS-ON); ** refers to inactive Deep Brain Stimulation (DBS-OFF); B: Bilateral; BBS: Berg Balance Scale; DBS: Deep Brain Stimulation;
H&Y: Hoehn and Yahr scale; L: Left; LEDD: Levodopa Equivalent Daily Dose; MMSE: Mini-Mental State Examination; PIGD: Postural Instability/Gait Difficulty dominant; R: Right;
TD: Tremor-Dominant.
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Table 2. Experimental studies investigating muscle synergies in Parkinson’s disease.

[Ref] Subjects State of Therapy Recorded Muscles Experimental Task Synergy Extraction Main Findings Conclusions

[87]
15 PD
and

14 HS
ON

Eight leg muscles
bilaterally: SOL, GM, TA,

VM, RF, SM, BF, GLM

10 minutes walking
on a treadmill NMF and %VAF

95% of PD require four or fewer muscle
synergies, compared to 57% HS. Similar

muscle weights but shifted muscle activation
profile in PD. Association between walking

speed and total %VAF in PD

Altered timing of modular
activation may be

responsible for abnormal
motor control during gait

in PD, rather than different
muscle weighting vectors

[88] Nine
PD

ON
and
OFF

Eight leg muscles
bilaterally: SOL, GM, TA,

VM, RF, SM, BF, GLM

Overground walking
and walking on a

treadmill
NMF and %VAF

No differences between ON and OFF therapy
for total %VAF, NoS and the muscle weighting

vector. Negative correlation between total
%VAF and walking speed, but no correlations

with other spatiotemporal gait parameters

Dopaminergic therapy
does not influence the

number, structure or timing
of muscle synergies

[71] 11 PD
11 HS ON

13 leg and trunk muscle
of the right side:

TA, SOL, GM, GL, BF, ST,
RF, VL, VM, TFL, ESL,

EST, RA

Quiet standing,
voluntary sway,

releasing a load and
fast body motion

PCA analysis with
Varimax rotation

and factor
extraction

Four muscle synergies identified using PCA
with rotation. Muscle synergies account for a
lower amount of variance in PD (71.5±1.74%)
than HS (78.3±1.74%). Muscle synergies are
predictors of centre of pressure changes in

all subjects

Organization of muscles
into muscle synergies is

less consistent in PD
compared with HS

[83] 10 PD ON and OFF

13 leg and trunk muscles
of the right side:

TA, SOL, GM, GL, BF, ST,
RF, VL, VM, TFL, ESL,

EST, RA

Quiet standing,
voluntary sway,

releasing a load and
fast body motion

PCA analysis with
Varimax rotation

and factor
extraction

Four muscle synergies identified using PCA
with rotation. Muscle synergies account for a
larger amount of variance in PD during ON
(74.7±2.4%) than OFF (68.6±2.2%) therapy.
Muscle synergies are predictors of centre of

pressure changes

In PD, dopaminergic
therapy makes the

organization of muscles
into muscle synergies more

consistent during
postural tasks

[90] 10 PD ON with DBS-OFF
or DBS-ON

Three leg and trunk
muscles of the right side:
TA, SOL, GM, GL, BF, ST,

RF, VL, VM, TFL, ESL,
EST, RA

Quiet standing,
voluntary sway,
releasing a load

PCA analysis with
Varimax rotation

and factor
extraction

In postural tasks, four muscle synergies were
identified using PCA with rotation. Muscle

synergies account for similar amounts of
variance in DBS-OFF (75.3±2.9%) and

DBS-ON (75.1±2.9%). Muscle synergies are
predictors of centre of pressure changes

regardless of DBS status

DBS does not influence the
organization of muscles
into muscle synergies

[91]
10 PD
and

10 HS
ON and OFF

six upper body muscles
bilaterally: PM, DP, BB,

TB, EXOB, ESL

Standing while
balancing external
yaw perturbation

NMF and %VAF

Higher values of total %VAF in PD than HS
for NoS less than 4. Similar total %VAF

during OFF and ON therapy. NoS positively
correlate with MMSE scores and negatively

with sub-item 3.14 of UPDRS-III
(“body bradykinesia”)

PD use a lower number of
muscle synergies to

maintain balance. l-dopa
does not influence muscle

synergies during yaw
postural perturbations.
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Table 2. Cont.

