ﬂ SCNSors m\py

Article
Vision Based Wall Following Framework: A Case
Study With HSR Robot for Cleaning Application

Tey Wee Teng, Prabakaran Veerajagadheswar *, Balakrishnan Ramalingam‘”, Jia Yin,
Rajesh Elara Mohan and Braulio Félix G6mez

Engineering Product Development Pillar, Singapore University of Technology and Design (SUTD);
Singapore 487372, Singapore; weeteng_tey@sutd.edu.sg (T.W.T.); balakrishnan@sutd.edu.sg (B.R.);
yin_jia@mymail.sutd.edu.sg (J.Y.); rajeshelara@sutd.edu.sg (R.E.M.); brauliofelixgomez@gmail.com (B.F.G.)
* Correspondence: prabakaran@sutd.edu.sg

check for
Received: 14 May 2020; Accepted: 6 June 2020; Published: 10 June 2020 updates

Abstract: Periodic cleaning of all frequently touched social areas such as walls, doors, locks,
handles, windows has become the first line of defense against all infectious diseases. Among those,
cleaning of large wall areas manually is always tedious, time-consuming, and astounding task.
Although numerous cleaning companies are interested in deploying robotic cleaning solutions,
they are mostly not addressing wall cleaning. To this end, we are proposing a new vision-based wall
following framework that acts as an add-on for any professional robotic platform to perform wall
cleaning. The proposed framework uses Deep Learning (DL) framework to visually detect, classify,
and segment the wall/floor surface and instructs the robot to wall follow to execute the cleaning task.
Also, we summarized the system architecture of Toyota Human Support Robot (HSR), which has
been used as our testing platform. We evaluated the performance of the proposed framework on
HSR robot under various defined scenarios. Our experimental results indicate that the proposed
framework could successfully classify and segment the wall/floor surface and also detect the obstacle
on wall and floor with high detection accuracy and demonstrates a robust behavior of wall following.

Keywords: wall following; CNN; HSR robot: wall cleaning; FCN8; SSD MobileNet; visual servoing

1. Introduction

Cleaning of high-touch areas in a physical environment is very critical in preventing the spread
of infectious diseases. One of the recent surveys on COVID-19 spread shows that the common mode
of infection spread is by touching infected surfaces [1]. The frequently touched areas that include
walls, doors, locks, handles, windows need to be cleaned within a fixed time interval. Among those,
cleaning of large wall surfaces manually is always seen as a tedious, time consuming, and astounding
task. Also, during the period of spread, there is a high possibility and risk where a human cleaner
may get infected. To overcome such bottlenecks, and to reduce the risk of infection transmission,
the cleaning contractors are encouraged to use robotic solutions by every developed nation. The use
of robotic cleaners for professional cleaning services has been increased gradually in the past few
years. Recent research done by the robotic industrial association states that more than 3000 industrial
cleaning robots will be sold between 2019 and 2021. Successful market players include avid bot,
eco bot, lions bot, Adlatus robotics and so on. Even though there are numerous market available
robotic platforms which are considered as a replacement for the professional cleaners, most of these
systems are concentrated only in floor cleaning, and not considered the wall cleaning. In the past two
decades, numerous wall cleaning robots were researched with the wall climbing capability.

For instance, robots that climb vertical surfaces by vacuum-suction to a surface were created
for the very purpose of wall cleaning. These adhesive robots are, however, known to carry the risk

Sensors 2020, 20, 3298; d0i:10.3390/s20113298 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-3243-9814
http://dx.doi.org/10.3390/s20113298
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/11/3298?type=check_update&version=2

Sensors 2020, 20, 3298 2 o0f 24

of it falling off due to several factors, one being, moving on a wall which causes air leakages due
to its unevenness. A prototype was also made using dry-adhesives to allow the robot to scurry
up walls in a lizard-like fashion [2]. Due to its lightweight, this robot is about to move quickly up
walls with close to no resistance. However, it is unable to carry a payload heavier than itself [3].
Another example of a wall-climbing robot was also invented which is able to respond to various
adhesion statuses of the wall and ensure the robot applies the right amount of suction to prevent
it from falling [4]. However, with solely suction and lack of foundation built from the ground up,
these wall-climbing robots will always pose a threat of falling and injuring passersby and also the
environment by damaging buildings, floors, or statues. Rope climbing robots have also been invented
for an additional level of safety [5]. However, not all walls have hooks in which a robot can support
itself on. Also, most such climbing based wall cleaning robots concentrate on facades and often require
human support to transfer from one wall to another. One alternate solution that was researched deeply
in the past decades is using mobile based robots with wall cleaning mechanisms.

When we use a mobile robot to clean a wall, it is critical to detect and follow the wall. So far,
numerous techniques have been used to detect the wall and follow it. For instance, robots using
laser sensors have been used to ensure the robots stay on its path and are aligned to its path plan [5],
such methods allow the robot to make real-time decisions when it comes to clearing obstacles and
avoiding running into people. Sensors on the wall following robots have proven to be an easy way of
ensuring it follows its projected trajectory while avoiding obstacles. However, it is also known that
sensors have a limited view of their path in which they have to follow [6]. This creates a problem when
it is implemented in robots as obstacles could come from any direction and it is important that the
system is able to detect this. To overcome this problem, another robot was invented with 24 sensor
inputs, ensuring all possible views were covered and given to the robotic system [7]. These sensors
were implemented on the robot’s waist and will only send a signal when it is close to a wall. Due to
the height in which these sensors are placed, the robot will not consider hanging walls with no base
(or receded base) and will move away from them, deviating from its purpose. However, robots that
implement the use of sonar technology to aid in wall-following also exist [8]. Thus, despite its
promising use, sonar technology has a lot of noise generated when receiving information back into the
robot and would make filtering what is an obstacle or wall difficult to execute. Therefore, to effectively
follow walls, the robot needs to see it from where it starts on the ground to where it ends before the
ceiling, with as little difficulty and post-processing as possible. The robot also has to ensure it can
avoid obstacles in real-time, further preventing any injuries from occurring during its operation.

Computer vision fused with Machine Learning (ML) and Deep Learning (DL) has become one
of the emerging techniques. It has been widely used in image classification, image segmentation,
object detection and tracking. It is also used in autonomous vehicles and mobile robot vision system
for segmentation and recognition of objects in images. In the DL framework, Convolutions Neural
Network (CNN) is the critical component for recognizing and locating the object in the captured
image. In [9] CNN and Deep Belief Network (DBN) are combined for autonomous vehicle obstacle
detection systems, where CNN is used for obtaining local information of objects and DBN is used for
obtaining the global information of images. The combined architecture trained using KITTI data-set
got an accuracy of 91.46%. Hua et.al developed an obstacle avoidance system for an outdoor robot.
The authors used the dual-stage RGB-D semantic segmentation network ‘RedNet” and morphological
processing algorithm in the robot vision system to detect the obstacles [10]. The dual-stage obstacle
detection framework obtained 96.3% obstacle detection rate for indoor and 93.8% for outdoor. Another
work has reported CNN based obstacle detection system in a complex environment. A four-layer
CNN was used for feature extraction and SVM for classification. The network was trained with 10,000
images and detected the obstacles in the street with 83% accuracy [11]. Kore and Suchitra [12] proposed
the real-time obstacle detection on-road using CNN, Local Binary Pattern (LBP), Local Ternary Pattern
(LTP) and Gabor filter. Here, LBB, LTP and Gabor filter are used for feature extraction and CNN for
obstacle detection. The methodology have a detection rate of 86.73% with 4% false rate. Bi-directional

Sensors 2020, 20, 3298 3of24

feature pyramid based hybrid CNN network was proposed by Li et al. [13] for deploying the obstacle
avoidance system in unmanned surface vehicles. The Hybrid CNN network was built by combining
the ResNet and DenseNet CNN framework and gained 93.80 mean Average Precision (mAP) for
testing with the USVD2018 data-set.

Besides, DL algorithms are widely used in cleaning robots for trash detection, path planning
and ARM manipulation, etc. In [14] author uses the deep learning framework in cleaning robot for
recognizing and localizing the trashes from the robot vision module, where the author used deep CNN
based semantic segment framework SegNet for segmenting out the ground region from other areas
and ResNet for object detection and localization. The author reported that the combined approach
obtained 96% trash detection accuracy and took 10.3 ms for ground segmentation and 8.1 ms for
trash recognition. DL based object detection algorithms include SSD MobileNet, Faster RcNN ResNet
and Yolo v2 are used to evaluate the trash and stain detection for cleaning robot application [15].
The author report that SSD MobileNet is an optimal algorithm for cleaning robot trash and stain
detection, which provides a good balance between accuracy and computation cost. A deep learning
architecture based autonomous cleaning robot was developed with learning ability to generate 2D
trajectories from a human kinesthetic samples Jia Yin et al. [16,17]. Ref. [18] proposed a deep-learning
framework for table cleaning tasks using Human support Robot. The authors used a 16 layer CNN
framework build on the darknet framework. The developed model detects the food stain and food
trash on the table with 95% detection accuracy. Taking account of the above facts, in this paper, we are
proposing a novel vision-based wall cleaning framework that acts as an add-on for any professional
robotic platform to perform wall only cleaning.

The proposed framework is constructed with two deep learning framework to visually detect and
segment the Wall/floor area and detect the floor obstacle and wall objects usually embedded on the
surface such as doors, pipes, racks, switchboards, fire extinguishers and so on. Once the features on
the walls are extracted, the system process the feature using a visual servoing technique to execute
the robot wall following. The major challenges encountered during the development of the proposed
scheme were its training of large data set, the integration of visual servoing techniques, autonomous
operation and translating the theoretical design into a physical Human Support Robot (HSR) robot
system. All these aspects are detailed in this paper, and concluded with the experimental results that
validate the proposed scheme and its ability to wall follow with the HSR robot under three different
scenarios. The proposed scheme is first of its kind that can perform visual based wall only following.
The proposed scheme is an initial design towards the autonomous wall-following technique that can
perform multiple tasks on a wall surface such as cleaning, painting, crack inspection, and so on.

This paper is organized as follows: Introduction, motivation, and literature review in Section 1,
Section 2 discusses the proposed system, and Section 3 discusses HSR configuration. Experimental
results are detailed in Section 4. Finally, Section 5 concludes this research work.

2. Vision Based Wall Following and Obstacle Avoidance Framework

The main objective of our proposed system is to use a mobile robot to autonomously follow
the wall for cleaning the wall surfaces that have been frequently touched. Figure 1 shows the flow
diagram of the proposed system that enables the wall following ability of any mobile robot. In this
paper, we utilized Toyota Human Support Robot as a case study to evaluate the scheme. Algorithm 1
shows the execution flow of the wall following and obstacle avoidance system. The first step of our
proposed method is to segment the wall and floor surface from the image that was captured from the
front camera of the robot by utilizing the semantic segmentation CNN model, FCN8 [19]. Once the
segmentation is completed, we separate the wall surface and floor surface by applying the mask
on the segmented wall and floor region on the segmented image and passed it to the next stage for
further processing. In every wall and floor surface, there are few objects that need to be avoided
that include obstacles on nearby wall and objects fixed in the wall include door, switch boxes, pillars,
fire extinguishers, sandal racks, and so on. To identify such objects, we adopt SSD MobileNet object

Sensors 2020, 20, 3298 4 of 24

detection framework [20-22] as a next step. These objects will be identified from the masked segmented
wall and floor images, which is used as primary information by the system to decide whether to follow
the wall or not. If there is no object detected nearby the wall, the visual servoing technique gets
activated to generate the trajectory to follow the wall. The generated trajectory is then subscribed by
the velocity controller to produce a motor primitive that executes the locomotion. The detail of each
module is described as follows.

Algorithm 1 Wall Following and Obstacle Avoidance

1:
2:
3:
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:

16:
17:
18:
19:
20:
21:
22:

23:

24:

25:
26:
27:

28:
29:
30:

31:
32:
33:

Input:
Image capture from HSR vision system
Output:

. Alert signal (Alert_HSR) to HSR for obstacle avoidance and safe cleaning

Initialize:

: Cis an Camera

: Fis an Image frame

: Segment_array: hold the segmented image

: Wall_Segment: hold the segmented wall image

Floor_Segment: hold the segmented floor image
Object_wall: hold the detected objects on wall
Object_floor: hold the detected objects on floor
Initialize End

Begin:

while (1) do

F = Capture Frame (C)

Segment_array = FCN8_ segmentation(F)

Wall_Segment = Segment_array && floor_mask ; mask the floor

Floor_Segment = Segment_array && wall_mask ; mask the wall

Object_wall = SSD_MobileNet (wall_segment) ; Object detection on segmented wall region
Object_floor = SSD_MobileNet (floor_segment) ; Object detection on segmented floor region
Distance_floor-obstacle_wall (wall_segment, floor_segment) ; compute the distance of

the detected floor object from wall
Wall_Object-distance_ground(wall_segment, floor_segment) ; compute the distance of the

detected wall object from ground
if (Distance_floor — obstacle_wall) then

Alert_HSR(obstacle near by wall) ; Alert to HSR to avoid obstacle on path
end if
if (Wall_Object — distance_ground) then

Alert_HSR(object on wall) ; Alert to HSR for cleaning modules safe operation
goto — Begin
else

goto — Begin
end if
end while

Sensors 2020, 20, 3298 50f 24

TOYOTA

Figure 1. Overview of the Proposed Scheme.

2.1. Fully Convolutional Network for Wall Segmentation

In this work, FCNS8 is used for segmenting out the wall and floor region from captured
image [19,23]. It is the first semantic segmentation based CNN framework developed by
Shelhamer et al. [19]. Figure 2 shows the internal architecture of FCNS8. It comprises three key
components including convolution network and deconvolution network and SoftMax probability
function for finding the pixel class. FCN8 adopts VGG16 architecture for the convolution network,
which contains 15 convolution layers, five 2 x 2 max-pooling layer and stride function 2 between
convolutions layers. In the convolution network, each pooling layer down-sample the input by a
factor of 2 both horizontally and vertically. In the fifth pooling layer, the input image is downscaled
by a factor of 32. The deconvolution network is placed after the last fully connected layer of the
VGG16 network. The deconvolution layer performs the up-sampling task (make the output equal
to the size of input image) using unpooling operation. To overcome the spatial information loss by
convolution network, layer 4 and 3 of VGG16 was connected with layer 9 and 10 of deconvolution
network and upsampled for 2 times to match with dimensions of layer 4 and 3. Finally, for generating
the full-resolution segmentation map similar to input image size, the FCN Layer-10 is upsampled 4
times in FCN layer 11 using following parameters 16 kernel, stride = (8,8) and paddding ('same’).