[Ref] Subjects State of Therapy Recorded Muscles Experimental Task Synergy Extraction Main Findings Conclusions

[93] 6 PD ON

13 lower back and right
leg muscle: RA, EXOB,

EST, GLM, TFL, BF, VM,
GM, GL, SOL, PL

Overground walking
trial and standing
while balancing a

ramp-and-hold
external perturbation

before and after a
rehabilitation

program (three weeks
of daily adapted

tango classes)

NMF and %VAF

No differences in NoS after rehabilitation
training. Rehabilitation improves motor
module distinctness (i.e., well-defined

biomechanical output between modules),
consistency (reduced variability within motor

modules) and generalizability (increased
sharing of motor modules across gait and

balance tasks)

Within- and
between-module

parameters
(e.g., consistency,
distinctness and

generalizability) reflect
motor performance in PD

better than NoS

[92]
10 PD
and 8

HS
ON

Six right arm and upper
body muscles: PM, DP,

BB, TB, FR, ER

Resting tremor and
reaching task with

and without
transcutaneous

electrical stimulation
of the radial nerve

NMF and %VAF

Three muscle synergies were found both in
resting tremor and in reaching tasks.

Cutaneous stimulation does not alter synergy
vectors, but differently change the time profile
of muscle synergies during resting tremor and

reaching tasks

The different effects of
cutaneous electrical

stimulation on vector
patterns and the time

profile of muscle synergies
may imply different spinal
pathways for these signals

%VAF: Variability Account For; BB: biceps brachii; BF: biceps femoris; DBS-OFF: inactive deep brain stimulation; DBS-ON: Active deep brain stimulation; DP: deltoideus – posterior portion;
ER: extensor carpi radialis; ESL: erector spinae lumbar region; EST: erector spinae thoracic region; EXOB: external oblique; FR: flexor carpi radialis; GL: gastrocnemius lateralis; GLM: gluteus medius;
GM: gastrocnemius medialis; HS: healthy subjects; MMSE: Mini-Mental State Examination; NMF: Non-Negative Matrix Factorization; NoS: Number of Synergies; OFF: not under
dopaminergic therapy; ON: under dopaminergic therapy; PCA: Principal Component Analysis; PD: patients with Parkinson’s disease; PL: peroneus longus; PM: pectoralis major;
RA: rectus abdominis; RF: rectus femoris; SM: semimembranosus; SOL: soleus; ST: semitendinosus; TA: tibialis anterior; TB: triceps brachii; TFL: tensor fasciae latae; UPDRS-III: Unified Parkinson’s
Disease Rating Scale- part III; VL: vastus lateralis; VM: vastus medialis.
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5. Discussion

To date, several studies have examined muscle synergies in PD patients to investigate
pathophysiological mechanisms underlying motor symptoms and the effect of dopaminergic therapy.
To this aim, several authors have used multiple motor tasks primarily involving balance and locomotion
to examine muscle synergy in PD.

When comparing PD patients and HS, despite the different experimental approaches used to
assess muscle synergies (e.g., muscle sets and data processing techniques), all studies consistently
found a similar number of synergies between groups during postural and walking tasks [71,87,91].
Also, Allen et al. [93] demonstrated a similar number of muscle synergies before and after a specific
neurorehabilitation protocol in PD patients. Lastly, in addition to balance and locomotion, a further
study in PD patients examining upper limb movements (tremor and reaching) also confirmed
a comparable number of synergies before and after non-pharmacological intervention based on
peripheral nerve electric stimulation [92]. However, the amount of variance in muscle activation
that can be explained by a fixed number of synergies differed in PD patients as compared with HS,
with some inconsistency. By considering an equal number of muscle synergies, Mileti et al. [91]
and Rodriguez et al. [87] both observed higher %VAF values in PD patients as compared with HS.
Conversely, Falaki et al. [71] found a lower amount of variance in PD patients than in HS. However,
the authors considered higher [87,91] and lower %VAF values [71] as a measure of lower motor
performance in PD patients as compared with HS, making it difficult to consistently interpret these
findings. There are multiple explanations for the inconsistencies among studies, including differences
in patient clinical features, methodological approaches for muscle synergy extraction, and motor
tasks used. Moreover, concerning locomotion, walking speed is a further confounding factor to be
considered [95]. However, due to the small number of studies investigating this issue in PD and the
lack of experimental assessments with muscle synergy analysis in PD animal models, it is currently
difficult to reach a definitive conclusion. Despite some inconsistency among studies, some parameters
obtained from muscle synergy analysis could distinguish between PD patients and HS. More in detail,
when considering a fixed number of synergies, the main differences between PD patients and HS
would regard the %VAF and measures of within- and between-synergy structures primarily related to
the motor primitives [87,93]. A similar consideration applies when considering the effect of L-Dopa on
muscle synergies. Mileti et al. [91] and Roemmich et al. [88] demonstrated similar muscle synergies in
PD patients under OFF and ON therapy during postural and locomotion tasks, seemingly consistent
with the clinical observation that axial motor symptoms are frequently unresponsive to therapy [8].
In contrast with these findings, Falaki et al. [83] reported a more consistent organization of muscle
synergies associated with an increased amount of %VAF during postural tasks in the ON as compared
to OFF state in PD patients. Moreover, the same authors [90] found that DBS does not influence postural
performance in PD patients, a finding possibly consistent with the poor DBS-related improvement
of axial motor symptoms. Findings concerning muscle synergies in PD agree with previous studies
in patients affected by other CNS disorders. Indeed, patients with stroke or cerebral palsy have
shown heterogeneous changes in muscle synergies based on the lesion extent and location [96–98].
For instance, cortical damage in patients with stroke did not affect the internal structure but changed
the modulation, of muscle synergies [55]. Conversely, extensive hemispheric strokes or brain injury in
cerebral palsy significantly impacted on the number and structure of muscle synergies [97,98]. All these
observations support the hypothesis that, in humans, high-level nervous structures coordinate and
modulate muscle synergy controllers that are likely localised in the spinal cord and brainstem [34].