224 x 224 x64
224 x 224 x class
112 x 112 x 128
56 x 56 x 256
28 x 28 x 512 28x28xclasses
14 x 14 x classes
14 x 14 x 512
‘ 7x7x 4096 \ ‘
Layerl Layer2 Laye 3 Laye Layer5 1x1 Convolution
[comvotuton]
1
|| MaxpootingConvoluion et |
VGG 16 convolution network FCN 8 layers deconvolution network

Figure 2. FCN8 Network architecture.

2.2. Obstacle Detection Framework

Obstacle detection is a key function in our proposed system. It helps the robot to avoid the
obstacles nearby wall and also helps to prevent the cleaning module collision with objects fitted in the

Sensors 2020, 20, 3298 6 of 24

wall while performing the cleaning task. To perform obstacle and object detection, a deep-learning
based object detection framework is adopted in this work. Generally, an object detection framework is
two types, one-shot detector and two-shot detector. The one-shot detector is quite fast contrast with
two-shot approach algorithms such as Regional proposal networks (RPN). The single-shot algorithm
requires one shot to detect multiple objects inside the image, while the RPN series (Fast RCNN,
Faster RCNN) required two shots, one for producing the region proposals and another for detecting
the object from generated proposals. Moreover, SSD is a lightweight framework widely used in mobile
robot applications and also run in low power embedded devices. Hence we adopt the SSD framework
for the obstacle detection task. In this work, SSD is combined with MobilNet feature extractor instead
of VGG16 feature extractor to detect the obstacle and objects in real-time.

The Figure 3 shows an overview of the SSD MobileNet object detection framework. Here, SSD is
run on top of the MobileNet framework and performs the object localization task, which uses the
MobileNet as a feature extractor. In SSD, VGG-16 is a default feature extractor and classification
network. However, in this work, VGG-16 is replaced by the MobileNet feature extractor, which is
introduced by google. MobileNet is an optimized deep neural network architecture that will run very
efficiently on mobile devices and low computing CPU.

E Point wise Depth wise Point wise

x1, 3x3 1x1, \@
Relué And Relué Relué

yo
| Conv1 to conv5 blocks
H/—/ Conv4 Output
i AN Conv7 Detection Non Gl
| 5 \ v < N Detection
| Ly Convg Result Maximum N
| ! | Cond Integration suppression it
| i Bounding
H i Conv10
| : .—>1,, Box
RN,
A i
MobileNet V2 SSD Extra-feature layers

Figure 3. SSD MobileNet functional block diagram.

In MobileNet framework, conventional convolutional layers are modified by depthwise separable
convolution layers and pointwise convolution function. Here, the depth wise functions perform deep
convolutional operations using 3 x 3 kernels and pointwise convolutional are common convolutional
layers that use the 1 x 1 kernels. Further batch normalization and ReLU 6 is applied to each
convolutional result. The batch normalization functions fine-tune the data by setting the learning
parameter, adjusting the learning rate, dropout ratio and restricts the gradient disappearance.
The combination of deep wise and point wise convolutions structure activate the MobileNet to
speed up the learning process and also reduce the computation time. Finally, the model has a residual
connection, which gives the architecture a better accuracy compared to non-residual architectures.

In our work, MobileNet v2 is adopted for feature extraction, which is an updated version on
MobileNet V1. The Figure 4 shows the difference between the MobileNet V1 and MobileNet V2
architecture, where depthwise separable convolutional blocks and pointwise convolutional layers
similar to V1. However, there is a slight change in the structure of the convolution layers. Here, the first
layer is 1 x 1 convolution with ReLu6 and the second layer performs the depth-wise convolution
operation and third layer does the 1 x 1 convolution without any non-linearity. Further, the residual
layer structure of MobileNet v2 is modified based on the structure of ResNet architecture, which helps
to improve the accuracy of depthwise convolution layer without having large overhead. Bottleneck
layers that reduce input size are also used. An upper bound is applied to the ReLU layer, which limits
the overall complexity.

Sensors 2020, 20, 3298 7 of 24

Input Output next layer

—_—

Depth wise Convolution 3 x 3 Point wise Convolution1x 1,

MobileNet V1 and Relué Relu6

Input Output next layer
J— Point wise Convolution1x 1, Depth wise Convolution 3 x 3 Point wise Convolution1x 1, .
MobileNet V2 Relu6 and Relu6 Relu6

Residual Bottleneck connection

Figure 4. Difference between MobileNet V1 and MobileNet V2.

To carry out the obstacle and object detection task, SSD replaces the final few fully connected
layers in MobileNet with additional convolution layers to localize and detect objects using the feature
maps. It includes the pyramid structured multiple auxiliary convolutional layers on top of MobileNet
to extract the feature maps at different resolutions. In SSD, six output feature maps are used for
detecting the class of an object and localizing the form of a bounding box where first two (19 x 19) are
taken from MobileNet feature extractor and remaining feature maps (10 x 10,5 x5,3 x 3,1 x 1) are
generated by auxiliary convolution layers.

While training, the loss for each prediction is computed as a combination of the confidence loss
Leonfidence and location 10ss Ligeation (Equation (1)). The confidence loss is the error in the prediction
of class and confidence. The location loss is the squared distance between the coordinates of the
prediction. A parameter « is used to balance the two losses and their influence on the overall loss.
This loss is optimized through the use of the Root Mean Squared gradient descent algorithm [24].
This algorithm computes the weights w; at any time ¢ using the gradient of loss L, g; and gradient
of the gradient v; (Equations (2)—(4)). Hyperparameter j,# are used to balance the terms used for
momentum and gradient estimation, while € is a small value close to zero for preventing divide by
Zero errors.

1
L= N(Lconfidence + D‘Llocation) 1
vr = o1+ (1— Bt @
-1
A = ——
w rt ~e X gt (3)
Wry1 = Wy + Aw (4)

2.3. Visual Servoing

The main objective of the visual servo scheme is to design a velocity controller for a robotic
system that minimizes the error e generated between a chosen visual features s and its desired values
s* in the image frames [25]. Since our aim is to design a control function that could curtail the error
value e = [s — s*]7, the features need to be selected that can be visually traceable by the vision
system. Also, it is critical to choose the right feature with respect to the application. In our case, we are
following the wall with a particular distance in order to clean the wall surface. So, the first feature
that we chose was 6,,, made by the z-axis of the robot’s vision system with respect to the wall/floor
separation line of the corridor. This feature will be zero when the robot is looking forward and the
camera is parallel to the wall surface. The x-coordinate x,; of the center point in the detected object
obr = (X5, Yop) at the time instant ¢ is chosen as second feature. Both the features could be extracted
from the output images of the CNN network. Figure 5 illustrates the operational flow of our wall
following algorithm. The algorithm initially checks the non wall features in the output images from the
CNN. According to the findings, the algorithm decides whether to follow the wall or to avoid them.

Sensors 2020, 20, 3298 8 of 24

yes

1No

Figure 5. Operational Flow Diagram.

During the wall following operation, the system first took the feature information and navigates
in consonance with the relative position and orientation with respect to the separation line.
While navigating, the path has been generated up-to the goal point P; which is calculated from
the constant look up distance L from the center of the camera. For every new frame, the P, will be
increased for the L distance according to the current position of the robot. The relative position is
calculated from the robot starting point and the off-set distance D;, which will be used as a gap that
needs to be maintained from the wall. The relative orientation is calculated as deviation from the
detected feature 6,,, i.e., @ — 0y, shown in Figure 6. Based on the kinematic model of the desired robot
and with the shown model, we can able to generate the velocity commands for the robot.

Wall/Floor
Separation Line

View
Xt'(lmrzfam

HSR Robot

Sl

Xrabm:: yrabm:

Figure 6. HSR robot navigates along a wall/floor segmentation line.

As mentioned earlier, the key distance value that our system needs to maintain to achieve the
wall following operation is Dy. These values will always be constant unless there is an obstacle
detected in the frame. When the obstacle is detected, the D, will be increased and the value will

Sensors 2020, 20, 3298 9 of 24

be calculated not from the wall separation point but from the center point of the second detected
feature x,;,. According to the selected feature, the feature error was generated, which aids in producing
the velocity commands in the velocity controller. The velocity values are passed to the robot controller
unit which converts the commands to appropriate motor RPM with reference to the robot’s kinematics.
The robots wall following motions are generated which will update the image frames and its features.
The feature errors are again calculated and the same process is continued till the robot completes the
task. The feedback loop of the proposed system is shown in the Figure 7.

Switch
between wall
follow and Feature
avoidance error
Desired feature - —) —
—o0

Actual
Feature

Figure 7. Feedback control loop for wall following.

3. HSR Robot

In this article, we utilized Toyota HSR as our experimental platform to validate the proposed
system. This section describes the HSR robotic architecture which provides an overall view of the
implementation of the proposed scheme, autonomous navigation, and the perceptional components
that aids in system execution. HSR is a mobile manipulator platform developed by Toyota which
consists of a set of different sensor and actuator modules. The robot is equipped with an RGB-D
camera (specification on Table 1) on top of its head with a display, manipulator with four degrees of
freedom, mobile base module, and system body module which consist all computational equipment
shown in Figure 8. The system runs with the Robot operating system (ROS). All operations of wall
following runs under the ROS architecture. The ROS system enables the connection and linkage
between the perceptional modules and the execution modules. All positional transformation of
each module is pre-linked in the system which gives better localization values. The positional
transformation all done in the 3D space wich will be used in our susyem to estimate the selcted
feature. Figure 9 shows the schematic representation of HSR hardware architecture configuration,
which comprises of two computing units, namely primary computing, and secondary computing.
The first computing system is where we run our primary OS ubuntu within the ROS system will be
functioning. This computing system takes the authority to communicate between each controllers,
drivers that runs sensors and actuators. Also, this computing device is taking the lead manages
all types of communication between the user. The display of HSR is connected with the primary
computing system internally to monitor the process.

Table 1. RGB-D camera specification.

Specification Details

Dimensions 18 x3.5x%x5

Resolution SXGA (1280 x 1024)

Field of View 58° H, 45° V, 70° D (Horizontal, Vertical, Diagonal)
Distance of Use Between 0.8 m and 3.5 m

Power Consumption Below 2.5 W

Data Rate 800 kb/s

Sensors 2020, 20, 3298 10 of 24

—p Display

HEAD 3 Camera

R\ ‘h—» Gripper

e Manipulator

\l

LED Strip
BODY —=<

Lidar
BASE
Figure 8. HSR robot System.
PRIMARY COMPUTING SECONDARY COMPUTING
DEVICE DEVICE
RGB-D | _ * FCN]
Camera T ! Segmentation E
""" Visual T,
Servoing be---le . SSD Mobile i
___Scheme___} L. Newok
Planner
Velocity
Controller

Figure 9. HSR computing architecture.

The second computing system is meant to take care of all vision system processes. Nvidia’s
Jetson TK1 board (GPU) is used in the secondary computing unit to execute the vision system
task. This system acts as a slave for the primary computing device, so ROS also consider this
system as a slave device. The primary function of this system is to compute all the received
images and convert the information into ROS message format and sends back to the master system.
Also, this system is responsible for receiving the ROS messages and decodes to pass it to the deep
learning framework. Both the primary and the secondary systems are connected over Transmission
Control Protocol/Internet Protocol (TCP/IP) and share all the ROS topics.

To execute the wall following task, the primary computing system activates the ROS connection
and establishes the communication between each module. Once the connection is established, the ROS
system takes over to execute the wall following function. The first step that the system performs is
to activate the RGB-D camera and convert the video stream into separate image frames to pass it to
the secondary computing for processing. The secondary system runs the FCN8 framework and SSD
MobileNet framework to perform the segmentation process and object detected process respectively.
The processed images are passed back to the ros layer as appropriate ros messages.

It is critical for the robot to properly localize itself for a robot to perform error-free navigation.
The HSR is built with various sensors that can be used as and fused to perform localization. In our case,

Sensors 2020, 20, 3298 11 of 24

we fused various sensors information such as 2D lidar, camera, wheel encoder, and the IMU to identify
the current location. We used traditional SLAM [26,27], and localisation [28] techniques to perform
the localisation. We utilized preexisting ROS packages to run on the ROS networks. Once the robot is
activated the ROS system starts running the localization module to get the global position of the robot.
Eventually, the ROS layer sends the request to the secondary computing device to share the feature
information. Once these two information’s are available, the system calculates the relative position as
explained in the previous section. With respect to the field of view from the camera, the goal point has
been defined which generates the path and velocity commands.

The velocity commands are subscribed by the velocity controller which produces the motor
primitives. The HSR motion is designed under the principle of differential drive, so the controller
generates two main motor frequency Lyym and Rpwn. The HSR equipped with the 24 V DC motor
that drives the robot. These motors are connected with the motor driver which is controlled by the
arm controller that communicates with the robot’s primary computing system. Modification of the
HSR robot needs to be carried out by attaching the cleaning payload on both sides to execute the wall
cleaning task. The cleaning payload consists of a rotating mechanical brush that cleans high touch
areas on the walls. The rotating mechanism works by securing a motor to the brush. When power
is supplied, it will allow the brush to rotate. The CAD model of the modified HSR robot is shown in
Figure 10. However, this paper focuses on the successful completion of the wall following without
the cleaning payload. The Figure 10 is provided to give an overview idea of our proposed system’s
end application.

Figure 10. HSR Robot with cleaning payload.

4. Experimentation and Results

This section describes the experimental procedure and results obtained from the proposed system.
The experiment was designed with three steps: data-set preparation and training the deep learning
frameworks, evaluating the trained model in offline using indoor data-sets and testing with HSR robot
platform. Here, the segmentation model performance was evaluated with pixel classification accuracy,
Intersection Over Union (IoU) and F1 score metrics [19] and obstacle detection model was assessed
through precision (Equation (5)), recall (Equation (6)) and F1 score metrics (Equation (7)) .

Sensors 2020, 20, 3298 12 of 24

.. tp
Precision(Prec) = 5)
(Prec) tp+ fp
Recall(Rec) = = Tfn (6)

2 x precision X recall

F k)=
measure(1) preCiSiOT’l + recall

@)

Here, tp, fp, tn, fn represents the true positives, false positives, true negatives and false negatives
respectively as per the standard confusion matrix.

4.1. Data-Set Preparation and Training

The data-set preparation process involves collecting indoor images with different obstacles and
different wall and floor background. We collect the data-set from existing indoor image database
through online [29-36] for both corridors and the obstacle images. However, some obstacles data is not
clear and not from the perspective of the robot. So we used the robot camera to capture a few images
of the obstacles from the perspective of HSR robot. The specification of the RGB-D camera is given
Table 2. In total, there are 8000 images collected, which contains various types of obstacles that include
fire extinguisher, photo frame, signboard, wall ornaments (wall clock, decorative lights), safety box,
switch box, furniture (chair and rack), window, door, pipes, dustbin and plant pot. Some sample
images were used for training the segmentation, and object detection network is shown in Figure 11,
and Figure 12 respectively.

Figure 12. Training data set for object detection.