Overall, when considering the inconsistencies among studies, several clinical and technical issues
should be noted. One of the main clinical concerns regards the sample size and heterogeneity of
patient cohorts. All studies on muscle synergies in PD patients included a small number of subjects
(10 patients per study on average), thus implying low statistical power. Moreover, these studies mostly
showed poor clinical characterization of PD patients. Accordingly, to improve the scientific quality
and resolve open clinical questions, future studies should enrol larger numbers of patients. Moreover,
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strict inclusion criteria should include only patients selected according to the current gold standard
diagnostic criteria [4] and exclude those with neurological and other medical comorbidities that may
impact motor control. Demographic and anthropometric features of enrolled subjects should always
be reported. Furthermore, PD patient assessment should include evaluation of the clinical phenotype
(i.e., tremor dominant or postural instability/gait difficulty subtypes), as well as the severity and staging
of the disease through standardized tools such as the UPDRS and H&Y. The use of standardized
clinical scales is required to accurately select homogeneous cohorts of PD patients affected by a specific
clinical phenomenon. Cognitive and psychiatric disturbances, including mood disorders, should
also be evaluated through standardized clinical scales such as the Montreal Cognitive Assessment,
outcome scales in PD cognition, or the hospital anxiety and depression scale. According to the specific
symptoms investigated, additional standardized clinical scales, such as the Berg scale for balance,
the new freezing of gait questionnaire for freezing of gait, or the Timed Up and Go test for locomotion,
should be adopted. This would allow a better investigation of possible clinical-behavioural correlations
that could support the overall interpretation of findings. Lastly, a further crucial point in PD patients
concerns the evaluation of L-Dopa effect. Indeed, the effect of PD per se can be distinguished from the
effect of dopaminergic therapy only by comparing measures in patients OFF and ON therapy. Similarly,
when examining the effect of DBS, all measures should be collected in patients under DBS-OFF and
DBS-ON conditions, while OFF and ON therapy.

Several studies have provided methodological recommendations to allow a more comprehensive
analysis and guarantee comparability of results [59,74,75,78,80,99,100]. Recommendations reported in
previous studies, such as the number and selection of muscles [74], pre-processing techniques [75],
filtering processes [62], number of trials [75], or factorization algorithm selection [59,62], have only
partially been applied to PD cohorts. Moreover, both reliability and repeatability of EMG factorization
play an important role in the correct interpretation of muscle synergies [62,80,95]. Hence, to validate
the use of muscle synergies in PD, the repeatability of the synergy structure should be examined by
analysing intra-trial and intra-day changes. Analysis of intrasubject repeatability, both intra- and
inter-day, has already been investigated in HS [80,101]. In more advanced PD stages, motor fluctuations
(OFF/ON phenomena and L-Dopa-induced dyskinesia) invariably occur and lead to dissimilarity and
poor repeatability in muscle synergy measurements. The introduction of a standardized protocol to
manage parkinsonian motor fluctuations and achieve acceptable measurement repeatability would
likely enhance the significance of muscle synergy analysis in PD. Moreover, a deeper analysis on a wider
set of indices applied to motor modules and primitives, such as the short-term maximum Lyapunov
exponent [58], Higuchi’s fractal dimension [102], the Hurst exponent [103], cosine similarity [35,104],
R2 [62], full width at half maximum [44], and the centre of activity [105] could be useful in determining
whether there are indices capable of discriminating parkinsonian motor symptoms with higher
sensitivity than current measures. Lastly, defining comprehensive guidelines that take into account
protocol design, data analysis, and the selection of sensitive indices would result in a more accurate
analysis of muscle synergies in PD and lead to a better understanding of the pathophysiological basis
of specific motor symptoms.