Sensors 2020, 20, 3298 13 of 24

To improve the network learning rate and controlling the over-fitting, the data expansion methods
are applied in collected images. Here, image scaling, rotation and flipping method are used to increase
the number of sample images in the data-set. Further, in our experiment, the image size of (640 x 480)
resolution was used for both training and testing. The collected image data set were separated into for
FCN and the SSD Mobile Network. The corridor’s data sets were trained for the segmentation process
in FCN. On the other hand, we used the obstacle image data set to train the SSD Mobile Network.
The two CNN models (FCN and SSD MobileNet) was developed in Tensor-flow 1.9 Ubuntu 18.04
version and trained using following hardware configuration Intel core i7-8700k, 64 GB RAM and
Nvidia GeForce GTX 1080 Ti Graphics Cards.

Figure 13 shows the results obtained from the training stage for the object detection model.
The training was run 25,000 iterations and tracks the loss functions like classification loss, localization
loss and total loss. In this process, we observe that loss was minimized each iteration. In the starting
stage, the classification loss was above 4.4, the localization loss is above 1.2 and the total loss was
above 8 after 25,000 iteration the total loss,classification loss and localization loss was gradually
reduce and reach bellow 3.2, 2.4 and 0.6. The graph result shows that loss is decreasing over iteration
and loss fluctuation is stable at 25,000 iterations, which indicate that the model converges and is
trained properly.

(a) Classification Loss (b)Localization Loss (c) Total Loss
Figure 13. Training Results.
Optimization

The two networks are trained with mini-batch SGD algorithm and network hyperparameters are
obtained from a pre-trained model VGG16 [37] and SSD MobileNet trained by Ms COCO data-set [38].
The networks were fine-tuned with a batch size of 32 and trained for 10,000 epochs. The network uses
the learning rate of 0.0002 and a momentum of 0.9, respectively. Further, a k-fold cross-validation
procedure is used to evaluate the training image data-set. In this scheme, images are split into k groups
and take k-1 for training the network, and the remaining one set is used for testing. In our work,
we use 10 fold cross-validation scheme. The experimental results images shown are obtained from the
model with good accuracy.

4.2. Offline Test with Indoor Data-Sets Images

To carry out the offline test, the models inference graph is configured into HSR and tested with
four indoor image database include NAVVIS indoor database [33], Quattoni et al. indoor scene
database [34], shih et al. 360-indoor dataset [35] and Adhikari et al. indoor object detection dataset [36].
To verify the robustness of the system, the test images are chosen with different wall and floor colors
and images with different lighting conditions. The object fitted in the wall and located nearby wall are
only considered as an obstacle. There are 1200 images (consider each class 50 count) chosen for the
offline experiment. The segmentation and detection results of the indoor image database are shown in
Figure 14a—i and Figure 15a-i detection, and performance metrics results are reported in Table 2.

Sensors 2020, 20, 3298 14 of 24

© @

(8) (h)

(i)

Figure 14. Offline experiment FCN8 segmentation result.

Sensors 2020, 20, 3298 15 of 24

(8) (h)

(i)
Figure 15. Offline experiment SSD MobileNet Obstacle detection result.

The experimental results indicate that the segmentation framework successfully differentiates the
floor and wall from complex test images includes different lighting conditions and different wall and

Sensors 2020, 20, 3298 16 of 24

floor color and obtained pixel accuracy is above 90%, IoU average of 91.08% and average F1 score of
90.93% respectively. In this experiment, we observe that the fall of detection accuracy in some classes
is due to false classification (ex: false classification between signboard and photo frame) and miss
detection due to the tiny size of objects. (Ex: safety box, switch box). However, this will not heavily
affect the functionality of the robot. Further, the table result Table 2 indicate that the accuracy of SSD
MobileNet frame for obstacle detection is above 90% and detects the obstacles on the wall and nearby
wall with above 92% confident level. The offline experimental result proves that the proposed system
is more suitable for deploying in HSR for real-time obstacle detection and avoidance.

Table 2. Performance measures-SSD MobileNet.

Class Precision Recall F1 Accuracy Confidence Level
Fire extinguisher 94.43 9239 9222 93.55 96
Sign board 91.24 90.31 90.03 90.19 92
Photo frame 90.45 90.09 89.96 90.11 94
wall ornaments 93.50 9327 93.14 93.0 95
switch and safety box 92.75 9233 91.89 92.32 92
Furniture 95.72 9486 94.13 94.33 96
window and door 96.22 96.17 95.92 96.16 98
Dustbin and plant pot 93.65 9334 9293 93.44 96

4.3. Real-Time Test

The Real-time test was performed with HSR robot under various scenarios that have a straight
corridor that exists with few obstacles along the wall surface. Before started the experiment, the robot
was switched on and let the robot to reboot the internal system for few minutes. After the successful
reboot of the robot, the robot will undergo a self-calibration mode, which calibrates the head position,
and arm position to go back to its initial position. Then the robot was drove manually using the joystick
controller to the testing spot. The user specify the wall direction (left or right wall) of which the robot
is going to follow. Once the robot is positioned properly from the starting point, the autonomous
wall following programming will be activated. The robot will start the wall following and avoidance
process for a defined distance. The end distance will be varied according to the corridor chosen
and its length. In the first scenario, we tested the robot on a straight wall with a length of 2 m
shown in Figure 16(top left). In the second scenario, we chosen a straight wall with a distance
of 1.7 m Figure 16(top right). In the final scenario, the corridor is chosen for a distance of 2.3 m
Figure 16(bottom). In all considered scenarios, there are unique obstacles presented along with the
wall surface. Our aim behind conducting this experiment is whether the robot could able to avoid
those obstacles with the proposed scheme and only follows the wall. In the coming section, we have
discussed on the results which we separated as neural network results and wall following results
which is an outcome of visual servoing.

The experimental trials were initiated by manually driving the robot to test scenario 1 starting
point. Then the autonomous wall following scheme was initiated. Once the program starts executing,
the camera got activated to publish the image frames to the secondary computing device. The trained
model of FCNS that is running on the secondary system starts to segment the images as floor and wall.
The Figure 17(left) shows some of the segmented images during the experiment-I trials. The result
demonstrates the ability of the system to successfully segment the image frame as wall/floor and could
identify the separation line. In this case, the wall/floor segmentation has obtained high pixel-wise
accuracy of 89.2 %. Further, the output image is again processed for detects the obstacles that present
along the wall surface. Figure 18(left) shows the output of the SSD mobileNet that shows the detected
obstacle on the segmented wall surface, in a closed-door scenario. For such obstacle detection,
the system has detected the obstacle with 95% confidence level.

Sensors 2020, 20, 3298 17 of 24

Figure 16. Experimental Scenario-1 (top left), Scenario-2 (top right), Scenario-3 (bottom).

Wall/Floor Separation line

Figure 17. Wall/floor segmented result of scenario-1 (left), scenario-2 (middle), scenario-3 (right).

& I

Scenario 1 Scenario 2 Scenario 3

Figure 18. Object detection result during trials in scenario-1 (left), scenario-2 (middle),
scenario-3 (right).

Sensors 2020, 20, 3298 18 of 24

In the second set of experiments, the robot is placed in the starting point of scenario 2.
We followed the same procedure to perform the wall following task. In scenario 2, the illumination
was quite dimmer than the previous scenario as you can see in the Figure 16(top right) However,
total successful wall/floor segmented frames that the proposed system obtained 88.5% pixel-wise
accuracy. Further, the obstacle detection algorithm detects the obstacle (PVC pipe) on a segmented
region with 90% confidence level. Figures 17 and 18(middle) illustrates the outcome of the segmented
images and the obstacle detection on the segmented wall surface respectively. Corresponding to the
trial in scenario 3, the procedures were pursued as the previous trials. In this case, the obstacle that
we considered was a shoe rack. In this trial, the illumination is much higher than the first scenario.
Figure 17(right) depicts the results that were generated from the FCN. Throughout the trial, the total
percentage of the number of frames that has been successfully segmented with 89.5% pixel-wise
classification accuracy. Regarding the obstacle detection the Figure 18(right) shows the obstacle
detected frame on the segmented wall surface. In this case study, the object detection algorithm detects
the outdoor obstacle (shoe rack) with 93% confidence level. In this analysis, we observe that there
are some miss classification in the segmentation process. This miss detection was encountered due
to the similarities in the features information between floor and wall, sensor noise, and perspective
viewpoint. We will consider using few depth data directly for the segmentation and identification
process in the future works to reduce the noise and improve the accuracy.

4.3.1. Performance Analysis

Tables 3 and 4 summarise the performance metrics result for offline and real-time case study of
segmentation and obstacle detection results.

Table 3. FCN8 Performance analysis.

Test Model Pixel Accuracy (Average) IOU F1 Score
Offline Test 9141 91.08 90.93
Real time with HSR 88.20 89.61 89.20

Table 4. Performance measures-SSD MobileNet.

Test Type Precision Recall F1 Accuracy
Offline (average result) 93.45 92.84 9252 92.88
Real-time (average result) 90.3 88.7 89.5 86.0

The table results Table 3 indicate that the trained FCN model obtained an average of (offline and
real-time) 89.47% pixel classification accuracy, 89.97% mean IoU, and 89.84% F1 score respectively.
On the other-hand SSD MobileNet detects the obstacle on segmented image region with an
average precision of 91.87% , recall, F1 score and accuracy of 90.77 and 91.01, 89.44 respectively.
The experimental results show that the performance of segmentation and obstacle detection framework
efficiency is stable for both offline and real-time test.

4.3.2. Comparison Analysis of Different Architectures

The performance of the segmentation model and object detection framework was compared
with other popular segmentation and object detection framework. In this analysis, FCN-AlexNet,
FCN16 framework, was considered to compare the performance of the FCN8 segmentation framework.
Similarly, Faster RCNN ResNet and Faster RCNN Inception and YOLO V2 frameworks are used for
comparison with the SSD MobileNet object detection model. The models are trained using the same
data-set and a similar amount of time and tested in NVIDIA GPU cards with 1200 test images used in
the offline experiment. Tables 5 and 6 shows the comparison analysis of different architecture.

Sensors 2020, 20, 3298 19 of 24

Table 5. Segmentation framework comparison analysis.

Algorithm Pixel-Accuracy IOU F1 Score

FCN-AlexNet 83.13 81.30 81.8
FCN16 89.64 89.79 89.88
FCN8 91.41 91.08 90.93

Table 6. Comparison with other object detection framework.

Test Faster RCNN ResNet Faster RCNN Inception Yolo v2
Prec. Recall F; Accuracy Prec. Recall F; Accuracy Prec. Recall F; Accuracy

Fire extinguisher 9733 9691 96.84 96.93 95.12 94.89 94.55 94.07 89.22 88.09 88.02 89.07
Sign board 96.50 96.14 96.05 9628 9392 9350 93.33 9337 86.71 86.18 8590 86.08
Photo frame 96.30 95.79 95.75 95.98 9279 92.63 9231 92.30 86.39 85.13 85.05 85.66
wall ornaments 97.72 9747 9717 97.18 9435 9426 9419 9412 8889 8865 8846 88.55
switch and safety box 93.98 93.23 9294 93.43 91.99 9178 91.76 91.80 8490 8449 8431 84.46
Furniture 9785 9780 9772 9740 96.82 96.56 96.37 9657 90.70 90.12 89.97 90.03

window and door 9725 9718 97.11 97.09 96.29 9592 9586 96.04 8953 89.27 89.16 89.28
Dustbin and plant pot 96.60 96.32 96.28 96.39 95.79 9527 95.25 9520 89.86 89.45 89.33 89.40

The Table 5 results indicate that FCN8 obtained better pixel-wise classification accuracy than FCN
AlexNet and FCN16. Furthermore, the segmentation accuracy of FCN AlexNet is very low for object
class with small pixel areas. Further, object detection comparison results indicate that Faster RCNN
ResNet and Faster RCNN Inception model have better performance than SSD MobileNet and Yolo
framework. However, those model computation time is quite high. Those uses Regional Proposal
Network (RPN) require two-shot to detect the multiple objects in an image (one for generating the
region proposal and one for detecting the object). Hence its computation time is quite high compare
to one-shot detection scheme SSD and Yolo, and hard to run in low power embedded platforms and
mobile devices in real-time. YOLO based object detection models are faster compared to SSD and
RCNN series, but detection accuracy is poor, specifically small object detection. SSD-MobileNet shows
a good balance between accuracy and computation cost and its inference time is quite fast enough to be
used in real-time object detection and obstacle detection task and specifically in mobile robot platform.

4.3.3. Evaluation of Wall Following and Avoidance

We evaluated the wall following the efficiency of the robot under the same set of scenarios.
The wall following algorithm was running in the primary computing device. Once the wall/floor
separation process is done the information of the separation line is passed to the primary device which
runs the visual servoing scheme. The servoing scheme computes and generates the velocity commands
with respect to the Dj, value. Since we are considering the proposed scheme for the wall cleaning
purpose, the radius of the rotating cleaning brush is taken as a D; . So in this case the D} value is taken
as 20 cm. With the defined Dy, value, the robot follows the wall which is visualized in terms of path
on the map as shown in Figure 19(top left). From the image, it is clear that the robot can successfully
follow the wall. Figure 20(top left) shows the series of images taken from the robot’s camera embedded
with timestamps of each frame. The door is actually detected at frame number four with time 00:19.
The graph that depicts the time and Dy, relation in Figure 21(top left) shows the value increasing at
the same time when the door is detected. That shows the accuracy of the robot to detect the obstacles
and the ability to avoid the door. Figure 19(top left) also shows evidence of the avoidance ability of
the robot at the end of the positions. There are few deviations in the path of wall following is due to
the sensor noise that affects the localization and classification errors that happened in the primary
computing device.

Sensors 2020, 20, 3298 20 of 24

&5

NS

Scenario 3
Scenario 1

Figure 19. Generated path of HSR robot after completing the wall following task in scenario 1 (top
left), scenario 2 (top right), scenario 3 (bottom).

Figure 20. Series of image from the hsr robot during the trial with embedded time scenario 1.

In the second scenario, we conducted a similar trial with the HSR robot. Figure 19(top right)
shows the localized position on the map, which is very near and mostly linear to the wall surface.
Series of image frames with the timestamp is shown in Figure 22(top right) in which we can also
witness the detection of PVC pipe at the time 0.20 min. Since the pipe is protruded out from a small
distance, the D for avoidance was increased in order to cross the obstacle. The graph shows the
Dy value with respect to the time of operation is shown in Figure 21(top right). From the above
result, it has been proved that wall following and avoidance of the robot with the proposed system in
scenario 2.