6. Prospects and Conclusions

Muscle synergy analysis may identify changes in PD patients, providing meaningful information
about the pathophysiology of specific motor symptoms, such as locomotion and balance disorders.
However, the specific CNS structures responsible for abnormal muscle synergy in PD patients
remain largely unknown. Previous experimental studies in animals have demonstrated that under
physiological conditions the central generators of muscle synergies are primarily located in lower-level
CNS structures, such as the spinal cord and brainstem [34,51]. These lower-level structures are
coordinated by higher-level regions, including the basal ganglia and cortical motor areas such as M1,
the supplementary motor area, and the premotor cortex [34,51]. To date, the lack of experimental
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studies with muscle synergy analysis in animal models of PD makes it difficult to reach definitive
conclusions about the pathophysiological role of abnormal muscle synergy in PD.

According to the current theoretical model of functional changes in the basal ganglia circuits in PD,
neurodegeneration of the substantia nigra pars compacta leads to striatal dopaminergic denervation.
As a result, the output nuclei of the basal ganglia, including the substantia nigra pars reticulata and
globus pallidus pars interna, increase their inhibitory projections to cortical areas and the brainstem.
Accordingly, dysfunctional basal ganglia circuits lead to abnormal activation of multiple subcortical
dopaminergic and non-dopaminergic structures involved in balance and locomotion, such as the
mesencephalic, cerebellar, and subthalamic locomotor regions [106]. In addition to the substantia
nigra pars compacta, PD is also associated with neurodegeneration of intrinsic brainstem structures,
further contributing to the abnormal control of spinal generators of muscle synergy. Besides basal
ganglia, cerebellum likely contributes to supraspinal modulation of muscle synergies in PD [107],
according to its function in posture and gait control [108,109]. The cerebellum would play a key
physiological role in the modulation of the temporal profile of muscle activation during single-joint
as well as multi-joint movements [107]. Hence, the observation that L-Dopa exerts a poor effect on
muscle synergies during balance and locomotion may reflect the pathophysiological involvement of
non-dopaminergic pathways. This hypothesis is consistent with the clinical observation that axial
motor symptoms, such as balance and gait disorders, are commonly unresponsive to L-Dopa in PD [8].
Accordingly, future studies should clarify whether alternative nonpharmacological treatments, such as
those based on sensory cues [110–112], improve balance or gait in patients with PD by enhancing the
activation of muscle synergies. For instance, in the context of gait, rhythmic patterns of auditory stimuli
could lead to more synchronous motor behaviour by facilitating gait initiation [112–114], restoring
normal patterns in gait execution [115], reducing the variability of musculoskeletal activations [116],
and recruiting more consistent motor units [116] in PD patients.

In conclusion, this narrative review was designed to assess previous studies addressing muscle
synergies in PD patients during specific motor tasks (e.g., balance and locomotion). Accordingly,
we have first examined the theoretical background and computational methods of muscle synergies
under physiological conditions. Then, we have critically discussed previous findings on this topic in PD,
showing possible inconsistencies among studies. We have also speculated about the potential impact
of muscle synergy analysis in providing new insights into the pathophysiology of PD motor symptoms,
such as locomotion and balance disorders. Lastly, we have provided several recommendations for
better designing future studies based on larger and more homogeneous cohorts of PD patients.
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Abbreviations

CNS Central Nervous System
DBS Deep Brain Stimulation
ELM Extreme Learning Machine
EMG Electromyography
H&Y Hoehn and Yahr
HS Healthy Subjects
ICA Independent Component Analysis
M1 Primary Motor Cortex
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NMF Non-Negative Matrix Factorization
PCA Principal Component Analysis
PD Parkinson’s Disease
UPDRS Unified Parkinson’s Disease Rating Scale
VAF Variability accounted for
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