Likewise, in scenario 3, the robot pursued the same procedure to execute the wall following task.
In this trial, the robot is avoiding a shoe rack which is shown in one of the series of Figure 23 that is
embedded on the wall side. Figure 19(bottom) shows the linear path with respect to the wall surface
and gets diverted when it is near to the shoe rack. With regards to the Dy value how the value has
been changed with respect to the time is shown in Figure 21(bottom). From the results, it is clear that
the proposed scheme could significantly improve the wall following efficiency with the HSR robot
and can be extended to a similar mobile robot for various applications. Also, from the results, it is
clear that the proposed methodology can definitely be applied for the wall cleaning task. Through
this study, autonomous vision-based wall following system has been demonstrated in real-time that

Sensors 2020, 20, 3298 21 of 24

inaugurates a significant untapped research and development opportunity related to wall applications
such as cleaning, painting, crack inspection, and so on.

Relation between the D_L value with respect to Relation between the D_L value with respect to
every time instant in Scenario 1 every time instant in Scenario 2
35 35
=30 —~30
S 82
g2 2
S15 S15
<10 — <10
Qs Qg
0 0
8353922888 RARRIIEID 883853 °0 AARNARARRARASS
o o o O O O O © O © O O o © O o 0000000000000 0O0O0O0000O
Time (Min) Time (Min)
Relation between the D_L value with respect to
every time instant in Scenario 3
35
E';m
825
L2
S1s
=10
8 g

Figure 21. Time vs Dy value curve in scenario 1 (top left), scenario 2 (top right), scenario 3 (bottom).

Figure 22. Series of image from the hsr robot during the trial with embedded time scenario 2.

Figure 23. Series of image from the hsr robot during the trial with embedded time scenario 3.

Sensors 2020, 20, 3298 22 of 24

5. Conclusions

In this article, we proposed a novel vision-based wall following framework that acts as an add-on
for any professional robotic platform to perform wall only cleaning. The proposed scheme was
constructed with two separate CNN networks, first is FCN8 which holds the liability of floor/wall
segmentation process, and the second network is SSD mobile network that detects the obstacles
embedded on the segmented wall surface and obstacle near by wall. We introduced visual servoing
technique that uses the features extracted in the CNN layer to generate the motor commands that
enables the robot to perform wall following task. Also, we explained the system architecture of the HSR
robot which we are using as the experimental platform. We conducted experiments on three different
scenarios to evaluate the proposed scheme with the HSR robot. The CNN networks are trained with
various relevant data sets before we conduct the experiments. As per CNN concern, the system
can significantly perform higher wall/floor segmentation rate and obstacle detection rate. The wall
following results are shown as path tracings on the generated 2D map. The generated path tracing in
all the experiments is mostly parallel to the wall which means the robot can successfully follow the
wall surface in all considered scenarios. With respect to the obstacle avoidance, the path track shows
the deviation from the wall surface at particular time instance from where the obstacle is detected.
Overall the system shows significant performance in terms of wall-following tasks. Through this study,
autonomous vision-based wall following system has been demonstrated in real-time that inaugurates
a significant untapped research and development opportunity related to wall applications such as
cleaning, painting, crack inspection, and so on.

There are few deviations in performance is due to the sensor noise that affects the localization and
classification errors that happened in the primary computing device which will be eradicate through
researching on following topics in the future works.

1. Improving the detection rate with training more images and different obstacles.
Extending the proposed framework to other wall following application such as
painting, crack inspection.

3. Optimising the path generation of the robot to perform selective cleaning on wall.

4. Exploring on reinforcement learning techniques with the proposed scheme.

Author Contributions: Conceptualization, P.V.,, REM. and T.W.T,; Data curation, P.V.,, TW.T,, and B.R.;
Investigation, TW.T.; Methodology, B.R.; Project administration, R.E.M.; Software, B.R., B.EG,,].Y,, and P.V,;
Validation, B.E, J.Y. Supervision, R.E.M.; Writing—original draft, T.W.T.; Writing—review & editing, B.R. and P.V.
All authors have read and agreed to the published version of the manuscript.

Funding: This research is supported by the National Robotics Programme under its Robot Domain Specific
(Funding Agency Project No. 192 22 00058) and administered by the Agency for Science, Technology and
Research.

Acknowledgments: The authors would like to thank, the National Robotics Programme, ROARS Lab, and SUTD
for their support

Conflicts of Interest: The authors do not have any conflict of interest.

References

1. Coronavirus Disease 2019 (COVID-19): Situation Report. 2020. Available online: https://www.who.int/
emergencies/diseases/novel-coronavirus-2019 /situation (accessed on 9 June 2020).

2. Cepolina, E; Michelini, R.; Razzoli, R.; Zoppi, M. Gecko, a climbing robot for walls cleaning. In Proceedings
of the International Workshop on Advances in Service Robotics (ASER03), Bardolino, Italy, 13-15 March 2003.

3. Graham-Rowe, D. Wall-Climbing Robot: A Newly Created Robot Improves upon a Gecko’s Sticking
Power. Available online: https://www.technologyreview.com /2007 /04 /30/225854 / wall-climbing-robot/
(accessed on 9 June 2020).

4. Muthugala, M.; Vega-Heredia, M.; Mohan, R.E.; Vishaal, S.R. Design and Control of a Wall Cleaning Robot
with Adhesion-Awareness. Symmetry 2020, 12, 122. [CrossRef]

https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation
https://www.technologyreview.com/2007/04/30/225854/wall-climbing-robot/
http://dx.doi.org/10.3390/sym12010122

Sensors 2020, 20, 3298 23 of 24

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Sun, G,; Li, X; Li, P; Yue, L.; Yu, Z.; Zhou, Y,; Liu, Y.H. Adaptive Vision-Based Control for Rope-Climbing
Robot Manipulator. In Proceedings of the 2019 IEEE/RS] International Conference on Intelligent Robots and
Systems (IROS), Macau, China, 3-8 November 2019; pp. 4-8.

Bullen, I.; Harry, W.; Ranjan, P. Chaotic Transitions in Wall Following Robots. arXiv 2009, arXiv:0908.3653.
Hammad, I; El-Sankary, K.; Gu,]. A Comparative Study on Machine Learning Algorithms for the Control of
a Wall Following Robot. arXiv 2019, arXiv:1912.11856.

Antoun, S.M.; McKerrow, P.J. Wall following with a single ultrasonic sensor. In International Conference on
Intelligent Robotics and Applications; Springer: Berlin, Germany, 2010; pp. 130-141.

Jia, B.; Weiguo, F.; Zhu, M. Obstacle detection in single images with deep neural networks. Signal Image
Video Process. 2015, 10. [CrossRef]

Hua, M.; Nan, Y;; Lian, S. Small Obstacle Avoidance Based on RGB-D Semantic Segmentation.
In Proceedings of the IEEE International Conference on Computer Vision Workshops, Seoul, Korea,
27 October 27-2 November 2019. 2019; pp. 886-894. [CrossRef]

Yu, H.; Hong, R.; Huang, X.; Wang, Z. Obstacle Detection with Deep Convolutional Neural Network.
In Proceedings of the 2013 Sixth International Symposium on Computational Intelligence and Design,
Hangzhou, China, 28-29 October 2013; pp. 265-268.

Kore, P.; Khoje, S. Obstacle Detection for Auto-Driving Using Convolutional Neural Network: ICDECT 2017.
In Proceedings of the 2nd International Conference on Data Engineering and Communication Technology,
Pune, Maharashtra, India, 15-16 December 2017; pp. 269-278. [CrossRef]

Ma, L.; Xie, W.; Huang, H. Convolutional neural network based obstacle detection for unmanned surface
vehicle. Math. Biosci. Eng. MBE 2019, 17, 845-861. [CrossRef] [PubMed]

Bai, J.; Lian, S.; Liu, Z.; Wang, K,; Liu, D. Deep Learning Based Robot for Automatically Picking up Garbage
on the Grass. In IEEE Transactions on Consumer Electronics; IEEE: Piscataway, NJ, USA, 2019.

Ramalingam, B.; Lakshmanan, A.K,; Ilyas, M.; Le, A.V.; Elara, M.R. Cascaded Machine-Learning Technique
for Debris Classification in Floor-Cleaning Robot Application. Appl. Sci. 2018, 8, 2649. [CrossRef]

Cauli, N.; Vicente, P; Kim, J.; Damas, B.; Bernardino, A.; Cavallo, F.; Santos-Victor, J. Autonomous
table-cleaning from kinesthetic demonstrations using Deep Learning. In Proceedings of the 2018 Joint
IEEE 8th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob),
Tokyo, Japan, 17-20 September 2018; pp. 26-32.

Farooq, A.; Farooq, F; Le, A.V. Human Action Recognition via Depth Maps Body Parts of Action. TIIS 2018,
12,2327-2347.

Yin, J.; Apuroop, K.G.S.; Tamilselvam, Y.K.; Mohan, R E.; Ramalingam, B.; Le, A.V. Table Cleaning Task by
Human Support Robot Using Deep Learning Technique. Sensors 2020, 20, 1698.

Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings
of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA,
7-12 June 2015; pp. 3431-3440.

Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector.
In European Conference on Computer Vision; Springer: Berlin, Germany, 2016; pp. 21-37.

Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. Inverted Residuals and Linear Bottlenecks:
Mobile Networks for Classification, Detection and Segmentation. arXiv 2018, arXiv:1801.04381.

Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H.
Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017,
arXiv:1704.04861.

Skovsen, S.; Dyrmann, M.; Krogh Mortensen, A.; Steen, K.; Green, O.; Eriksen, J.; Gislum, R.; Jergensen, R.;
Karstoft, H. Estimation of the Botanical Composition of Clover-Grass Leys from RGB Images Using Data
Simulation and Fully Convolutional Neural Networks. Sensors 2017, 17, 2930.

Tieleman, T.; Hinton, G. Lecture 6.5-RMSProp, COURSERA: Neural networks for machine learning; University
of Toronto: Toronto, ON, USA, 2012.

Hutchinson, S.; Chaumette, F. Visual servo control, part i: Basic approaches. IEEE Robot. Autom. Mag. 2006,
13, 82-90.

Veerajagadheswar, P,; Ping-Cheng, K.; Elara, M.R; Le, A.V.; Iwase, M. Motion planner for a Tetris-inspired
reconfigurable floor cleaning robot. Int. |. Adv. Robot. Syst. 2020, 17, 1729881420914441. [CrossRef]

http://dx.doi.org/10.1007/s11760-015-0855-4
http://dx.doi.org/10.1109/ICCVW.2019.00117
http://dx.doi.org/10.1007/978-981-13-1610-4_28
http://dx.doi.org/10.3934/mbe.2020045
http://www.ncbi.nlm.nih.gov/pubmed/31731381
http://dx.doi.org/10.3390/app8122649
http://dx.doi.org/10.1177/1729881420914441

Sensors 2020, 20, 3298 24 of 24

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Le, A.; Prabakaran, V.; Sivanantham, V.; Mohan, R.E. Modified A-Star Algorithm for Efficient Coverage Path
Planning in Tetris Inspired Self-Reconfigurable Robot with Integrated Laser Sensor. Sensors 2018, 18, 2585.
[CrossRef] [PubMed]

Shi, Y.; Mohan, R.E.; Le, A.; Prabakaran, V.; Wood, K. Path Tracking Control of Self-Reconfigurable Robot
hTetro with Four Differential Drive Units. IEEE Robot. Autom. Lett. 2020, 5, 3998-4005. [CrossRef]
Dubuisson, S.; Gonzales, C. A survey of datasets for visual tracking. Mach. Vis. Appl. 2016, 27, 23-52.
[CrossRef]

Bonarini, A.; Burgard, W.; Fontana, G.; Matteucci, M.; Sorrenti, D.G.; Tardos,].D. Rawseeds: Robotics
advancement through web-publishing of sensorial and elaborated extensive data sets. In Proceedings of the
IROS, Beijing, China, 9-15 October 2006.

Yang, S.; Maturana, D.; Scherer, S. Real-time 3D scene layout from a single image using convolutional neural
networks. In Proceedings of the 2016 IEEE international conference on robotics and automation (ICRA),
Stockholm, Sweden, 1621 May 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 2183-2189.

Bashiri, ES.; LaRose, E.; Peissig, P.; Tafti, A.P. MCIndoor20000: A fully-labeled image dataset to advance
indoor objects detection. Data Brief 2018, 17, 71-75. [CrossRef] [PubMed]

Huitl, R.; Schroth, G.; Hilsenbeck, S.; Schweiger, E.; Steinbach, E. TUMindoor: An Extensive Image and
Point Cloud Dataset for Visual Indoor Localization and Mapping. In Proceedings of the International
Conference on Image Processing, Orlando, FL, USA, 30 September—3 October 2012. Available online:
http:/ /navvis.de/dataset (accessed on 9 June 2020).

Quattoni, A.; Torralba, A. Recognizing indoor scenes. In Proceedings of the 2009 IEEE Conference on
Computer Vision and Pattern Recognition, Miami, FL, USA, 20-25 June 2009.

Chou, S.; Sun, C.; Chang, W.; Hsu, W.; Sun, M.; Fu,]. 360-Indoor: Towards Learning Real-World Objects in
360° Indoor Equirectangular Images. In Proceedings of the 2020 IEEE Winter Conference on Applications of
Computer Vision (WACV), Snowmass Village, CO, USA, 1-5 March 2020.

Adhikari, B.; Peltomaki, J.; Puura, J.; Huttunen, H. Faster Bounding Box Annotation for Object Detection
in Indoor Scenes. In Proceedings of the 2018 7th European Workshop on Visual Information Processing
(EUVIP), Tampere, Finland, 26-28 Novomber 2018.

Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet Classification with Deep Convolutional Neural Networks.
Neural Inf. Process. Syst. 2012, 25. [CrossRef]

Huang, J.; Rathod, V;; Sun, C.; Zhu, M.; Korattikara, A.; Fathi, A.; Fischer, I; Wojna, Z.; Song, Y,;
Guadarrama, S.; et al. Speed/accuracy trade-offs for modern convolutional object detectors. In Proceedings
of the IEEE CVPR, Honolulu, HI, USA, 21-26 July 2017.

@ (© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/s18082585
http://www.ncbi.nlm.nih.gov/pubmed/30087274
http://dx.doi.org/10.1109/LRA.2020.2983683
http://dx.doi.org/10.1007/s00138-015-0713-y
http://dx.doi.org/10.1016/j.dib.2017.12.047
http://www.ncbi.nlm.nih.gov/pubmed/29876376
http://navvis.de/dataset
http://dx.doi.org/10.1145/3065386
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Vision Based Wall Following and Obstacle Avoidance Framework
	Fully Convolutional Network for Wall Segmentation
	Obstacle Detection Framework
	Visual Servoing

	HSR Robot
	Experimentation and Results
	Data-Set Preparation and Training
	Offline Test with Indoor Data-Sets Images
	Real-Time Test
	Performance Analysis
	Comparison Analysis of Different Architectures
	Evaluation of Wall Following and Avoidance

	Conclusions
	References

